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Wedge filling and interface delocalization in finite Ising lattices with antisymmetric surface fields
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Theoretical predictions by Parmt al. for wetting phenomena in a wedge geometry are tested by Monte
Carlo simulations. Simple cubicX L XL, Ising lattices with nearest neighbor ferromagnetic exchange and
four freeL X L, surfaces, at which antisymmetric surface fieldsls act, are studied for a wide range of linear
dimensions (4<L=<320, 36<L,=<1000), in an attempt to clarify finite size effects on the wedge filling
transition in this “double-wedge” geometry. Interpreting the Ising model as a lattice gas, the problem is
equivalent to a liquid-gas transition in a pore with quadratic cross section, where two walls favor the liquid and
the other two walls favor the gas. For temperatuFdselow the bulk critical temperatur€, this boundary
condition (where periodic boundary conditions are used in yheirection along the wedggdeads to the
formation of two domains with oppositely oriented magnetization and separated by an interfadgL f-or
—oo andT larger than the filling transition temperatufg(H,), this interface runs from the one wedge where
the surface planes with a different sign of the surface field rfeeaveraggstraight to the opposite wedge, so
that the average magnetization of the system is zeroTEoF(Hg), however, this interface is bound either to
the wedge where the two surfaces with fieldHg meet(then the total magnetizatiom of the system is
positive) or to the opposite wedgéhenm<0). The distancé, of the interface midpoint from the wedges is
studied asT— T;(H,) from below, as is the corresponding behavior of the magnetization and its moments. We
consider the variation dfy for T>T;(H,) as a function of a bulk field and find that the associated exponents
agree with theoretical predictions. The correlation lergytin they direction along the wedges is also studied,
and we find no transition for finite andL,— . ForL—« the predictior g (Hgs.— Ho) ~Yis verified, where
Hs(T) is the inverse function oT((Hs) and &, (Hs.—Hs) ~*, respectively. We also find that vanishes
discontinuously at the filling transition. When the corresponding wetting transition is first order we also obtain
a first-order filling transition.
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[. INTRODUCTION order wetting transitions, and hence critical phenomena as-
sociated with second-order filling transitions should be
Recently the problem of wetting of fluids in a wedge ge-readily observablgg,7]. In addition, it has been predicted for
ometry provided by a suitably prepared solid surface hasystems with short-range forces between the wall atoms and
found increasing attention, both in the context of applicathe fluid molecules that the effect of interface fluctuations
tions, e.g., microfluidics, and because of its interest for theshould be very strong and lead to the following divergences
theory of inhomogeneous fluidé—8]. Of particular interest  of the height¢, and the associated correlation lengths,
is the striking finding that under conditions where the fluid s, and§, as one approaches the filling transition tempera-
does not yet wet the walls forming a wedge, i.e., where théure T; from below[6,7]:
contact angleé® characterizing the wettability properties of
planar substratef9—14] is still nonzero, a phase transition Cor(Te=T) 7 Ps, & o (Ti=T) 7™,
occurs. There the liquid that has condensed in the wedge T\ N
from the (saturatey gas, to which the substrate is exposed, ST e (Ty=T) @
starts to f_iII the wedge, i.e., the _heigﬁg (Fi_g._l_) of the  \uith the exponents
interface right above the wedge diverges to infinity when the
transition temperaturd; of this “filling transition” is ap- Bs=v,=v=1/4, v,=3/4, 2
proached. In fact, considering a situation where the wetting
transition[10—14 on a planar substrate can be brought aboutHere ¢, describes the interface roughnesg tirection, per-
by a variation of temperature, one finds-4] that{, is finite  pendicular to the interfacérig. 1), while &,, &, measure
as long as®(T)>«, « being the opening angle of the correlations of interface height fluctuationg (x,y)
wedge (Fig. 1), while the filling transition is reached —({€(x,y)) parallel to the interface in thedirection normal
for ®(T¢{)=«a, and then ¢, becomes of macroscopic to the direction of the wedge and in teirection along the
size,fy— . wedge, respectively. Furthermore, the approach to the filled
While second-order wetting transitions at planar surfacesvedge afT=T; as a function of the chemical potential dif-

are a rather rare phenomen(drb], it has been predicted that ferenceAu, i.e., of the field conjugate to the order parameter
continuous filling transitions in wedge geometries are posin the bulk (the density difference between liquid and satu-
sible even for wedges made from substrates exhibiting firstrated gag has been predicted §8,7]
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N surface which is geometrically closer to the interface than the
T<T other plane is taken into account.

f (iii) It is assumed that the fluctuations of the height
€o(y)=€(x=0)y) at the midpoint of the wedge dominate the
critical behavior.

In view of these uncertainties about the validity of these
assumptions, it is desirable to test them by a Monte Carlo
study of the filling transition, and this is the goal of the
present paper. Recall that Monte Carlo tests of critical wet-
ting with short-range forcef21-23 have called the corre-
sponding theory24] into question 25].

In Sec. Il we define the model that is studied here. For
technical reasons we study a double wedge of cross section
LXL and hencex= /4, i.e., « is not small, since this al-
lows us to study also the present model within the frame-
work of a nearest neighbor Ising model on the simple cubic
lattice; a double wedge is used, since in computer simula-
tions necessarily all linear dimensions are finite, and hence a
wedge that is open and infinitely extended, as sketched in
Fig. 1, cannot be simulated. Also in Sec. Il we recall what is
X known about the wedge filling transition in more detail and
discuss our finite size scaling concepts used to analyze our
results in Sec. Il Finally, Sec. IV gives a summary and out-

FIG. 1. Schematic view of the wedge geometry in which a lig-
uid condenses from a gas held at the coexistence prepsid€r)

o = : , look on future work.
of the liquid-gas transition. The wedge is symmetric aroundzthe In th | he inf .
axis (m— 2« is the opening angle of the wedgend the center of n the present paper we complement the information pro-

the wedge runs along theaxis. The liquid-gas interfaogreated as  Vided in abbreviated formi26]. Specifically, we extend the

a sharp kink has the local positioii(x,y) above the wedge, while Previous study in the following points.

¢, denotes its midpoint positioffor x=0). The situation where the (i) We locate the filling transition by calculating the con-
contact angle® [of a macroscopic amount of fluid in the wedge, tact angle on a planar substrate via Young's equation. We
where(, is much larger than all atomistic distances and line tensioncompare this result to the finite size scaling anal{2, the
effects on®(T) can be neglectddexceedsa corresponds tf  dependence of the heighg in the middle of the wedge, and
<T;, while the filling transition temperatur€;, where thenf,  a naive analysis of profiles of the wedge’s cross section.
—oo, is reached fo® (T=T;) = «. Note that the state shown in the (i) We study complete filling.

upper part of the picture, whe® >« but €, has a macroscopic (iii) We elucidate the role of the length of the wedgg
value, can only be realized in an ensemble constrained such thaind provide evidence for the absence of a transition in the
there is a macroscopic amount of fluid in the wed§é In an limit Ly— at fixed cross section.

ensemble where the pressyrés fixed atp,e{T), in the nonfilling (iv) We change the model as to consider surfaces which

situation,, is still a microscopic length, and hence larger than thegyhibit second-order and first-order wetting transitions in
thickness of the film coating all the walls of the wedge by a finite planar geometry.

factor only.

Cox(Apm) ™™ 3) Il. THE MODEL AND SOME THEORETICAL
BACKGROUND

In contrast, forT>T; one expects another power law, which

is denoted as “complete filling” because of the analogy with A. The problem

‘complete wetting”[11-14, namely[16], Throughout this paper we consider a nearest neighbor

Ising ferromagnet on a simple cubic lattice with linear di-

Coo(Ap) ™. (40 mensiond XL xL,, with periodic boundary conditions ap-

plied only in the third directior{the y direction, where the
Unlike the related case of corner wetting in the two-linear size isL). In the first two directiongthe x and z
dimensional Ising mod€l17—-20, where one believes that directions of the lattice we have free boundary conditions
the corresponding exponent8{= v, =1, v,=2) are known (i.e., missing spins across the boundalyut we also apply
exactly, the results Eq¢2) and(3) are based on a treatment surface fields+Hs at the two upper. XL, surfaces(for

that involves several approximatiof,7]. clarity, Fig. 2 shows a schematic cross section through our
(i) The interface is treated in the framework of the simplesystem to define the notatiband surface fields-H at the
capillary wave Hamiltonian. two lower surfaces.
(ii) Assuming small values ok in Fig. 1, only the inter- The Ising model in this antisymmetric double-wedge ge-

action between the interface and that plane of the wedgemetry is described by the following Hamiltonian:
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H=-J 2 SS-J; > ssj—Hsigv S

(1,1 bulk (i,j) e W UW,

+Hs X S, (5

ieW,

where J=1 denotes the exchange constant of the Ising
model in the bulk and the spin variabl8s can take values
+1. In addition, the exchange constaht in the surface
planes may differ from the exchange in the bulk. In this way,
a “double wedge” is created, where two plane&/y) with
negative surface fields meet at the liee 0, z=0 (they axis

of our coordinate systemwhile the two other planesw,)

with positive surface fields meet in the opposite lixe0,
z=L+/2. Of course, the actual orientation of the lattice
planes of the Ising lattice is rotated relative to thaxis by

the anglew/4, such that the surfaces become simple lattice
planes of the simple cubic lattice again, but this is not im-
portant for the phenomenological considerations that we will
present below. Apart from the different choice of boundary
conditions, the model is identical to that used for a study of
critical wetting[21-23 and interface localizatioh27-30.

At this point, we recall again that the Ising model can be
reinterpreted as a lattice model for the liquid-gas transition
via the lattice gas interpretation. A zero bulk figdd=0 then
corresponds to the pressure of the liquid-gas coexistence in
the bulk. However, for this application to fluids it would be
more realistic to assume long-range van der Waals—type sur-
face forces rather than strictly local surface forces. We shall
comment on this problem below. We are mostly interested in
the locationf (x) of the interface above the wall, disregard-
(b) ing the dependence on tlyecoordinate(the y axis runs per-
pendicular to thexz plane shown in Figs. 1 and 2, of couyse
which needs to be considered in the discussion of interface
fluctuations. We definé(x) simply as

ol

z=0

(a)

>
«

€(x)=2-[x], (6)

FIG. 2. (a) Cross section through the double-wedge geometry of . . .
the simulatedL XL XL, Ising lattice. The interface between the z being the position of the contour separating the two do-

domains with positive and negative magnetizatiowicated sym- mains Qf positive and . negatlve_ magnetlzatlcm this .
bolically by the thick arrowp starts out at the left wedgex€ des<_:r|pt|0n, we Freat the |nt(_erfaC§_ |n_the_> sharp_ km,l,( approxi-
—L/\2, 2= +L/y2) and ends at the right wedga=z=L/\2). mation, neglecting a possible “intrinsic profile ” of the
Above the temperature of the filling transition, the interface ﬂuctu_lnterface[ll—liﬂ).

ates weakly around its mean positiar /2, i.e., ¢(x)=z—|x|

=L/\2- |x|. Below this transition temperature, the interface is ei- B. Phenomenological mean-field theory

ther bound to the surfaces where negative surface fieldgaact Following the treatment of Rejmer, Dietrich, and Napi-

assumed in the sketghbr, equivalently, to the surfaces where posi- orkowski[5], we first formulate the problem in terms of an

tive surface fields act. Only in the immediate proximity of the bot- L - - . .
tom of the wedge X=02z=0) [or at the top k=0, z=Ly2), re- effective interface Hamiltoniaf[ ¢ ], which we write as

spectively does a minority domairfwith roughly triangular cross L de(x) 2
section) exist, characterized by the maximum distantg= ¢ (x H[(f(x)]:Lyf dx(g \/1+ +sgn(x)

=0) (or L\2—¢,, respectively of the interface from the surfaces. -LI2 dx

The distance of a point at the interface near the wedge from the two

boundaries forming the wedge is indicated, naméky2 andc —\2|+ \/Eth((f,X)]- (7)
=\2(|x|+¢/2), respectively.(b) Fluctuations of €, along the

wedge are characterized by two correlation lengghslescribes the . . .

fluctuations of the interface bound to a wedge, wig{B refers to ~ Here o is the interface free energy per unit area and
the length of domains, where the interface is bound to the upper o¥o((£,X) is the total interface potential experienced at the
lower wedge. interface position x,y,z=|x|+€(x,y)] due to the interac-
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tion with all four boundaries on which the surface fields act. Now mean-field theory for this problem is equivalent to

The standard approximation 1+ (d¢/dx)?~1  the minimization of the Hamiltoniaf[ ¢] with the appro-

+(1/2)(d€¢/dx)?, which also is used in the theoretical treat- priate boundary conditionsf (x=—L/\2)=€(x=L/2)

ments of the wedge filling transitidr®,7], assumes that the =0. The resulting Euler-Lagrange equation following from

angle « in Fig. 1 is very small. This leads to the capillary Eq. (7),

wave Hamiltoniaf12—-14 in its usual form, but this cannot

be used here sinae=arctan X /4 is of order unity and the d2¢(x)/dx?

expansion of the square root is unwarranted. We also have ¢

chosen the convention to measure the interface energy rela- dé(x)

tive to that in the state above the filling transition tempera- dx

ture, wheref (x) =L/\/2—|x|. The extra factor/2 in the last

contribution accounts for the ratio betweéndx and the generalizes the result of Rejmer, Dietrich, and Najavski

surface area. [5]. Since it was possible to solve the Euler-Lagrange equa-
For an interface that interacts with a flat wall with short- tion of Ref.[5] only in special limits, there is little hope that

range forces and is located @onstant heighth above this  the explicit analytic solution of E10) could be found, and

straight wall, the standard assumption for the potential isn fact we have been unable to do so. If we approximate

at
1+

J
5= 2 — Vil £,%), (10)
+sgn(x) )

[11-14,29,31 Ve €,X) by Vil €]~aexp(— «t/\2)+b exp(— 2k (x))
we can writedV (€ ,X)/ 3¢ ~dVeg/d€, and thus recover Eq.
V(h)=aexp(— kh)+bexp(—2«h), (8) (3.3 of Ref.[5]. Using this approximation and multiplying

both sides of Eq(10) with d¢/dx, we can integrate:
wherea, b, and« are phenomenological constants. The co-
efficient a changes sign at the second-order wetting transi- 2+ (de/dx) ()
tion temperaturd,, such thata<0 for T<T,,; « is of the  — >
same order as the bulk inverse correlation Ie@ﬁ, but V1+[(de/dx)+1] €(0F)
probably not identical28,29. For a<0 the film thickness 11
h* is finite. Using @V/dh),~=0 one obtains exp{«h*)= ) .
—al(2b) andV(h*) = —a?/(4b). Using the Young equation Far away from the; corner the distance between the interface
[12,13, we can relate the minimum of the interface potential_a”d the surface will be equal to the valu? of a planar surface,
to the contact angl® via V(h*)=o(cos®—1). Le, [d€/dx=0 and Ve(€(x))=V(h")=o(cos®-1).

In the present geometriFig. 2), however, the treatment Here, we disregard the immediate I’IEIgthI’hOOdXGf
needs to be extended to include interactions with all four™L/y2 and assume that the effects on the profi() near
walls. Simple geometric considerations sh@ig. 2) that the ~ X=0 from this region are negligible. _
normal distances of a poifik,y,z=|x|+€(x)] at the inter- We follow Rejmer, Dietrich, and Napikowski [5] and
face from the four walls are’/\2, c=\2|x|+¢/y2, L  require that the solution is symmetr|¢z+<|+€(x)=|_—.x|
—¢/\2,L—c=L—¢/y2— 2|, and hence in our case Eq. +€(ix), and hencel¢/dx=—1 for x=0 ._At the filling
(8) needs to be replaced by transition¢ (0)~L/+/2 and, henceV (¢ (0)) is of the order

exp(—«L/\/2). We expect the effective potentidly only to
L estimate the order of magnitude; clearly, in the situation
)cos}‘(—{——ax) where the interface runs along the diagonal of the wedge,
V2|2 interactions with all surfaces need to be considered. Then,
the right-hand side of Eq11) takes the following form:

= V2[ V(£ (X)) = Ver(£(0)].

KX

V2

Viotl(€,X) =4a exp — KL/2)cos><

—|x| | | +4b exp(— kL)cosh y2xkx) 22
2 —E+O(exp(—KL/\/§))
L
XCOS*( V2x E—f’(x)—lxl ) ) = J2[ o(cos® — 1)+ O(exp( — kLI2))]

(12)
Note that our result fo¥,,(¢,x) does not reduce to the result . - _
of Rejmer, Dietrich, and Naprkowski [5] even in the limit ~ at the filling transition. The left-hand side of E@.1) equals
L, because Rejmer, Dietrich, and Nagsiowski[5] take ~ —V2+1=—2(1—-cosa), where we have used cas
into account the interaction with the nearest boundary only=1/\2 for our double-wedge geometry. Therefore @os
and neglect the interaction with the more distant boundary.:COSa+(9(exp(—KL/\/E)) at the filling transition.
Their approximation should become accurate for widely Note that this condition differs substantially from the
open edgesi.e., <1), which is not the case here, where analogous result for the interface localization-delocalization
a=ml4. As a consequence, the potentig)(€,x) depends transition between competing flat walls a distathcapart,
on x not only implicitly [via thex dependence of(x)], but  which rather read§29,31]
also explicitly. This fact complicates the treatment even on
the level of the mean-field theory considerably. a+4bexp —«L/2)=0. (13
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While Eq. (13) shows that the transition temperature of the 3= — 4b exp( — kL/2)cosh xx.v/2)/cosh xx.//2).
interface localization transition fdr— o converges towards (16)

the wetting transition temperature, the filling transition tem-
perature forL—o differs substantially from the wetting Thus we expect that fluctuations of the interface are stable
transition temperature, in fact, it occurs when the contactwhena<0, i.e., below the wetting transition temperature of
angle ® on the planar substrate approaches the openinthe flat surfackeonly in the regionst (L/\2<x=<x,), while
angle «. Similar to the interface localization-delocalization interfacial fluctuations are unstable in the regim& <x<
transition in a film, however, mean-field theory suggests that-x.. When the interface localization-delocalization transi-
the transition temperature in the double-wedge geometry diftion is approacheds.—L/+/2, the interface gets unstable in
fers from the transition temperature for—o by terms of its “unbound” position everywhere. Therefore the transition
order expt «L/+/2). to the states where the interface is bound to one of the
wedges must occur.

C. Fluctuations of the interface in the “disordered phase” _
within mean-field theory D. Beyond mean-field theory

In this section we consider the region of temperatures Using Eq. (14) we obtain the free energy frork=
above the filling transition temperature, where the interface=KgT In Z, whereZ= [ Df exp(—"H) with a factor 1kgT ab-
in our double-wedge geometry is not bound to either thesorbed in the definition of¢[f]. This would be a rather
lower wedge or the upper wedge, but runs more or les§ormidable problem. In fact, fluctuations have only been con-
straight from the left corner of the square cross section to théidered[6,7] for the simpler case of a single infinite wedge
right corner(at z=L/+/2) in Fig. 2. Since we know that this (Fig. 1) with a@<1. Analyzing this simplified model in the
trivially is the solution for the average position of the inter- mean-field approximation for a critical filling transition with
face, it is a straightforward matter to expand the effectiveshort-range forces, one finds that the expongsees Eq(1)],
free energy quadratically around this solution. In the analofor the short ranged boundary potential E8). are[7]
gous case of the interface localization-delocalization transi-
tion between parallel walls, this approach has yielded mean- Bs=0, v, =1/4, v,=1/2. (17)
field prediction for the “susceptibility” of the interface
localization transitiorj29], and it clearly is of interest to try
such an approach in the present problem too.

Defining f =|x|+ €(x,y) we rewrite Eq.(7) as

Here 8,=0 means that the midpoint interface positiofin
Fig. 1 grows only logarithmically in=1—T/T; as the fill-
ing transition temperatur€; is approached from below, i.e.,
(€o)=|Int|. On the other hand, the result thitt 4 ast

Lz L a2 [ af\2 —0 shows that mean-field theory for this problem is inad-
H[f]=f dxf dy{ 0'( \/1+ — +(—) - \/E) equate, since the “contact conditiof32] &, /{€y)<<1 is
-uvzJo X % violated. Thus, fluctuation®eyond mean fielsheed to be

considered. Rather than treating the full Hamiltonian—which
+ \/EVtot(e(X,Y)yX)]- (14) should be able to describe both wettihghere «=0) and
filling (whena>0)—Parryet al.[6,7] argue that it suffices
to consider a simpler Hamiltonian where only fluctuations in
Since for the considered conditiojgf/dx|<1, [df/dy| 'y direction are included. Then((x,y)=lq(y)—a|x| for
<1, alsosf =f—L/2 is small, one can expand Ed.4) as a<l,
follows (constant terms being omitted

iy J‘-f-L/v‘?d fLyd [0’ (aaf)2+<a5f
L1~ 7L/\s‘ixo Y121 ox ay _ _ _

with [for large |, the subleading term proportional to exp

+2a./2 ex — kL/2)cosi kx/\2)[ 1+ k?(51)%/14]  (—2«lo) can be omittedi

2 2 a(@%—a?)l,
+2b /2 ex — kL) cosh kx\2)[ 1+ k*(5F)?] . Vin(lo)=—————+arexp(—«lo). (19

2

Ufo(d‘eo
2

Hfill(eo):de[T dy

+ Vi (1 o)] : (18)

(15 0 is the contact angle at the filling transition aad is re-

. - lated to the parametexr of Eq. (8). Note that botha andag
One readily sees from Eq15), however, that the coefficient 5 o o qative in the regime of interest. Of course, the condi-

of (8f)? is not uniformly positiye in the.interval— l.‘/\/i tion aVyy /9€,=0 would yield

<x<+L/\/2, as would be required for this expansion to be

applicable. Rather, one finds that the coefficient 8f)¢ is k{lo)=—In[o(®?—a?)/(|ag|ka)], (20)

only positive close to the left and right corners while further

inside the double wedge there occurs a critical valueand since® — act [remember,®(T=T;)=«], the above
*+X(a), where this coefficient changes sign. This vatyés  result(l)«|Int| follows. For the Hamiltonian Eq18), how-
found from the solution of the equation ever, a treatment of fluctuations yields the exponents quoted
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in Eq. (2) [6,7] rather than the mean-field results, Efj7).  cally single domain states of the type as sketched in Fig. 2
This treatment also yields a scaling prediction for the re{or their mirror image along the mirror plaze=L/+/2) only.
sponse of(€y) to a bulk magnetic field, involving a gap We now discuss the fluctuations of the total magnetization

exponentA =5/4[6,7: m=(L2Ly)*1Ei$ in the limit whereL is sufficiently large
that we can approach the filling transition rather closely and
()=t~ Y4 (Ht™2), (21)  still have Ly<£P for a large value ofl, such thatL,
>¢,. We then expect that the magnetization fluctuations
scale as

where? is a scaling function which behaves &6;— x)
oz~ Y4 which yields Eq.(3).

For the sake of completeness, we mention that(Egis
valid not only for systems with strictly short-range surface

forces but also for surface forces that decay with a power Iav& . . . .
V(h)=h~?, providedp=4. In contrast, fop<4 Eq.(17) is quation (24) is basec_i on the speculatlve.suggestlon that
replaced by magnetization fluctuations here are predominantly caused by

random fluctuations of the interface; if the interface passes a
volume element, the magnetization in the volume element
changes from+my, the value of the spontaneous magneti-
zation in the bulk, to—-m,, and vice versa. This magnetiza-
Yon fluctuation is correlated in a correlation volume, which
is £, &&y for the filling transition. This reasoning assumes
that the amplitude of the interface fluctuations is comparable
E. Phenomenological finite size scaling considerations to the lateral dimension itself. We shall confirm this as-

Finally we note another important distinction between theSUmption by Mo.nte Car!o S|mulat|or(sf. F'.g' 12 and alsq
interface localization transition and the wedge filling transi-JUSt'fy .'t by relating the interface Iocal|z§t|pn-delocal|zat|on
tion: while the interface localization transition can occur for ransitionin a double_ wedge to the predl_ctlons of Patrgl.
any finite distancé. between the two planar boundaries, alsol6:7] via some plausible phenomenological argumeae.
when fluctuations are taken into account, the wedge fiIIin% of courst.a,.\{ve' always can write a fluctuation relation for
transition exists only in the limit—oo. It is rounded off for e susceptibility:
any finite L because then the system is quasi-one-
dim_ensi_onal and cannot maintain true Ipn_g—range _order in the KeTy= kBT’?_m: L2L,((m2)—(m)2), (25)

y direction. Thus, there is a characteristic domain $j dH Y

[cf. Fig. 2b)] over which the magnetization of the double

wedge forT<T; is positive(as assumed in the cross sectionwhere in a finite system actually it is appropriate to replace
Fig. 2, since the area of the positive domain is largehile  (m)2 by (|m|)? in the phase where one expects symmetry
then an interface occurs where the interfaces move up frorhreaking[34,35. Hence Eqs.(24) and (25) imply that x

the line z=(l,) (betweenx=—(€,) andx=+(lo)) to the ot~ 4 ie., we speculatively predict that="5/4 for the fill-

line z=Ly2—(€,) (also betweenx=—({y) and x=  ing transition.

+(lo)). Here we have assumed that the cross section of the Now we discuss finite size scaling for this problem more
interface between positive and negative domains in thgenerally, but assuming, ¢, , so that two nontrivial corre-
double wedge is essentially a horizontal straight line afation lengthsé «ct™"+, & oct™ "y remain[cf. Eq.(2)]. Then
height z=1, in Fig. 2. Thus the area of such an interfacethe most general scaling assumption for the susceptibility
across the wedgéeeded to change the sign of the magne-would be[36]

tization) is L2—2(¢,)2, and hence the free energy cdst

units of temperature, having absorbed a factégT/in our erﬁ(Ly/gy,L/gi):ry}(Lyth,Ltn), (26)
Hamiltonian is (L2—2(¢,)?) . As a consequence, we esti-
mate that the typical domain size yndirection should be

L2L,((m?) —(m)2) e mpé, &é oct™ tmtm) =754
(24)

Bs=1lp, v, =1/4, v,=1/2+1lp, (22

and one can show that mean-field theory is self-consiste
whent—0 [7].

Y being a suitable scaling functidin the last step of Eq.

f)l,DOCeXp[O'(LZ— 2(00)?)} (26) we actually _have syppresse_d amplitud_e prefactors in the
arguments of this scaling functignAlternatively, we may
=exp{(4mw) [ (L/&)*—2((Lo) &)°]}, write
(23 ~
X=tx(Ly Ly L), 27)

where in the last step we have used the capillary parameter

[12-14 w=(4w&50) !, ©~0.86[33] for the Ising model.  where is another scaling function, and now only one argu-
Thus forL > §>1,D one should observe that the magnetizationment depends on temperature, the other arguingHt vylvy

of the double wedge is always zero, due to the formation of = Ly/L3, if Eq. (2) holdg| is a generalized aspect rafig6].
many domains of typical sizeiD. However, ifL is suffi-  Similar relations can be written for the fourth-order cumulant
ciently large and., not too large, one should observe typi- of the magnetizatiof36,37:

031601-6



WEDGE FILLING AND INTERFACE DELOCALIZATION . .. PHYSICAL REVIEW EG68, 031601 (2003

U, =1—(m®/(3(m32)=0(L /&, L/ which is nothing but a special case of the generalization of
Lly (MY EMHH=U(Ly 8y LIE,) hyperscaling to uniaxially anisotropic criticalif36],
~ vy 1/v
=U(Ly /Ll ™), (28) (d=1)v, +vy=y+28 (34)
whereU, U are suitable scaling functions. noting that we deal witd=3, B=0 here. The exponents

It turns out that a similar scaling as for the cumulant ap-suggested abovler, =3, vy=2, cf. Eq.(2)] and y=3 [see
plies for the magnetization of the Ising model in the double-EQ. (24)] are indeed fully consistent with E¢33).

wedge geometry: Now a convenient way to estimate exponents such as
/v, , 1llvy is to take temperature derivatives at these com-
<m>:mbfn(l_y/gy,L/él):mbfn(Ly/Lyy/Vl,LtVl), mon intersection points of the cumulants or magnetizations,

(29) from which we predict slopes that scale Iff§3 (keeping the
generalized aspect rath,/L3 fixed).

wherem andm are suitable scaling functions and, is the We emphasize that unlike Eqe2) and (21) which are
spontaneous magnetization of the bulk three-dimensiondtaSed on a calculatiof, 7] using the approximate effective
Ising model. Normally, at a second-order transition one-@Mmiltonian Eq(18), Egs.(23)—(34) are highly speculative.
would have a power laym)=t? and a corresponding pref- Thus, a Monte Carlo test of these conjectures, as well as of
actor in Eq.(29), but here this exponen8=0. This also Eq. (2), is clearly warranted. While the filling transition for a
implies that the "‘gap exponentA = y+ 8=y, and Eq.(24) single infinite wedgéFig. 1) corresponds to a singularity of
is consistent with Eq(21). We may motivate the result Eq. the s'urface excefs fr(?,e energy only, E(Qﬁ)—(34) imply a
(29) by noting that for finite “aspect ratiol, /L*v/":, we special }ypve,v‘ff_ bulk” transition in the limitL —c, L,
expect from geometryFigs. 1 and 2 the following relation % Ly/L™""™ =const.
for the magnetization:

(m)= mb( 1- 2<i02>

Ill. MONTE CARLO RESULTS

A. Direct analysis of the wedge filling

=mg[1—consttY4L) 2], (30)

First of all we emphasize that for our simulations it is
o . ) . more convenient to varif at fixed T (rather than varyin@
which is compatible with Eq(29), sincev, =1/4[Eq. (2)]. gt fixedH,), as in our studies of wetting transitiof&l—23.
Fort<0 we expect then a double Gaussian formfe(m)  Thys, we reinterpret the distantéom the filling transition

if Ly/L"/"t is kept finite andm is near=(m): as t=(Hs.—Ho)/Hse, Where Hi=H.(T) is the inverse
function of T=T;(H). Of course, it should not matter in
_ 22 2|1 2 f S.
PL(m)ocexp{(m (m)°L LY} F{— (m+(m)°L7Ly which way the line of filling transitions is approached in the
ZkBTX

2kgTx ' (T,HJ) plane as long as it is not tangential to the line. This
(3D choice is preferable because the bulk properties of the Ising

W hat th fth il b _model(spontaneous magnetizatiom, and susceptibility and
e note that the argument of the exponentials can be rewrit o ation length,, in the bulk, as well as the interface free

ten as energyo) then stay strictly constant and none of these prop-
m 2(m)2L2L erties can depend upd.
(—i ) Y121 |__Y/VL?(Ly/LVy/VL,LllVLt) As a first estimate of the wedge-filling transition we use
(m) 2kgTx g the macroscopic criterion that the filling occurs when the
| 24l o ¥ ol 1 Uy contact angl@® on a planar substrate equals the wedge angle
=LETY YA (L LY LT, = /4. The contact angl® is given by the Young equa-
(32)  tion:
wheref, f are suitable scaling functions that result from cos® = 7s+(Hg) = a5 (Hy) = AU(HS), (35)
inserting the scaling expressions fon) [cf. Eq. (29)] and g o

[cf. Eg.(27)]. Now, Egs.(31) and(32) are compatible with a
scaling description of| (m) at the filling transition itself
(wheret=0) only if the power law prefactor df in Eq. (32)

vanishes.(If a positive power ofL remained, a two-delta

guensct;“r?r]ciodrlsitr:l?eurtrlr?g ovaZlutlv(\j/o’fltljse?tzjl ?upnece':irorftzi;rtfribl?tlij:rt]r et1 the difference of the surface free energles at surface field
n q Hs can be written asAo(H)=0s (+Hg)— o5, (—Hy).

would be expected if the interface Iocalization-delocalization.l_he latter quantity can be obtained readily via thermody-
transition in the double-wedge geometry was a standard ﬁrStﬁamic integratiorf38]:
order transition. This requires that &generalizeflhyperscal- '
ing relation holds: Ao(Hy)

+Hg
dHI(M.. ), (36)
2v, +v,=7, (33) J st s{Mse)

whereo denotes the interface tension between the coexisting
phases in the bulkrg, andog_ are the surface free energies
of the bulk phase with positive and negative magnetization,
respectively. By virtue of the symmetry of the Ising model
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and run parallel to them, the thickness of the interfacial pro-
———————g w”{ files is much broader than expected from the “intrinsic” in-
0.3 terfacial width(which should be 2,,, with a bulk correlation
T wo . . length of the order of only about a lattice spacing at the
~7" ol(27J)=0.27751 considered temperatyreThese observations already indicate
I ] that strong interface fluctuations are indeed present, and be-
come much more pronounced in the diagonal direction, when
B REAE R - the interface has become unbound from the left lower wedge,
1 e.g., atH,=0.720(note the large spacing between adjacent
] contours neam=0).
] In order to obtain an estimate where the filling transition
| 1 occurs we plot€(§4 versus Hg in Fig. 5: if €goc(Hg,
T05 00 05 | —Hg~** holds, a plot of¢,* versusH should yield a
C o H straight line whose extrapolation intersects the abscissa at the
0'8.0 0.2 0.4 0.6 0.8 transition field,Hs~0.706. The data are more or less com-
H, patible with such an analysis, but there is a systematic devia-
tion for Hs<0.6, presumably because the data are too far
FIG. 3. Surface free energy differender as a function of the  aqway from the filling transition and fdad ;=0.7 due to finite
?ltjrfacihmagnetlctflelﬁls ]f‘”/kBT:uo-st- I%%ta:re Obta'”et‘:] f“im a size effects. The inset of Fig. 5 shows tifgtincreases with
im with SYmmetrc surtaces anti=1,=69. AITows on e 1op i creasingH, only very gradually andéy=L/\2 (corre-
ng(n':tsi;;t?(‘;llazr‘: ]% 'Z;’i()rss(ffetﬁ;vgmfl: f'ir;’gt shows the surfac%ponding to a flat interface connecting the wedges where the
' competing boundaries meet not at all reached over the

whereM.. = (3. /L2 den h i magneti- entire range of surface fields, up HJ_S=1.6. Also the point
ereMs = (2 courace3)/L° denotes the surface magnet where the curvef, versusH has its steepest slopeH(

zation of a planar surface when the bulk has a positive spon-
taneous mellagnetization. The Monte Carlo resuIFt)s for thepdefo'nt 0.01) exceeds the ‘Ya'Pe "found from the extrgpola-
pendence oMy on the surface magnetic fieldg at J/kgT tion s_(_)mewhat. Thus, th|s_ naive” way to StUdY the filling
~0.25 are presented in the inset of Fig. 3. For these simula%%ansr']t'on by Monte Carlo simulation is hardly suitable to test
tions we have used a thin film with two symmetric walls and et eory. . .

periodic boundary conditions in the lateral directions. The Thg situation s much clgarer when we investigate the
main panel compares the difference in surface free ener riation with the conjugate fielttf. Fig. 6a)]. We see that

Ac(H)/J with the valuea/(J\/f):0.277 51 where we or fieldsH/J=0.01 the interface distance from the wedge is

have used the accurate values of the interface tension of tH[ o small ¢,=<4 lattice spacings so this region of fields

Ising model[39]. The intersection point yields the estimate Clearly is unsuitable to test the theoretical predictions. For

Hs~0.71 for the wedge filling transition. This estimate is f[he case where we are deep in the phase where the interface

compatible with the valuéi,.=0.72 obtained from a more is unbound from the wedges, we can confirm the behavior
SC_ . 71 - ST
detailed finite size scaling analysisf. below). The devia- Co(H)ocH ~ predicted for complete fillindcf. Eq. (4)] at

Sg g 72 . . - . _
tions are presumably due to inaccuracies of the surface ma{ﬁaSt for 1q . H/J. 10", For smaller f|_elds finite size ?f
S . . ects are visible. Fig. ®) shows also evidence for EQ);
netizationMg, at large negative values of the surface field

Hs. Under these conditions the system is metastable Witrt]estmg this relation is more subtle, sinkly is not known
: . ; .exactly.

respect to capillary condensation to a state with a negativé

magnetization in the middle of the filniNote that the wet-

ting transition is of second order for the planar substrate an

unlike the situation at a first-order wetting transition meta-

stable states cannot be observed close to the wetting transi-

tion.) Therefore, we can monitor the surface magnetization Since it is obvious that the parametey plays a crucial

only for a finite time and systematically overestimate therole in the analysis of the simulation data, we proceed next to

surface magnetization. This, in turn, leads to an overestimahe variation of properties with, at fixedL. As we have

tion of Ao and a concomitant underestimationtef,.. asserted in the preceding section, we expect that there cannot
Figure 4 shows typical results for the magnetization dis-be a transition when we ldt,—~ at fixedL, because the

tribution in the wedge, in the form of contour diagrams for problem becomes quasi-one-dimensional. Nevertheless, plot-

four choices ofHg near the filling transitiorHg. (which is  ting the fourth-order cumulant versti for L =40 and vari-

not knowna priori, howevey. These contour diagrams show ous choices fok,, we find(Fig. 7) rather well characterized

that the magnetization decays very smoothly franmg, intersection pointgand this is confirmed by an intersection

(=0.75 at the considered temperajuire the bulk to nega- point of the absolute value of the magnetizajicat H.

tive values in the lower left corner of the cross sections. This~0.72. Does this render our conclusion about the absence of

variation is very gradual, and also at those cas¢s=0.68  a transition forL,— o obsolete? This is clearly not the case,

and 0.695) where one can see that in large parts of the sysather, the correct interpretation presumably is ﬁfﬁ[ [EqQ.

tem the interfaces are bound to the left and lower boundarie@3)] for L=40 is already very large, and orders of magni-

0.2 a

Ac/J

0.1

qs. Finite size scaling analysis of the localization-delocalization
transition in the double wedge
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FIG. 4. Contour diagrams of the magnetization distribution inth@lane(i.e., averaged over thedirection of L XL XL, Ising lattices
with L=60, L,=120,J,=0.5, J/kgT=0.25, and four choices ¢: H;=0.68(a), 0.695(b), 0.705(c), and 0.72Qd). Contours are shown
fromm=—0.6 to+ 0.6 in steps of 0.2. Note that the surface field is negative at the left vertical boundary and at the lower boundary of the
Cross sections.

tude larger values of, would be needed to see the systemtions) one finds that |r§1Do<con5t|_ while for He<Hg,
form domains of opposne magnetization along thdirec-  (where the interface is bound in a wedge, and only after a
tion. This latter interpretation is corroborated by the findingjength ng jumps over to the opposite wedgene indeed
(Fig. 8 that no longer any intersections occur when we makeinds that InglP/LcL, i.e., In&PxL? as predictedEq. (23)].
the cross section much smallet%=144 rather thanL®>  Of course, there is still need to understand these data in more
=1600). In order to verify Eq(23) more thoroughly, we detail; one can already see that too small wedgesh as
have performed measurements of the correlation length af=4, 6, and 8) are not very helpful to elucidate the behav-
the magnetization in a pIane along they direction(Fig.  ior, presumably, one must haue>2¢&, before any of the

9). It is seen that in the regloH >Hg. (where the interface phenomenological considerations of Sec. Il start to make
runs in diagonal direction across the wedge, and the correlaense. This is plausible, since the constant§d * is of the
tions along they axis are dominated by interface fluctua- order of 1/10 in Eq(23).
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FIG. 5. Plot of the inverse fourth power of the interface distance
from the wedge vs surface field strendthy, showing a possible 10
straight line fit to estimateH,.~0.706 from an extrapolation.
The system parameters are the same as in Fig. 3, including also
second linear dimensioh=240. The inset shows a linear plot 7r T
of €4 vs. Hs.
Since the finite size effects associated withclearly are - o7 i
important, we want to check the finite size scaling ideas of =
Sec. Il, keeping the aspect ratic;/L3 approximately con- -
stant. This means doubling requires increasing., by a .,
factor of eight! Figure 1@ shows that again the cumulant 3t ., -
(as well as the absolute value of the magnetizatitave a %
rather well pronounced common intersection pointHat,
~0.72, the value already found from Fig.(WhereL, was . . .
varied at fixedL). 2 107 107 107

Figure 1@b) presents our data for the magnetization fluc- b) H
tuation and the susceptibilityy, respectively. The peak
height ofkgTy in the finite system clearly scales 3L, FIG. 6. (a) Interface distancé, from the wedge plotted vs bulk
becauseg/m?) —(|m|)? at the transition is of order unity as field H, for J,=0.5, J/ksT=0.25, H,=—1.0, L,=60, and three
L— <. The scaling of the peak widtfi«L ~* is exactly what  choices ofL (L =120, 240, and 320, respectivelirhe inset shows
one expects from Eq27). the same data as a log-log pléh) Same aga) but for the critical
A particular gratifying result is seen in Fig. 11, which field H,,=0.72, L=60, L,=80. The broken straight line on the
demonstrates that the cumulant at fixed aspect |t;%;i/d_3 log-log plot indicates the theoretically predicted slope-at/5.
has the expansion expected from E2g8), namely,

- —1 and+1, and so these peak positions can ultimately only
Uiy, ~ (0L, /L3ty (37)  settle down at constant values. Therefore, this behavior is
only compatible with3=0, sinceB<0 is physically impos-
and the theoretical exponents}~4/3 is in good agreement sible. Now a first-order transition can formally also be de-
with our simulation data. scribed byB=0, but P(m) would then converge fot — o
Figure 12 studies the probability distribution of the mag-towards the sum of two delta functions, and this is clearly
netization at our estimated value for the filling transition, not the case here becaudém) retains a nontrivial shape in
Hsc=0.72, varying agair., at fixed aspect ratidiy/L3. In  the thermodynamic limit. We expect that the shapé (i)
order to reduce the influence of the surface spins we regamill depend on the generalized aspect rair.iga/L3 but we
the distribution ofm—mg=(M —M/)/(L — 1)2Ly, whereM have not studied this problem. In any case, also the existence
and Mg denote the extensive magnetization of the total syseof correlation lengths and the susceptibility, which all di-
tem and the surface. The peaks of the distribution do noterge with power laws akl—Hg., suggests that this tran-
move inward with increasing size, as they would do if thesition should be interpreted as a limiting case of a second-
order parameter exponegftof the magnetization were posi- order transition rather than a first-order transition. This
tive [26], but rather move slightly outward. Fg8>0 the behavior corroborates our speculative remarks on the finite
peak positions oP(m) would scale as. ~#/* [26], and this  size scaling behavior d? (m) in Sec. II.
is clearly not the case. Of coursm is bounded between A further test of scaling behavior is provided by Fig. 13,
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FIG. 7. Fourth-order cumulant) plotted vsHg for J;=0.5, FIG. 9. Logarithm of the correlation length of the magnetization

J/kgT=0.25H=0, L=40, and several choices bf,, as indicated in thez di_rection,g)l,D, divided byL, plotted vsL for a variety of

in the figure. The inset shows corresponding data for the absolutgurface fields. For these data a choice of paramelgrs0.5,
value of the magnetization. The intersection of these curves sugl/ksT=0.25, andL,=1000 was made.

gests a transition atl.=0.72.

strate is of first-order. In the Ising model first order wetting
transitions occur fords>Jy;, where the tricritical wetting
transition has been estimated to occur dgr~1.2 [21,22.

_ _— L 5 We have studied two cas€g=1.3 andJs=1.1. The larger
aspect rg‘t'OLy/Ll/yu - we havl?” afbehua\jluo(m >_<|r1',1u|> value corresponds to a first-order wetting transition, while
=UILL) F(EL™) = (L) (LY L) T(ELT™)  the smaller value is still in the regime of second-order wet-
=f(tL¥1).This type of scaling behavior is strongly sup- ting for the planar semi-infinite Ising system. In Fig. 14 we
ported, moreover, for largé=tL'": the expected behavior plot ¢, versus the surface field,. ForJ.=1.1 the data give
(o)< 7=¢"%*is seen. evidence for a critical filling transition. For the stronger en-

Up to this point we have employetl=0.5. In this case hancemen,=1.3 of the surface interactions we find a clear
the wetting transition on a planar substrate is of second ordeaut first-order filling transition. The present data indicate that
and the wedge filling transition is also of second ortt#r  the tricritical filling transition occurs at a similar value of the
Fig. 5. In practice there are few experimental realizations ofsurface enhancemedy as the tricritical wetting transition.
second-order wetting transitions. One important prediction oOur data do not rule out that there might still exist an interval
Parryet al. [6,7] is that the wedge filling transition may be of Js where the wetting transition is of first order but the
second order even if the wetting transition on a planar subwedge filling transition is of second order, but our simula-
tions indicate that this interval is small. For a more concise
test of Parry's conjecture the detailed form of the interface
potential has to be measured.

First-order filling might give rise to a rich prefilling be-
havior for a finite bulk magnetic field. Prefilling of a wedge
has been discussed within mean-field theory by Rejmer, Di-
etrich, and Napickowski [5], and we expect this to modify
the phase behavior in a double wedge in a similar way as the
prewetting behavior alters the phase diagram of an antisym-
metric thin film [40].

where the magnetization fluctuation is plotted verfds,

—H| Ly"y. From Eqs(26) and(27) we predict that for fixed

IV. OUTLOOK

In this paper, the results of an extensive Monte Carlo
study of Ising models in a double-wedge geometry were de-
scribed, with the aim of testing available theoretical concepts
on wedge filling transitions. We have used the same simple
cubic lattice model with nearest neighbor ferromagnetic ex-
change and strictly short-range surface forces, which, was
used successfully in previous work to probe critical and first-
FIG. 8. Same as Fig. 7, but far=12. order wetting(which occurs for strong enough enhancement

031601-11



MILCHEV et al. PHYSICAL REVIEW E 68, 031601 (2003

08 r ) o2 | 64 |— slope=1.34 +/- 0.03=v,” ]
I Sy L o--0 26 x54 e dU/dH (H,,)
§. T~ N +-—+ 30°x90
_______________________ NN -4 34°x122 3} dimi/dH,(H,) ]
""" N X *- -+ 40°x200 N
>
L =16 | 1
£ I
v 2
8 R 4
4} |
070 072 074 . . L .
0.0 : : : 40 60 90 140 200
0.70 0.71 0.72 0.73 0.74 L
y
(@) H,
FIG. 11. Log-log plot of the slope of the cumulants and magne-
o—e 24344 ' ) ! tizations at the intersection point \s,. The slope of the straight
o--026'x54 A lines is 1k, =1.34+0.03.
+—e 30°x90 o
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N—r10‘2 * = 40°%200 (infinite) wedge is equivalent to the interface localization
§'< 9 transition in an(infinitely large double wedge. For the latter
o8 case both second-order and first-order transitions have been
A studied(as in the case of wetting at planar surfaces, the order
£ \ of the filling transition depends od: for sufficient en-

hancement oflg both first-order wetting and first-order fill-
ing transitions occyr If the transition is second order, the

p L7200 critical behavior of the double-wedge Ising model is very

2
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—

o
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e
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N,
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./

‘,../" P ey 3'°L3I4 20 unusual. It is characterized by the critical exponegitsO,
il A,A/ Vi y=vy+2v, . We confirm the exponents predicted by Parry
o : : et al. [6 7] (v,=3/4, v, =1/4) and also obtairy=5/4, thus
0'?2 0.66 Q.7 H gi¢ 078 082 verifying this scaling law as well. While for critical wetting
(b) s
2.0 T T T
FIG. 10. (a) Magnetization and fourth-order cumulatinse) , o 24°x44 /"
plotted vsH, for J43=0.5, J/kgT=0.25,H=0, and several choices .';f\ O--—0 26:x54 f‘
of L andL,, keeping the aspect ratio approximately constébjt. N QO 302x90 ,"%
Magnetlzatlon fluctuatiodm?) — (|m|)? plotted vsH, for the same 15 A ——A 341122 A\ 1

*---+ 40°x200

oy Nyt e

choice of parameters as pan@). The inset shows a test of the
power law for the half-widthocL = 1=L_*.

e

£
1 1.0
of the surface couplings relative to the bulk couplingl) E

and for the study of interface localization transitions in thin &
films. Since Monte Carlo work necessarily uses lattices

which have all linear dimensions finite, one must pay par- 0.5
ticular attention to finite size effects on phase transitions. We

thus carefully analyzed the finite size scaling behavior of the

present problem. For systems witiLa L XL, geometry, a 0.0 teeed 7 |
very nontrivial and interesting behavior occurs in the limit -0.8 -04 0.0 04 0.8
L—oo, Ly/L”y”’l finite, wherew, is the critical exponent of m-m

the correlation length of interface fluctuations in thdirec- s

tion along the wedge, while, is the critical exponent of the ki, 12. Probability distribution of the difference between the

correlation length of interface fluctuations, in the directionmagnetizatiorM and its surface valul!, normalized per bulk spin,
perpendicular to the interface. The resulting behavior is anaze., m—my=(M—-M)/(L—1)2L, for J =0.5, J/kgT=0.25, H

lyzed in terms of a phenomenological scaling theory, and:o H=H.=0.72, and several ch0|ces bf L, which approxi-
arguments are presented that the filling transition of a smglmately correspond to fixed aspect ratip/L3.
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FIG. 13. Scaling plot of the magnetization fluctuation |,

—HS|L§’”V. The broken straight line has a slope-e1.243, close to FIG. 14. Interface distanck, plotted vs surface field fods
the predicted value- y= —5/4. =1.3,J/kgT=0.25,L,=60, and three choices &f=80, 120, and
160, as indicated in the figure. The variation ©fwith Hg for
at planar walls the corresponding simulations were hardlyveaker couplingls= 1.1 is also showistars and crossesThe inset
able to detect any significant deviation from mean field reTeplots¢,* vs H for J;=1.1, similar to Fig. 5. The data present
sults, for the present problem of wedge filling the corre-evidence that the wedge filling transition is of first order flyr
sponding non-mean-field theory of Pagyal. is straightfor- =13, while it is of second order faf,=1.1.
wardly verified. We also present evidence that in the limit
L,—< (keepingL finite) no transition occurs, since then the
double wedge behaves analogously to a one-dimension
(1D) Ising model, which has a finite correlation length at all

same. More work on these problems is clearly desirable, as
gre corresponding experiments. Thus, it is encouraging that
an experimental study of “complete filling” already exists
nonzero temperatures. In the present problem, this correl 41] and yields results compatible with the theoreticql expec-
. 1D i ; S . ations. Further extensions could concern wedges with asym-
tion length &~ describes the distance over which the mter'metry between the left and right surfader a mean-field
face between positively and negatively magnetized domainﬁeatment of a single asymmetric wedge see [ or the

IS bound to the lower wgdge Sr t?g upper We_:qlge, reSPeGow temperature behavior where wetting is replaced by lay-
tively. The expected scaling §j°L? is also verified. This ering in Ising models at temperatures below the interface
reduction of dimensionality of interface localization- roughening temperatufd3]. Our phenomenological model-
delocalization transitions to thg ,1D Ising case .for the 9€0Ming of the interface in the double wedge ignored the effect of
etry L XL XL, geometry withL finite andL,—c is the ana-  yhe |ine tension of the two contact lines of the interface and
log of the 2D Ising behavior for thé XL, XL, geometry o wedge(Fig. 1), and the effect of fluctuation in the posi-
with L finite andLy— . _ tion of the contact line§44] along the wedge in thg direc-

_ Nevertheless, these results should be viewed as only gn |t would we interesting to look into this problem in
first step: in order to address filling of fluids in real wedges.¢iure work. Another intriguing problem would be to address
effects due to long-range forces between the adsorbed Mg kinetics of wedge filling induced by changes of the ex-

ecules and the substrate must be included. Furthermore, the | control parameters. We hope to report on such studies
use of an off-lattice model for the fluid would be deswable.in the future.

While the theory of Parret al. predicts that for a significant

range of parameters the same critical filling behavior results, ACKNOWLEDGMENTS
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