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Glassy dynamics in the asymmetrically constrained kinetic Ising chain
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We study the dynamics of the East model, comprising a chain of uncoupled spins in a downward-pointing
field. Glassy effects arise at low temperatufesom the kinetic constraint that spins can only flip if their left
neighbor is up. We give details of our previous solution of the nonequilibrium coarsening dynamics after a
guench to lowT [Phys. Rev. Lett83, 3238(1999], including the anomalous coarsening of down-spin domains
with typical sized~t"""2 and the pronounced “fragile glass” divergence of equilibration timest,as
=exp(172In 2). We also link the model to the paste-all coarsening model, defining a family of interpolating
models that all have the same scaling distribution of domain sizes. We then proceed to the problem of
equilibrium dynamics at low. Based on a scaling hypothesis for the relation between time scales and length
scales, we propose a model for the dynamics of “superdomains” which are bounded by up-spins that are frozen
on long time scales. From this we deduce that the equilibrium spin correlation and persistence functions should
exhibit identical scaling behavior for loW, decaying ag)(t). The scaling variable i$=(t/t,)" "2 giving
strongly stretched behavior for low The scaling functiorg(-) decays faster than exponential, however, and
in the limit T—0 at fixedt reaches zero at finite value oft.
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[. INTRODUCTION however, there has been a long debate over whageright
represent a true thermodynamic transition temperature which
The phenomenology of glassy systems—see, e.g., Refaould in principle be measurable in the limit of infinitely
[1-4] for excellent reviews—has inspired many theoreticalslow cooling.
descriptions and explanations. Experimentally, long relax- Although (1) is popular, it is not the only possibility for a
ation times are observed; when these become much longét. For example, the exponential inverse temperature squared
than the observation time scale a glass transition is said tEITS) form
occur. Other signatures of glassy dynamics are correlation
functions that can be fitted by a stretched exponential decay =T exp(B/T?) (2
law and aging phenomerj&] where, since the system is out
of thermal equilibrium, it keeps evolving as time goes by andhas been proposed as an alternative. This form does not ex-
time-translation invariance is broken. hibit a singularity at any finiteT. Experimentally, or in a
From a modeling perspective the same phenomenologgomputer simulation, it is difficult to distinguish between
arises when one studies simple model systems by comput&TF and EITS behavior due to obvious limitations on the
simulation. Again, relaxation times can outstrip the timelongest accessible time scales; both can represent the experi-
available to run a simulation and one never explores thénentally observed(T) in many materialg7]. Theoretical

equilibrium state. work is thus essential for clarifying whether VTF or EITS
The long relaxation times in glasses typically show a pro-might be more appropriate.
nounced divergence as the temperafliis lowered and are Stretched exponential decay of a relaxation function, let
often fitted experimentally by the Vogel-Tammann-Fulcherus say an autocorrelatior(t), is expressed by the
(VTF) law Kohlrausch-Williams-Watt law
7=T1oexf —A/(T—To)]. (1) q(t)~exd — (t/7)"], 3

The relaxation timer may characterize, for example, the where the stretching exponebt1. An heuristic explana-
time for a density fluctuation or an externally imposed stression for this law is that there is a broad distributiéX( ) of

to relax. Although some heuristic justifications have beerrelaxation modes with decay constants

offered[6], for practical purposes VTF is just a fit with three

parametersry,A,To. For To=0 it reduces to an Arrhenius

law. A system for whichT, is small, so that one has some- q(t)=f drQd(r)exp(—t/7). @)
thing close to Arrhenius behavior, is referred to as a “strong

glass,” whereas a system exhibiting large deviations fronfFor example, if one assuméy r) ~exp(—ar) then for large
Arrhenius behavior is called a “fragile glass.” Generally,  t the dominant modes hawe= (t/a)Y? which leads to Eq(3)

is much lower than the experimental temperatures so that th@ith b=1/2. This however leaves the physical mechanisms
mathematical singularity in the fitl) is not physically rel- by which such a relaxation time distribution would arise un-
evant in an experiment. From the theoretical point of view,clear.

1063-651X/2003/68)/03150416)/$20.00 68 031504-1 ©2003 The American Physical Society



P. SOLLICH AND M. R. EVANS PHYSICAL REVIEW E68, 031504 (2003

One idea proposed to generate a broad distribution of refind below that it is the upper bourtg =exp(1/21n 2) that
laxation times from an explicit dynamical model was that of gives the dominant lowi- behavior of the relaxation times.
a hierarchy of degrees of freedd®|. The different levels in A number of approaches have been used to predict the
the hierarchy then relax in series, the degrees of freedom iactual shape of the equilibrium relaxation functions. An “ef-
one level having to wait for the degrees of freedom in thefective medium approximation[11,13 for C(t) leads to a
level below to reach some configuration before they are fregelf-consistency equation typical of mode-coupling approxi-
to evolve. This latter condition is a realization ofkietic  mations(MCA) and predicts a spurious nonergodic transition
constraint o atc=0.5 (e=1); effectively the same result was later de-

A more concrete realization of a kinetic constraint is theyj,eg using diagrammatic methofi4]. The version of MCA

f-spin facilitated kinetic Ising model introduced by Fredrick- yerived by KawasakKil5] also gives a spurious transition, at
son and Andersel®]. Here no hierarchical structure needs to._go (e=1/4). Both approximations can therefore only be

be posited by hand to generate slow dynamics. Al MICTOY6a50nable at sufficiently large, or for short times at

scopic degrees of freedom are of the same kind, namehémaller €; a comparison with numerical simulatiofi46]

noninteracting Ising spins on a simple cubic lattice in ashows that the effective medium imation i I

downward-pointing field. However a spin can only flip if at . . approximation 1s generaily

leastf nearest neighbor spins are pointing (amainst the more accurate in these regimes. Improved diagrammatic re-
summationd 14] avoid the prediction of a spurious transi-

field). Forf=2 this gives rise to slow cooperative relaxation, > L :
as reviewed in, e.g., Ref10]. The physical motivation for tion, and are quantitatively more satisfactory over a larger

the kinetic constraint in this model becomes clear if one/@ange oft and e. However, for smalle they still predict a

thinks of the spins as coarse-grained density variables in §&c@y 0fC(t) that is too fast and too similar to an exponen-

supercooled liquid, with up- and down-spins correspondingﬂal compared with numerical simulations. The nonexponen-

to low- and high-density regions. The constraint then state8@l behavior ofC(t) had been noticed early di1], but is
that a change in local density is only possible if the overallVell fitted by a stretched exponential only over a limited
density in the surrounding regions is low enough for thelime range. We conjectured in R¢17], and will find below,
particles to be able to rearrange. that the correct sca~l|ng variable f@(t) at low T is indeed of

An interesting modification of the Fredrickson-Andersena “stretched” form,t=(t/t,)" "2, but that the relevant scal-
model arises when the kinetic constraints are made anisdAg function decays more quickly than an exponential. The
tropic. In the one-dimensional version considered herestretching exponent In2 was also found to govern the de-
called the East moddll1], a spin can only flip if its left cay of the up-spin persisten@(t) [18,19.
(wesh neighbor is pointing up, so that information propa- Recently, interest in the East model has shifted to more
gates only to the east. The rates for flipping mobile spins areomplicated features of the equilibrium dynamics, e.g., the
1 for down-flips ande=exp(—1/T) for up-flips, giving a  existence of dynamical heterogeneit[@9], and to the out-
small equilibrium concentration= e/(1+ €) of up-spins at  of-equilibrium behavior. In Ref[21], nonlinear relaxation
low T (see Sec. Il for detai)lsThe number of spins which are processes after large changesTirwere simulated. Other-
mobile because their left neighbor is up will then also bewise, interest has centered on the behavior after a quench
small, and this makes it plausible that the dynamics will slowfrom high to low temperature. For a quench to exadily
down dramatically ag decreases. =0, the dynamics is exactly solvab]g2,23. The solution

In this paper we study the glassy dynamics of the Easis essentially equivalent to that of the corresponding model
model, both in equilibrium and out of equilibrium. We focus with isotropic constraints, i.e., the one-dimensional
on low temperature$. This is the regime that is most inter- Fredrickson-Andersen model with=1 [24,25, and in fact
esting since glassy features will be most pronounced; it isiso applies to a whole family of models that interpolate
also the regime where theoretical studies such as ours aketween the isotropic and anisotropic limfts8,19. For a
most needed, since the extremely long relaxation time scaleguench to nonzerd, the autocorrelation functio(t,t,,)
make numerical simulations difficult or impossible. between spins at timef, andt after the quench and the

Before outlining the structure of this paper, we give acorresponding response were simulated in R€]. The cor-
brief review of existing work on the East model. Much re- relationC(t,t,,) exhibits plateaux, which we will see in Sec.
search to date has concerned #wuilibrium dynamics, as Il C can be rationalized from the hierarchical nature of the
encoded, e.g., in relaxation functions such as spin autocorrelynamics. Nonequilibrium steady states caused by applying
lation C(t) or persistenceP;(t) (see Sec. IV A for defini- an external “drive” have recently also been studied, using a
tions). Already when the model was first propogéd] it was  “tapping dynamics” inspired by ideas from granular media
argued that relaxation time scales should remain finite fof26] as well as “rheological driving” designed to model the
any T>0, thus excluding a transition to a nonergodic stateeffect of a shear floy27]. Finally, we mention an interesting
where relaxation functions fail to decay to zero. This hastwo-dimensional spin model, which can be mapped onto a
recently been proved rigorously: the longest relaxation timesystem of noninteracting defects with kinetic constraints and
defined as the inverse of the smallest decay rate that orterns out to have lowr behavior very similar to that of the
would find by full diagonalization of the master equation, is East mode[28-30.
bounded between exp(12In2) and exp(IT?In2) in the The paper is organized as follows. After defining the East
limit of small temperature$12]. The form of the bounds model fully in Sec. II, we turn to the out-of-equilibrium dy-
demonstrates that the East model has EITS behavior; we witlamics in Sec. lll, giving details of the results announced in
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Ref.[17]. After a quench to low temperature, the equilibrium 1 1 eSS
concentration of up-spins at the néws small compared to Ped{si}) = —ex;{ - = 2 si) = - (6)
its initial value. Thus up-spins are eliminated, essentially ir- z L (1+e)
reversibly, and the dynamics can be viewed as a coarsenin
process whereby down-spin domains coalesce as up-spi -
disappear. We find the scaling of the rates at which domain& (Si)» is given by

of lengthd disappear, which follow a hierarchical pattern so

that the coarsening dynamics splits into well-separated c= )
stages. This allows us to find an exact solution Tor 0. 1t+e
The overall scaling of the rates, B¢d)~d "2, also im-

follows that the equilibrium concentration of up-spirts,

€

()

plies that the system exhibits anomalous coarsening, witf]® SNOW that this is the unique steady state we require that
. L ) . T Tin2 the (finite) system is ergodic, i.e., that any configuration can

typical domain sizes increasing with time ds-t % Ex- be reached from any other. This is true for all configurations

trapolating to equilibrium domain lengtitk~1/e (see be-  except for that with all spins down; this is a configuration

low) then gives the dominant divergence of the equilibrationthat can be neither entered nor left and that we therefore

time ast, ~exp(17*In 2). Interestingly, in the scaling limit jgnore. To see that the rest of the configuration space is er-

of the out-of-equilibrium dynamics (&d<d.y), we find  godic, note that from any configuration with a nonzero num-

that the domain size distribution is identical to that of theber of up-spins one can flip spins up until the “all up” con-

paste-all model31]. We rationalize this observation, and figuration is reached. Then, to obtain any desired

provide in Sec. lll D a family of models with identical scal- configuration one flips spins down in an ordered way to cre-

ing distributions that interpolate between the paste-all anéite the appropriate regions of down-spins.

East model limits. The basic objects that we use for the description of the
In Sec. IV we shall then explore thegjuilibrium dynam-  system arelomains As shown by the vertical lines in

ics. Based on a plausible conjecture regarding the scaling of

relaxation times with distance at loW we introduce a sim- ...010001|1/101001[1[10]10. . .,

plified picture which we refer to as treiperdomain model ) ) ) )

This should capture the essence of the equilibrium dynamic& domain consists of an up-spin and all the down-spins that

and become exact in thie— 0 limit. The model enables us to Separate it from the nearest up-spin to the righhis con-

probe the long time scales of the equilibrium dynamics nueéntion is opposite to that of ReffL7], but leads to equiva-

merically, and leads us to a scaling form for the equilibrium!€nt conclusions and will be more convenient in our treat-
spin  autocorrelation  function, C(t)=g(T), with T ment of equilibrium dynamics in Sec. IV belowlhe length
—(t/t,)T"2 This shows strong stretching far—0, but it d of a domain then gives the distance between the up-spin at

will turn out that the scaling functiog decays more quickl Its left edge and the next up-spin to the right. Note that
. 9 g decay d Y adjacent up-spins are counted as separate domains of length
than an exponential, actually decreasing to zero at a finit

~ ) G=1.1n equilibrium, it follows from Eq(6) that the domain
value oft. Finally, a brief summary of our results and out- |engths are geometrically distributed

look to future work is given in Sec. V.

Pegd)=€/(1+€)¢ (8
II. MODEL DEFINITION with mean
The model comprise$ Ising spinss;=0,1 on a one-
dimensional lattice with periodic boundary conditiofsste aeqzlJ“f_ (9)

i=L+1 is identified with sitd =1). The dynamics are de-

fined by the following spin-flip rates: ) ) ) )
As explained, our aim will be to pursue analytical calcula-

tions where possible, but we explain briefly how simulations

11-10 withrate 1, were carried out. We used a continuous-time Bortz-Kalos-
Lebowitz (BKL) [32] algorithm, where the time intervals
10—11 with rate e=exp(— 1/T). (5) between spin flips are sampled directly; a standard Monte

Carlo algorithm where spin flips are first proposed and then

accepted or rejected would be much slower at Tavin the
Thus a spin can only flip if its left neighbor is pointing up BKL algorithm, once the time interval to the next flip is
(note that in the original papgfdl] the mirror image of the determined one decides probabilistically which of the mobile
above definition was used, so that thght neighbor had to  spins to flip, choosing each with a probabilftyproportional
point up for a spin to be able to flipBy a rate, sayk, we  to its flip rate(1 or €). A simple method for doing this would
mean that in a small timdt the event happens with prob- be to sample a uniform random varialslen [0,1] and then
ability x dt. It is easy to check that the dynamics obey de-go through the mobile spins until the spinis found for
tailed balance with respect to the energy functi@n which E};ipj<rs2‘j=lpj . This search fori takesO(L)
=EiL:lsi, i.e., the equilibrium distribution corresponds to steps, however, and in fact for largiequickly becomes the
free spins in a downwards pointing field: most computationally intensive part of the algorithm. In-
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stead, we define partial surgsg, over all blocks of spins of for the second, etc. Each possibility is weighted with a prob-
length 2, wherea=0, ... | if the total chain length it ability that is a function of the rates of disappearance of the
=2 Theq; , can be defined recursively kg ,_o=p; and N domains. Summing over theN(-1)! possible initial ar-
rangements of théN domains on the ring impliedN!(N
Oj,a=02j-1a-1T0zja-1 (J=1,...L/2%. —1)! possible “histories” for the dynamics.

Now note that if the domains are uncorrelated then the
(In fact, we work with analogous partial sums for the numberdynamics becomes equivalent to a mean-field madfsén
of mobile up- and down-spins separately, from which thereferred to as a bag model or an independent intervals
dj 2 Ccan easily be retrieved; this allow us to use fast integetheory: when a domain is eliminated one picks a domain at
arithmetic) The g; , can be thought of as arranged on arandom to be its right neighbor and coalesces the two. In this
binary tree, and finding the spinto flip becomes a simple dynamics there are at each stdfN—1) possibilities: the
walk from the top levela=I| to the bottom levela=0, factor N comes from which domain is eliminated and the
branching left or right on each level to keegithin theq; ,  factorN—1 from which domain is picked to be its neighbor.
values bounding the remaining subpart of the tree. This takeEherefore forN initial domains there aré!(N—1)! pos-
I~InL steps, and the; , can be updated in similar time sible histories, each weighted by the probability for the do-
once a spin has been flipped, giving a reduction in computingnains to be eliminated in the specified sequence. These pos-
time ~(InL)/L. Compared to earlier simulations, e.g., Ref. sible histories are in one-to-one correspondence with the
[21], rather longer time scale@p to t=10'Y) can be ac- possible histories for the full model when summed over all

cessed with this method. possible initial arrangements. One also easily verifies that the
probabilities with which these histories occur, as well as the

IIl. NONEQUILIBRIUM DYNAMICS di_str_ibutions f_or the times that separate successiv_e events

within each history, are the same in both cases. This proves

A. Coarsening dynamics that throughout the irreversible coarsening process the do-

In this section we consider the dynamics of the EasfMains are uncorrelated.
model after a quench from equilibrium at some high initial
temperaturel >1 to low temperaturd <1 (e—0) [17]. At
the new temperature the equilibrium concentration of up-
spins is much smaller than before, so that the number of We now estimate the typical time scale 1(d) for the
up-spins must decrease in time. Correspondingly, the typicalisappearance of domains of lengihthrough coalescence
domain sizes must grow: the system coarsens. with their right neighbors. This then defines a typical rate

To understand the nature of this coarsening process, recdll(d) for the elimination of domains. Because domain coa-
first that the equilibrium concentration of up-spins is, fromlescence corresponds to the flipping down of up-sdii{s})

Eq. (7), c=1/deq= €+ O(€?). Hence the equilibrium prob- can also be defined as follows. Consider an open spin chain
ability of finding an up-spin within a chain segmentfafite ~ of lengthd, with a “clamped” up-spin 6,=1) added on the

B. Energy barriers

lengthd is O(de) and tends to zero fot—0. In the limit left. Starting from the state sf,s;, ... sq)=10...01,
. I'~1(d) is the typical time needed to reach the “empty” state
e—0 atfixed d, (100 10...00where spinsy has relaxed, i.e., has flipped down.

Any instance of this relaxation process can be thought of as
the flipping down of up-spins therefore beconmesversible g path connecting the two states. Let us call the maximum
to leading order[33]. In terms of domains, this means that number of “excited” spins(up-spins exceps,) encountered
the coarsening dynamics of the system is one of coalescenggong a path its height. One might think that the relaxation
of domains: an up-spin that flips down merges two neighborpf spin s, needs to proceed via the staté .1 . 1, giving a

ing domains into one large domain. Note that the lifdi) path of heightd. In fact, the minimal path height(d) is
does not extend to include equilibrium domain lengths thaiych lower and is given by

scale asd~1/e. Therefore the irreversible coarsening is a
purely nonequilibrium phenomenon and does not pertain to h(d)=n+1 for 2" 1<d=2", (13)
the equilibrium dynamics; this is why at lowthe former is
in fact easierto analyze than the latter, as we shall see.

Irreversible coarsening processes such as that above hawheren=0,1, ... .
been studied in a variety of contexts. In particular, if the rate To get a feel for the resultll) consider in Fig. 1 some
of elimination depends solely on the domain size and not osmall domain sizes. The figure illustrates that to generate an
the sizes of neighboring domains there is a very convenienip-spin adjacent to that to be relax@uehich is the first spin
property: during such a process, no correlations between thef the next domain on the righbne can proceed via a se-
lengths of neighboring domains can build up if there arequence of stepping stones, e.g., tbr4 one first generates
none in the initial state. The proof is an easy generalizatioran isolated up-spin in the middle of the domain, then uses
of that of Ref.[34]. We include it for completeness here. this stepping stone to generate the subsequent excited spins
Consider first an initial arrangement Nfdomains on a ring. in a similar manner to the relaxation ofds=2 domain. It-
There areN! ways for this system to coarsen, i.&l,possi-  eration of this argument straightforwardly proves Ek) for
bilities for the first domain to disappead—1 possibilites d=2"[35].
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d=1 11— 10 R(1)=1 k

I(h,k)= I(h—m,h—m)+Kk. 14
d=2 101- 111—-110— 100 hA(2)=2 (h,k) mE:l( m m) (14

d=3 1001 - 1101— 1111 — Settingk=h, Eq. (14) has solution (h,h)=2"—1. Substi-
tuting this back into Eq(14) yields
-+ — 1000 R(3)=3

— oh_ oh—k
d=4 10001 —---—-11101— I(h,k)=2"-2""% (19

In particular the longest domain that can be relaxed via a

path of heighth=n+1 is given byl(n+1,1)=I(n,n)+1
10100 — ---— 10000 h(4) =3 =2" from which we deduce Eq11). Related results on the

number of configurations reachable at or below heigban
FIG. 1. Elimination of a domain of size. Shown are paths pe found in Ref[36].

through spin configurations that traverse the minimum energy bar-

rier. The height of the barrier if(d) and the excited spins are

underlined in the highest energy configurat®ralong the path.

10101 - 10111 — .- —

C. Solution of the dynamics

From result(11) it follows that the coarsening dynamics

In order to prove Eq(11) generally we introduce the naturally divides into stages distinguished by-h(d)—1
quantityl (h,k) which is defined for the open chain discussed=0,1, . . . .During stagen, the domains with lengths"2*
above. It is the length of the longest configuration that con-<d=2" disappear; we call these the “active” domains. This
tains exactlyk up-spins, always counted ignoring the fixed process takes place on a time scale O~ '(d))
up-spins,, and that can be reached from an initially empty =O(e "); because the time scales for different stages differ
chain(again, except fos,) along some path of height The by factors of 1¢, we can treat them separately in the limit
length of a configuration is defined here as the position of the— 0. Thus during stage active domains are eliminated.
furthest up-spin to the right. Note théth,k)>1(h,k—1); The distribution of inactive domainsdt2") changes be-
thus I(h,h) gives the longest configuration that can because elimination of an active domain implies coalescence
reached along any path of heigit with a neighboring domain on the right; since the smallest

Now consider how a configuration realizih¢h,k) could  active domains have lengtti=2""*+1, any new domain
be constructed. First one generates an isolated up-spin as faill have length=2(2""*+1)>2" and thus be inactive.
to the right as possible. This distancel{#&,1). Then one Let N(d,t) be the number of domains of lengthat time
starts from the up-spin just generated to generate a secofid N(t)=X34N(d,t) be the total number of domains, and
up-spin as far to the right of the first as possible. Since thé>(d,t)=N(d,t)/N(t) be the domain size distribution. Then
first up-spin remains up, there is one less unit of energy tdor a general process of coarsening by coalescence one has,
play with to generate the second up-spin and the total disdsing that there are no spatial correlations between domains,
tance from the origin will bé(h,1)+I(h—1,1). Continuing

in this fashion to generate atlup-spins, one arrives at ﬂ __ _ , /
st N(@0="T(@N(AD)-N(d) 2, T(d)P(d"1
k
I(h,k):mZ:l |(h_m+1,l) (12) +§ N(d—d',t)F(d’)P(d’,t) (16)

To close the set of equatioli$2) we need an expression for The first term accounts for the disappearance of a domain by
[(h,1). This can be obtained by invoking the reversibility of coalescence with its right neighbor, the second for coales-
paths: since the dynamics obeys detailed balance, the exisence with a domain on the left of length, and the third
tence of a path of heightt from an initial to a final state for creation of larger domains during coalescence. Summing
implies that the reversed path connects the final to the initiaEq. (16) over d one findsdN(t)/dt=— =4 (d)N(d,t), and
state and is also of height Thusl(h,1) gives the size of the hence

longest domain that can be relaxed along some path of height
h. It is easy to see that the final step in this process requiresd , , ,
an up-spin adjacent to the up-spin that is to be relaxed. Sincegt P(d,t)= _F(d)P(d’tHZ P(d—d",nI'(d")P(d",1).

with this latter up-spin, we have already used up one unit of ¢ (17)
energy or height, the maximum distance from the origin at

which such an up-spin could be generatedl(ts—1,h—1). We now apply this general result to the scenario at hand. We

Therefore we conclude change to a rescaled time variable appropriate to rithe
stage of the dynamics=te". To be in thenth staget has to
I(h,)=I(h—1h—1)+1 (13) obey the restrictionse” (""V<t<e (" giving e<r

<e 1 in the limit e—0 we can thus let range ovef0.<].

with boundary conditiorl (0,0)=0. Inserting Eq.(13) into  The rescaled ratel~§(d)=e‘“f‘(d) are nonzero only for the
Eqg. (12) gives domains withd<2"; on the other handP(d,7) is nonzero
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only for d>2""1 since smaller domains have disappearedThen multiplying Eq.(20) by z® and summing oved>2"
during earlier stages. Thus the sum odémn the right-hand yields

side (rhs) of Eq. (17) is restricted to 2 1<d’'<2", i.e., the
active domains. Furthermore, dfis an active domain then
d—d’<2""! and hence the factd®(d—d’,t) vanishes for
every term in the sum, reflecting the fact that active domains

J
—-[G(z,1)~H(z )]

cannot be created. Equati¢h?) thus becomes for? 1<d - 2" 9
<2n = > X P(d-d.7 - P,z
d=2"+1d'=2""1+1 T
Jd ~ o 2n
R— = — (? " ’
aTP(d,T) F(d)P(d,T) (18) — 2 E P(d”,T) _ &_P(d,,T) zd +d
d":2n71+1 dr:2n—1+1 T
Ford>2", on the other hand, thiirst term in Eq.(17) does 9
not contribute and one gets = —G(Z,T)E_H(Z, 7), (23
ip(d’ﬂ: > P(d—d’,t)T'(d")P(d’,1). where we have used that in stage of the dynamics
ar 2n-1ogr<on P(d”,7)=0 for d"<2""1. We may integrate Eq(23) by
(19 rewriting it as
Combining the last two results one finds that the rates drop 1 J J
out, giving ford>2" [1=Gzn] 5.6z, n=-"H(d,7) (24)
J J giving
—P(d, = > P(d-d,n|-—Pd, 7|
T 2n—1<d/§2n T
(20 O Rz H(20)] (25
1-G(z,0) 7 Ek

There is one subtlety in this derivation which we have so far

ignored. Even in terms of the rescaled time.e., taking into At the end of stage, corresponding ta— <, all domains
account only those relaxation processes that cross the minihat were active during that stage have disappeared, and so
mum energy barrier of,, the “survival probability” for a  H(z,»)=0. Thus

domain not to have coalesced with its right neighbor is not

necessarily a single exponential which can be characterized G(z,2)—1=[G(z,00—1]exdH(z,0)]. (26)

by a rate constarﬁ(d) [37]. This is because several relax- N Il that ideri tagef the d .
ation processes with different rescaled ratesOgfl) may ow recall that we are considering staget the dynamics.
The initial condition for stage+ 1 of the dynamics will be

exist. In Eqs(18) and(19) one should then repladé(d) by  iven by the distributiorP(d,t) at the end of staga. Thus
the negative derivative of the survival probab|I|ty~, resulting definingG,,(z)=G(z,0) for stagen, with a similar definition
in an effective, time-dependent rate I'(d,7) for the active generating functida,(z), Eq. (26) relates the
=—[dP(d,7)/d7]/P(d,7); but the rates can again be elimi- different stages of the dynamics through

nated and Eq(20) follows as before. Note that equati¢20)

in fact also has a simple intuitive meaning: it expresses the Gn+1(2)—1=[Gn(2)—1]lexd Hn(2)]. (27)
fact that active domains eliminated during thida stage coa-

lesce with neighboring domains of random size, forming This exact result connects, through their generating func-
stable domains of sizé>2". Equation(20) then determines tions, P,(d) and P, (d) which are defined as the domain
the time dependence of the size distribution of the inactivdength distributions at the end of stages 1 andn of the
domains for a given time dependence of the distribution oflynamics, respectively. It can be checked that fier O,

the active domains. where the system does not cross energy barriers,(ZEf.
To solve the equation of motiof20) we define the gen- gives results compatible with the known exact solution of the
erating function T=0 dynamicq22].
Iterating Eq.(27) from a given initial distributionP,(d)
* givesP,(d) for all n=1,2, ... .Figure 2 shows numerical
G(z,= 2, P(d,nz (2D)  results for the case whef,(d) is the equilibrium distribu-
d=2""1+1 tion (8) corresponding to an initial temperatureTof «. It is

clear that a scaling limit emerges for largei.e., that the

and its analog for the active domains, rescaled distributions
2|’1

Hizn)= 2  P(d,nZ (22) Pa(x)=2""1P(d) Wherex=% (28)

d=2""1+1 .
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where0 (x) is the Heaviside step function. This result for the

=%. Open symbols and lines: theoretical results, calculated fronkcaling function is shown in Fig. 2 and shows good agree-

Eqg. (27), for n=0 (O; initial condition), 1 (d), 2 (¢), 3 (A).
Filled symbols: simulation results for a chain of lengthk 2%° and

e=10"*% (n=1,2) ande=10 2% (n=3). Inset: Scaled predictions
,8. Thick line: predicted

2" 1P (d=2""1x) vs x for n=1, ...
scaling function(31).

converge to a limiting distributiod®(x) for the scaled do-
main sizex. This is just a statement of the invariance of the

ment with the numerically calculatd®],(d) for largen. Note
that serieg31) has singularities in th&th derivative at the
integer valuesx=k+1, k+2,..., afact whose physical
origin we discuss further in the following. The average do-
main length in the scaling limit is given ky,=2""1x; from
the results foP(x) we findx=exp(y)=1.78 . . . ,wherey is
Euler’s constant.

coarsening processes in each stage once the domain sizes are

rescaled by the characteristic siz& 3.

The change to a continuous variabtefor the domain

D. A family of related coarsening models

Surprisingly, the scaling functio(81) for coarsening dy-

lengths  simply results in the generating functionspamics in the East model is identical to that for the “paste-

G,(2),H(2) being replaced by Laplace transforrgg(s)

andh,(s), via the correspondenc®— e~ Invariance of
the scaled domain distribution under Eg7) then gives the

equation

9(2s)—1=[g(s)—1]exdh(s)], (29

where

g(s)=f:de°(x)e‘S", h(s)=j12dx'ﬁ(x)e‘sx.

We found a solution to Eq29) by noting that the numerics
strongly suggesP(x)=1/x for 1<x<2. Using this as an

ansatz implies

wap— U

h(s)=Ei(s)—Ei(2s) where E(s)zf eru,

S
which when inserted into Eq29) yields

[1—g(s)]exd Ei(s)]=const.

The requirement thag(s)—0 for larges fixes the constant

as unity, giving

g(s)=1—exd —Ei(s)]. (30

all” model of coarsening dynamics, where at each step in the
dynamics the shortest domain is selected and “pasted” onto
its left or right neighbof31]. To understand this, we decide
for definiteness that domains are to be pasted to the right.
Then the paste-all model can be obtained from a modifica-
tion of the hierarchical coarsening dynamics discussed so
far—one merely needs to assume that the rB{e§ are now
all well separated from each other, so that at any given stage
in the dynamics only domains of a single sixare active. It
is then natural to consider a family of models which interpo-
lates between the paste-all and the East model, by assuming
that the active domain sizekat any stage—whose coales-
cence rate§'(d) are comparable to each other but well sepa-
rated from all other rates—are those with 1<d=a", with
a a constant in the range<la<?2.

All of the arguments in the preceding section apply to this
modified model if powers of 2 are replaced by powera of
the appropriate places. In particular, E9) for the Laplace
transform of the scaling distribution becomes

g(as)—1=[g(s)—1]exdha(s)] (32

with
h4$=f%immefx (33
1

generalizing the earlign(s)=h,(s). We now show that Eq.
(32) has the same family of solutions for amy<2, thus
proving in particular the link between the scaling distribu-

Expanding the exponential as a series allows the Laplacgons of the East modela=2) and the paste-all modeh(

transform to be inverted term by term and one obtains

—1). To see this, consider first—1; we should then re-
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cover the scaling equation for the paste-all model. Indeedjynamics gives rise to anomalous coarsening, i.e., the typical
settinga=1+ 6§ and expanding to first order ié, Eq. (32 domain size grows ag~tT"2 more slowly in time than a
becomes usual power law withiT-independent exponent. The exponent
ey — s —s can also be deduced from the scalitg I'(d) 1~¢€"
sg'(s)=[g(s)~1]P(1)e 34 =exp(/T) of the time required to eIiminateg; d(or)nain of the
which is equivalent to Eq38) in Ref. [31]. Integrating Eq. typical size d. Since d~2" asymptotically, one has
(34) gives[31] g(s) =1—exd—P(1)Ei(s)], and the Laplace ~Ind/In2 and this time scales as~d“""2 giving d

transform can be inverted as in E&1), giving ~tT"2 as before. For decreasifigthe coarsening becomes
_ _ anomalously slow and in fact logarithmic fér— 0.
~ P(1) P2(1)In(x—1) By extrapolating the anomalous coarsening law to the
PX)=0(x—1)— -0 (x—2)————+ - - -. e . —
X X equilibrium domain lengtld,=exp(1T)+O(1), we can es-
timate the equilibration time of the system for-0 aste,
Given that only the first term contributes fe2, itisnow  ~t, =exp(1/1?In 2). Of course, in performing this extrapo-

easy to verify that this is also a solution of Eg2) for any  |ation, we are using the anomalous coarsening law in the

a<2: from Eq. (33 one has h,(s)=—P(1)[Ei(as) regime where domain sizes a@(1/e) and the assumption

—Ei(s)]=In[1—g(as)]—In[1—g(9)]. of irreversible down-flips no longer holds. Given this we
In summary, we have shown that there is a whole familycould have equally well extrap0|at&jvtﬂn2 to some mul-

of coarsening models that interpolate between the paste—a[“ﬂe age of the equilibrium domain length, which would
and East models and which have the same scaling solutiog}ield to=exp(LT2 In 2—AIT) with A= —1In afln 2. With the
eq .

The solution is, in principle, parametrized (1) but, as  sjgn as definedA should be positive, corresponding to
discussed in Ref.31], the requirement of a finite mean for <1: a negative value ok is excluded as it would violate the
the scaling distribution imposeB(1)=1. Thusg(s)=1 relaxation time bound of Ref.12]. Thus we expect, to
—exd —Ei(s)] as we found in Eq(30). give only the dominant divergence of the equilibration time
Physically, the common feature of all the models in thet,, with subdominant correction factors exp/'T) making
family is that active domains can never be created during the,;<t, generically. Our analysis in Sec. IV suggests, on the
stage where they are active; this breaks dowrafe2 where  other hand, that the longest relaxation time scatesquilib-
indeed the scaling solution no longer applies. This argumentum are given directly by, . This is not unreasonable: the
clarifies the origin of the singularities at integer arguments otime to reach equilibrium from an initial high-temperature
P(x): the existence of a shortest scaled domain length configuration is expected to be much shorter than the time
=1 implies that the shortest inactive domain that can bdor correlations to be erased starting from an equilibrium
created hasx=2, and this effect then propagates xo (low-temperaturginitial condition, simply because the typi-
=3,4, ..., as thalynamics is iterated. We initially thought Ccal domains to be eliminated are shorter.
the fact that in the East model the active domains cover a Finally, we comment briefly on the implications of the
rangexe[1,2] bounded by two integers, was significant. coarsening dynamics for the two-time spin autocorrelation

However, this is clearly not the case since for genara  function C(t,t,) =(si(t)si(tw)) —(si(t) )(si(tw)), where t
this range becomese[1.a]. >t,,. Since in the limitT—0 spins flip down irreversibly,

si(t)=1 implies thats;(t,)=1 at the earlier timg,,, thus
C(t,t,)=c(t)[1—c(ty)] wherec(t) is the time-dependent
up-spin concentration. As a function gfC(t,t,,) will thus
Having solved the dynamics in terms of the differentexhibit the same plateaux aft), and these were indeed
stages labeled by, we now translate these results into actualphserved in the simulations of RdR2]. Also, the normal-
time dependencies. As before, we consider a systenyed autocorrelation becomes Simplg(t,ty)/C(ty,ty)
quenched from, sayff ==, to a temperaturd <1 attimet  _¢¢)/¢(t,)=d(t,)/d(t). This dependence on only the ra-
=0. If data for, e.g., the average domain lendtare plotted  tjo of the relevant length scales at timtgsandt is natural for
against the scaled time variable=T Int, then forT—0 the 3 coarsening process, and gives a good fit to the data of Ref.
nth stage of the dynamics shrinks to the poirtn. In this  [22].
limit we predict that, forn—1<w<n, the domain length
distribution |SPn(d) as defined by reCUrSidm?). The aver- IV. EQUILIBRIUM DYNAMICS
age domain lengtld(») will follow a “staircase” function,
jumping atv=n from d,=24P,(d)d to d,,,. This was
illustrated and verified by low- simulations in Ref[17]. We now turn to the equilibrium dynamics of the East
For largen, i.e., in the scaling regime of large (but stil modgl at low temperatures. These are encod_ed in relaxation
— = T — functions such as correlations and spin persistésee be-
d<dey), we know thatd, =2"""x wherex=1.78 ... . The |5, regponse functions provide no new information since
staircase functiond(v) is therefore bounded between they are related to correlations via the fluctuation-dissipation
2"~ Ix=d=2"x, giving :=<d/(xt"""?=<1 when expressed in theorem(FDT). For correlation functions standard choices
terms of ordinary timet. This shows that the hierarchical would be the local spin autocorrelatigs;(t)s;(0))—c? or

E. Anomalous coarsening

A. Functions of interest
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the correlation function of the up-spin concentratitor To get the analogous result fo€ and P,, consider
magnetizationM (t) = (1/L) Z;s;(t). However, the direction- P(m;t). The concentration of persistent up-spins and down-
ality of the kinetic constraint can be shown to imply that all spins in the system isP;(t) and (1-c)Py(t), respectively,
nonlocal correlation$si(t):sj(O)>—c2 vanish[38] so these and these haven=1 andm=0. Thus

two choices give the same information. We can thus focus on

the normalized autocorrelation function P(m;t)=(1—c)Py(t) S(m)+cPy(t)S(m—1)+- - '.(41)

(si(1)si(0))—c* P(si()=1[si(0)=1)~c

C(t)=
( c—c? 1-c

where the dots indicate contributions forstrictly between 0
and 1. Inserting into Eq(37) and separating off thé(m)

35 term gives

This decays fromC(0)=1 to C(t—=)=0; the second 1

equality in Eq.(35) implies that it is essentially the condi- Pl(t):(l—C)Po(t)'f‘f dmP(m;t)e ™= (1—c)Py(t).

tional probability for an up-spin that was up at time 0 also to >0

be up at timet. Closely related is the up-spin persistence . )

function P, (t), which gives the probability that a spin is up 109ether with Eq(39) it follows that alsoPy(t) and P(t)

throughout the time intervdl0t], and the analogously de- coincide forc—0. ThusC=7P,="7 in the limit, and we can

fined down-spin persistend@(t). restrict attention to, e.g., the up-spin persisteRg@) in the
Fortunately, it turns out that, P, and?, do not need to  following. o o

be analyzed separately because they all become identical in VW& Stress once more that the directionality of the kinetic

the limit T— O [taken at a constant value of, s&(t)] that constraint is essentlgl for the above arguments to work. In

we are interested in. To see this, note that since in the Ealifé undirected version of the East model, i.e., the one-

model the spins are only coupled via the kinetic constraintdimensional  Fredrickson-Andersen model wif=1, it

which acts to the right, the dynamics of a spincannot would still be true that the dynamics of spmpis determined

influence that of its left neighbas;_;. (This is strictly true DY the amount of time thas;_, (ands;,,) spend in the
only in the limit of an infinite chairL — ¢, but that is pre- up-state. But th|§ time cannot be determined mdepgndently
cisely the case of interestEurthermore, the dynamical evo- of the state of spirs;, sinces; itself affects the dynamics of
lution of spins; is that of a single spin in a field whenever Si-1 (@nds. ).

s,_1=1, and is completely frozen otherwise. It follows that

if, between times 0 ant s;_; has been up a fractiom of B. First passage times

the time, then the evolution of; has been that of a single To get some insight into the equilibrium dynamics, we

spin over timemt. But the single-spin correlation and per- generalize the domain coalescence ratés), discussed in
sistence functions are trivial to work out; denoting the distri-gec |11 for d=0(1) ande—0, to the regime of domain

bution of mfor a givent by P(m;t), one thus has the simple

expressions sizes typically found in equilibriumgd~dc~1/e. Starting

from the state §y,S1, - . . ,S¢) =10 ... 01, wedefine a mean
1 first passage timéMFPT) 7,(d) as the mean time for the
C(t)=f dmP(m;t)e” (Xramt (36)  spin sy to flip down for the first time, and we sdt(d)
0 = 7in(d). Note that in Sec. Il B we required for a “first
1 passage” that not justy but all other spins,, ... ,Sq_, be
Pl(t)zj dmP(m:;t)e" ™ (37 down; here we just require thag=0. In the regime consid-
0 ered in Sec. lll, the two definitions are equivalent to leading
. order, since the relaxation process has passed its “highest
_ e\ emt point” once sy has flipped down, resulting in the same en-
PO(t)_fodm Am;tie ' (38) ergy barrier whether or not the process continues to the
empty state.

It follows trivially that Consider now the dependence ®fi(d) on d. From the
discussion of the out-of-equilibrium dynamics we know that
CO=PLUO=Po(H). (39 7 (d) exhibits a steplike variation witt for d=0(1) and

small e, varying only by factors of order unity within each
range 2~ 1<d=2" but increasing by- ¢ ! between ranges.
As nincreases at fixed, however, theéD(1) changes within
ranges become larger and eventually comparable th
Tmip(d) Will then increase more smoothly witth The nu-
(1—c)C(t)+Cc=Py(t). (40) merically smulaled MFPTs in Fig. 3 confirm this. Finally,
for d larger thand.~ 1/e, the figure shows that the MFPTs
Equations(39) and (40) together show tha€(t) and P;(t) increase linearly withd. Intuitively, one then has a “front” of
coincide in the low¥ limit (c~e—0) whenever the values up-spins that creeps “ballistically” along the chain. This can
of the functions themselves are Of(1). be motivated by arguing that, fat above the typical equi-

Now sinceP(s;(t)=1|s;(0)=1)="7P,(t) (the probability for
a spin to be up at times 0 amadnust be greater than that for
it to be up at 0 and and all intermediate times one has
from Eq. (35
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FIG. 3. Simulated MFTPS,, for down-flips (solid) and 7.,
for up-flips (dashed as a function of unscaled distande for e
=0.3,0.2,0.1,0.05,0.08bottom to top. The thin solid lines have
slope 1, showing that for largé the MFPTs vary linearly withd.
Error bars are too small to show on the scale of the pte86%
relative error onrq, and r,’mp).

librium length scaledeq, the spin front no longer remembers
that it originated from a single up-spin a distarttéo the
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FIG. 4. (a) Logarithmic plot of scaled FPTs, as defined in Eq.

(42), vs scaled distance, for €=0.2,0.1,0.05,0.02top to bottom
on righy. The dotted line shows a qualitative sketch of the scaling
function f(d), with f—1 (Inf—0) for d—o; see text(b) Up-flip
(dashedl vs down-flip (solid) FPTs and their fluctuations wus for
constant d=ed=0.1. Thin lines and error bars: mean and
i%(standard deviationof the log-rescaled FPT in Thick lines:

In 7y, - AS € decreases, the fluctuations infare seen to decrease:

left. Instead it behaves as on an infinite chain, where itgrror bars shrink, and i and the mean of im become closer.

propagation velocity is necessarily constant.
So far we have considered the variationrgf,(d) with d

at fixede. One suspects, however, that, e.g., the decay of th

persistence functior?;(t) is governed by a length scale

d(t), giving the size of the largest domains that have ha
time to equilibrate, and more precisely—since we are con-

sidering equilibrium dynamics—by the ratnh(t)/deq. We
thus define scaled domain sizés ed (=d/dgq for €é—0)
and now ask how,(d) scales withT for fixed d For small
d, extrapolating from the regime af=0(1), andusingn
~Ind/In 2, one expects

= —Ind/n2_ _—Ind/In2—1/(T In2
7'mfp(d)’\“f =€ ( )

Rearranging, one has

Ind . 1
TIN2 T2|n2/)°

( 7'mfp(a)

Tin2
o) 5

Also, up-flip and down-flip times become closer; both observations
support our scaling hypothesis for the FPTs.

fhen the limit is taken at fixed. Figure 4a) represents
umerical data for the MFPTSs in this scaled form and shows
hat the assumptiof42) is certainly plausible for not-too-

larged. For largerd, convergence to a scaling limit is not
yet evident from the data that we can generate on practical

simulation time scales. This is because cﬂ@raeq the ballis-
tic propagation discussed above impliggpocd™ " 2ecd" " 2
which will tend to a constant a§—0 but does so very
slowly. For the scaling functiof(d) this implies that it must
approach a constant @s—; recall that this limit is taken
after the limit T—0 at fixedd. We note that the bounds of
Ref. [12] imply that the MFPTsry,;, cannot exceed, by
more than factors 0©(1); this implies from Eq.(42) that
f(d)<1. Our numerical data in Fig.(d) are restricted to
values of T which are still too large to determinigd) with
any accuracy, but the tentative extrapolationTte-0 indi-
cated in the figure is certainly consistent with the bound
f(d)=<1.

We work below with a slightly strengthened version of

From the downward curvature of the lines in Fig. 3, one see&d. (42). The first passage time for down-flips is a fluctu-

that this expression will not be valid for largdr where the
rhs will cross over to a slower increase withWe thus make
atime scaling hypothesishich replacesi by a more general

ating quantity, with meam,,;,. We assume that fluctuations
in 7 are small enough that E¢42) holds even for the fluc-
tuating 7, which means that foT—0 the rescaled FPT

7(d)=[7(d)/t, 17" ? becomes nonfluctuating. This assump-

scaling functionf (d) of d, i.e., we assume that the rescaledjon is not as strong as it may sound; because of the expo-

MFPT approaches

7'mfp(

)TInZ
”Tmfp(a)s( n ) —f(d) for T=0 (42

nentiation byT In 2 it holds, e.qg., if the relative fluctuations
of the unscaled FPF(d) remain ofO(1) asT—0. Further
confirmation comes from Fig.(8) which shows numerical
data ford=0.1.
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In a final generalization we also assume that ER)
applies if we consider FPTs' for up-flips where we start
with the empty stated. . . 00 and7’ is the first time where
the last spirsy has flipped up. Naively one might have sus-
pected thgtr’dandr dFi)fFf)er bypa factory~ 1le. ngever, the Within this zone is much shorter thap. Throughout the
equivalence ofP;(t) and Py(t) that we proved for lowT ~ ZOne we should thus mpleed haeql_nhbratedspms, which
already suggests otherwise. The correct intuition is that botRre independently up with probability=e/(1+€)~e. The
up- and down-spins only become mobile once an up-spiflomains defined by up-spins within these equilibrated zones
“front” from an up_spin to the left has reached them' and will not be of interest in the fOllOWing. Instead we focus on
that for T—0 the time required for this front propagation the “superdomains” which are naturally defined by the un-
vastly dominates the effect of the different flip rates of up-equilibrated up-spins, to which we refer as “superspins.”
and down-spins once the front has reached them. Figioe 4 Thus each superdomain is bounded on the left by such a
again supports this assumption with numerical datador superspin, followed by an equilibrated zone of lendttand
=0.1. then a string of down-spins.

In summary, we assume in the following that E4_2) is To understand the dynamics of superdomains as we look
valid for unaveraged up-flip and down-flip FPTs, with the at increasing times,, it is easiest to consider a system for
same scaling functiori(d). A consequence of this ison-  which the rescaled chain leng#h and therefore the typical
tinuous time scale separatiofor any two rescaled distances number of superdomains is large but finite; there is then at alll
d;<d,, the ratio of the corresponding FPTs is times a nonzero minimum superdomain length. On increas-

[£(d,)/f(dy)]¥T "2 and diverges a§—0. In the limit, this  ing d, from zero, all superspins remain as they are as long as
means that the equilibration of domains of lengthpro-  the equilibrated zone of each. superdomain has not yet
ceeds infinitely more quickly than for any even slightly reached the superspin to the right. However, wilerbe-
larger lengthd,. This insight is the key for the construction cOmes equal to the smallest superdpmam Ie_n_gth in the sys-
of the superdomain model described next. A proviso is thatem, sayd;, then this superdomain’s equilibrated zone
we have assumed here that the scaling functi¢d) is “catches up” W|£h superspin 2 bounding the next superdo-
strictly monotonically increasing witid. In principle, it is ~Main (of length d;) on the right. This superspin now be-

ible thatf (d d i tonicall | i comes equilibrated, and so one might assume that the two
pOss ? ) a~( ) could increase monotonically only up O_ superdomains just coalesce, forming a single superdomain of
some finited, , and be exactly constant thereafter. This

imolatsible t h itis difficult t lengthd; +d,. This, however, will only be the case if there
SEems implausible o us, however—e.g., 1L IS difficu o_con—?re no up-spins in the equilibrated zone of superspin 2 at this
ceive of a physical mechanism causing the singularity a

H*—and, as discussed below, would also give very unusuaHme; since this zone has length, the probability for this

predictions for the time dependence of the [Gwelaxation ~€VeNnt is exptd,). Otherwise, i.e., with probability 1
functions. —exp(=d,), there will be at least one up-spin in the equili-

brated zone of superspin 2. The leftmost of these, having lost
the superspin from which it became equilibrated, becomes
_ _ _ _ frozen and thus itself turns into a superspih, Zhe distance

~ We now exploit the idea of continuous time scale separas between 2 and the old superspin 2 has probability distri-
tion to construct an effective description for the IGwequi- bution exp(- b)/[l—exp(—a,)] over the intervals e [Ofdr],

librium dynamics of the East model. It is natural to work . ~o
. . ~ and the two new superdomains have lendik-d,+ & and
with the equilibrated length scaltl that corresponds to the ~, ~ ,
d;=d,— & (see Fig. 5.

relaxation time scalé¢, we are considering; from Eq42), . L .
the two are related by What makes the superdomain modellnon.tn\.nal is that in
the second case the process of superspin elimination and re-
t,\Th2 generation can now continue. Superspinll immediately
(E) =f(dy). (on the time scal@, being consideredequilibrate a zone of
lengthd,. If d,<d,, then this zone includes superspin 3,
Here and in the following, the limiT—0 (or equivalently  which now becomes equilibrated along with a segment of
e—0, orCTO) is always understood. For simplicity we will Iengthar—aé to its right. This, however, still leaves a seg-
simply calld, “time” where there is no ambiguity. We stress ment of lengttd,— (d,—d4) =4} of the old equilibrated zone
that we work withrescaledlength scalesl=de throughout;  of superspin 3, which is now frozeisee Fig. 5. If there is
a value ofd of order unity thus corresponds to a very largeno up-spin within this segment when superspin 3 equili-
domain lengthd=d/ ¢ in the limit e—0. brates, then superdomains and 3 coalesce; this happens

Consider now an equilibrium configuration of the spin with probability eprdé). Otherwise, the leftmost up-spin
chain, consisting of up-spins separated by long domaing the segment freezes into a new superspin 8nd the
of down-spins. From Eq(8), the (rescaled domain sizes process continues by iteration. It is clear that only superdo-

are distributed according to a simple exponentia(d) mains of lengtid>d, have been generated when the process

=exp(—d). A “time” d, later, each of the up-spins will have

developed an equilibrated zone of lengtfto its right: from
continuous time scale separation, the FPT to reach any spin

C. Superdomain model
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1 §2 3 4 superdomain-type dynamics on the time scales of a numeri-
—| cal simulation. Nevertheless, the sample runeat0.02
: : | hown in Fig. 6 illustrat important feat f
) 3 A p / shown in Fig. 6 illustrates some important features of super-
1=4r 2 3
domain dynamics, in particular the regeneration of super-
1 » 43 4 spins and the resulting propagation of equilibrated zones.
To summarize the superdomain model, let us restate its
~| __ | — dynamics. We present this in the form of a schematic simu-
\—di—/\—d’z—g—_"\?—d’zJ lation algorithm; a formal definition of the stochastic evolu-
. 5 52 3 . tion of the sequence of superdomain lengths is, of course,
possible but would be more awkward. We reemphasize that
| | | | all lengths areescaledlengths,d=de.

\ d / & a— 1. Initialize superdomain lengths from an exponential dis-

FIG. 5. lllustration of superdomain dynamics. Superspins arerIbUtlon P(d) exp(- d)
shown by the thin vertical rectangles; each has an equilibrated zone 2 Setd, equal to the size of the smallest current superdo-
of lengthd, to its right, indicated by a horizontal rectangle. Shown Main. Let that size bely, with d,,ds, . .., thesizes of the

is a situation where the relaxation tirde has just become equal to superdomains on the right. Set 1. .. .
. ~ 0 3. Delete the now equilibrated superspinl. With prob-
the smallest superdomain length,. The equilibrated zone of su-

perspin 1 then catches up with 2 and equilibrates this gist  @0ility exp(-=d), the superdomainsandi+1 coalesce and
line). At this moment, there can be up-spins within the formerthe relaxation process at thl.‘i;r is complete: Ietd <—d
equilibrated zone of 2; if there are, the leftmost of these becomes ad|+1, delete superdomaiit-1, and go back to step 2.
new superspin 2 bounding a superdomain of lengthj (second 4. Otherwise, a new superspinf1)’ is created, a dis-
line). If d3<1d,, the newly created equilibrated zone df Gatches ~ tanced to the right of the old one which is distributed ac-
superspin 3. Within the zone of length, that is now no longer cording to P(d)xexp(—¢) over the rangese[d,—d;,d,].
equilibrated(dashed up-spins can again remain, with the leftmost This gives new superdomain Iength?s <—a + 6 and a,+1
becomigg a new superspir .3In the~exa~mple, the relaxation pro- <—ai+1— S If d|+1\drr increasd «i+1, and go back to
cess atdr_ stops at this pqint since;>d,; otherwise, it would step 3. Otherwise the relaxation process at th|$s com-
continue in the same fashion. plete: go back to step 2.

Ideally, one would like to solve the above superdomain
terminates. One can thus now incredsentil the new mini- model directly and thus compute the dependence of the per-
mum superdomain size is reached, at which point a newistence function od, analytically. The iterative process of
relaxation process as described above starts. superspin ellmlnatlon and regeneration is difficult to keep

Above, we arrived at the superdomain model startingtrack of, however, and we have not been able to find an
from the hypothesis of continuous time scale separation. Thanalytical solution. Nevertheless, because the superdomain
model lets us access, via an effective description, very lownodel expresses times in terms of the length scales
temperatures corresponding to extremely long relaxationvhich unlike the time scales themselves do not diverge for
times. By definition it is therefore difficult to demonstrate T—0, it can be simulated easily and accurately; we have

() o M eee TR TRPRTUEL P SO *fmaca
s Attt s bk, T
e e

(IV) lmm‘rrmﬁm """""""""""" b sl b oz il
; il b, TTTTITHT: AT T

FIG. 6. A direct simulation run on a systemeat 0.02 which provides support for the notion of superdomain-type dynamics. Shown is
a section of 180 spins out of a much longer chain, for a single simulation run. The lines correspond to seven successive time intervals
[10%% 7,107 6], ... [10%%1,10'% ], with a=1.485 so that the first interval begins at'%0 ’=6.26x 1¢%. (Geometrically increas-
ing intervals were chosen because, from &@), relaxation time scales are expected to increase very quickly with superdomain lengths
d, for low T.) The boxes indicate the current magnetizatisnsf the spins, determined by averaging over the relevant time interval. A
logarithmic scale is used, so that the highest boxes correspogie-t, the dashed lines to the equilibrium valgje=c, and the baselines
to s,=c?. (Lower values of; are not shown.Filled boxes indicate spins that are persistently up over the entire time interwal ). Note
the similarity between the first two lines here and the superdomain dynamics sketched in Fig. 5: within the time(intehakquilibrated
zone of superspin 1 catches up with 2; a new superspih i€created and eliminates superspin 3. Lit@sand (vii) show events where
superspins 1 and 4 are eliminated. Of coueskere is still too large to be in the asymptotic liffit> 0 where superdomain dynamics applies
exactly. This is why, in contrast to Fig. 5, the equilibrated zones of the superspins are not all of the same length, do not have sharply defined
boundaries, and also do not increase perfectly monotonically in time.
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M=Ng1+cd,/e)/L~(Ng/L)(1+d,) (43)

persistence
T response since in addition to the superspins there are a further
] cNdd, /e up-spins on th\d, /e sites covered by the equili-
brated zones. This quantity should eqiva c~ e indepen-

dently ofd,. Hence the averageescaledl distance between
superspinseL/Ng, which is identical to the average super-

domain length, must equal+id, at timed,. This is indeed
what our simulations of the superdomain model show. One
can push this comparison further and consider not just the
total up-spin concentration, but the distribution of sizes of
" . ‘ the domains formed by all spir{sather than just the super-

0 2 q 4 6 sping. This distribution must be a pure exponential, indepen-

dently ofd, . It can be expressed in terms of the superdomain
FIG. 7. Predictions of the superdomain model. Main plot, distribution by an appropriate convolution which accounts

dashed lines: Response functions égfe=0.95 ande;/e=1.05vs  for the fact that additional up-spins exist in the equilibrated

relaxation timed, ; on the latter, a few error bars are shown wherezones. Omitting the details, we only state that one finds in

they are significant. Solid lines: Persistence functi®hsandPo; this way that the superdomain size distribution at tithe

the two lines are indistinguishable by eye. The inset shows the st he

scaling functiong(t) for the equilibrium relaxation functions, as

derived from the superdomain persistence and the scaling function

for the FPTs sketched in Fig(a.

—_

0.5

P(d:d)=0(d—d,)e @, (44)

Again we find that this is verified in our simulations. Note
used systems of 2Guperdomaingatd,=0), checking that that Eq.(44) has a simp!e int.uiti_ve i_nterpretation: it corre-
finite-size effects are negligible and typically averaging ourSPonds to an exponential distribution of the segments of
results over 19 simulation runs. down-spins separating the equilibrated zone of each superdo-

The key quantity that we want to predict from the super-Main from the next superspin on the right.

domain model is the persistence function. The up-spin per-bAﬁ'?SITChe_Ck or:hthe s_u_perldomdai? rgodeldistthlatditbsrlwuld
sistenceP; is the fraction of up-spins that have never fIippedo ey —since e original model obeys detarled balance,

TS ) ~ ) ) ) FDT is automatically satisfied but this is not guaranteed for
sinced,=0. Since ad,=0 all up-spins are superspinB; is  the superdomain description. As explained in Sec. IV A, all
the fraction of these initial superspins that have never beefgnlocal correlatiorfand hence responsiinctions vanish in
equilibrated. We show the results in Fig. 7; initially de-  the East model, so that one is free to consider either a local
creases linearly witfd,, but then the decay becomes muchresponse o§; to a local field or a response of the magneti-
faster and indeed superexponentiatiin zation M to a uniform fieldh. Choosing the second option,

If, as we have claimed, the superdomain model is thé"€ energy function is moditied B=(1—-h)Zis; which is
correct effective description for th—0 dynamics of the duivalent to changing to ’=eexp{VT) [or temperature

East model, then it must obey the exact identRy="P, frotrﬁ Tdt.otT/(tl—ht)]. Ehe r'ttasr?ogs?ftt;g field ;sk\:vitcged on
derived in Sec. IV A.P, is measured in the superdomain In the distant past and switched o can tus be mea-

model as the fraction of the chain which has never beer§ured by initializing the system in an equilibrium state cor-

" : X responding toe’ and monitoring the evolution d¥1 during
swept by an equilibrated zone, a quantity that one might no e subsequent dynamics at By FDT this switch-off re-

havg naively suspgcted to be connected tq the pumber %fponse should have the same time dependence as the corre-
per3|_stent superspins. Nev_ertheless, our simulations Shofﬂtion (and hence the persistendenctions. In the superdo-
that indeedP; =P, to very high accuracyt1%, less than  ain model, the measurement is performed by initializing
the relat|ve.error on the measurements]?q)'fgndpo) in the _the superdomains with a modified domain size distribution
sgperdomaln r_noqlel_. In_fact, both quantities are plotted |r\3(a):(€,/€)exq_(6,/6)a] and then tracking the decay of
Fig. 7, but are indistinguishable by eye. This pro_wdes stron_qhe magnetization, measured as in E8), to its equilibrium
support for the correctness of the superdomain model; ify 4,6 The response functions simulated ke =0.95 and

e.g., the mechanism for regenerating superdomains is N§-os are piotted in Fig. 7 above, and show that the superdo-
glected, one finds that the conditi@thy="P, is violated. main model indeed obeys FDT.

A further consistency check on the model is obtained  p shing the above scenario further, one could consider
from the requirement that it should representelgeilibrium o njinear responses in the superdomain model, in particular
dynamics. T.he'concentratlon of up-spins in the systgm, ey large ratioe’ /e which corresponds to a quench to a much
the magnetizatioM = (1) ;s; , should thus remain inde- ,yer temperature(For the superdomain model to remain
pendent ofd, . Within the superdomain model, if there &l applicable we still need’ <1, of course. The initial scaled
superspins at timé,, one has domain lengths in the system are then of ordb’ <1. In
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the regime of smalli, where these domain lengths are re- 10 .
moved from the system, one sees that the probability 1 oz | P
—exp(—d)~d, of creating a new superspin is very small, 06 | u
tending to zero ford,~ /€’ —0. In this limit the superdo- 10° | 04
main dynamics becomes “take the smallest superdomain and “InP
coalesce it with its neighbor on the right,” which is precisely '
the paste-all model discussed in Sec. lll D. While superdo- w' L
main sizes remairc 1, the domain size distribution will thus

be driven to the scaling distribution of the paste-all model.

As demonstrated in Sec. Il D, this scaling distribution is the

sameas that for the coarsening dynamics of the East model. 10°
Thus, the prediction of the superdomain model for the form

of the domain size distribution, a long time after a quench FIG. 8. Comparison of up-spin persistence functigp from
from €’ to e with 1> €’> ¢, matches up precisely with that simulations with prediction of superdomain model, o 0.02. A
predicted in Sec. Ill C for a quench from~le’>e. (Note  l0g-log plot of —InPy(t) is shown, which would be straight for
that in the first case we are in principle talking about theStretched exponential relaxation. The inset showgt) directly.
superdomairsize distribution, not the actual domain distri- Thick lines: P; as simulated in three runs for a chain of length

. . ~ =27 the correlation functio€(t) is also shown for one run but is
bution as in Sec. Il C. However, for small, the two are ®

. . . . oy - jndistinguishable fronP,(t) as predicted for lowe. Thin lines:
identical since the number of up-spins within the ethbrated;redictions of the superdomain modske text Dashed/solidt

zoneg .Of the superdomains is ne.gllglble. . . determined from FPTs for up- and down-flips, respectively. Left/
Writing our result for the persistence function in the Su-right curve of each pair: using mean of the log-FPT and the log of

perdomain modefeither P, or P, since they are identical  the MFPT, respectively.

asPs{(d,), we can now translate it into a scaling prediction _ - . .

for the time dependence of the correlation and persistenceonclusion that for anyt<f.. the relaxation functions are

functions at lowT in the East model. Using the inverse of the nonzero, approaching a nonzero limit &s-f. but then

02 |

10

10

scaling functionf (d) from Eg. (42), one has dropping discontinuously to zeron the limit T—0). This
makes this hypothetical behavior tfd) rather unlikely.
_ [ t\Th2 As explained, one of the main benefits of the superdomain
C(t)=P1(t)=Po(t) =Psff "1(1)), t=<t—) model is that it allows one to access very long time scales
*

that diverge extremely quickly & decreases. Since this is
precisely the regime that is hard to probe with simulations,

Thus the relaxation functions show strong stretching, Withﬁg?]g{?:ig%t;g?v\gﬁfr\%'ecilhg;ﬂ%“ggstvﬁ/gr}orwenslfcg?dg ?(t)? IS

the stretching exponeritin 2 decreasing to zero foF—~0. \ pich we can simulate a significant part of the equilibrium
However, the scaling funftiog(t)=7?su(f*1(t)) is nonex-  relaxation. As Fig. 4 shows, the relation between rescaled
ponential. In fact, sincé(d) approaches a constafit for ~ FPTs7 and rescaled distances= ed has not yet reached its
d—o as argued after Eq42), the scaling function in Eq. €—0 form, so it would make no sense to compare numerical
(45) decays to zero at finite valueT=f.,. On the basis of data with superdomain predictions based on the latter. In-

the results of Ref{12] we would conjecture this value to be St€ad. We use the numerically obtained FPTs to link time
scales and length scales. In detail, we obtain for each unnor-

f.=1, see below Eq42); the scaling functiory(t) for this  mgajized distancel the measured FPT, and plot against this
case is sketched in the inset of Fig. 7. It is important to bea{ime the superdomain model’s persistence funcmggfd) at
in mind that the limit of T—0 considered here is taken at . ~ .

~ . ~ . the relevant scaled distande= ed. Since we measured FPT
c_onstamd, or, equivalently, congtartt If we look instead at four different ways—for up- and down-flips, and averag-
fixed nonzerorl then the relaxation functions are, of COUrse, jng FPTs or log FPTs—which we expect to become identical
nonzero for allt, but this does not contradigi(t) dropping only for T—0, this procedure gives four slightly different
to zero aft=f,,. To see this, note that the asymptotic decaycurves for the superdomain predictions. As shown in Fig. 8,
of all relaxation functions should be to leading order an ex-these bracket the numerically simulated up-spin persistence
ponential with the longest relaxation timesexp(-tit,). and correlat|or_1 functions rather well, espeplally given that
This does remain nonzero for ajlbut in terms of the scaled there are no fit parameters in the comparison. The largest

L~ ~ . deviations occur for large times, corresponding to large
_F1TIn2 )
time t it becomes—exp(~t™ ") which converges t0 zero o scales. This is consistent with Fig. 4, which shows

for T—0 at any fixedt>1. o that in this regime the behavior still differs substantially from
We can now also come back to a point discussed at thghat expected in the limiT—0.

end of Sec IV B: in principle the functiof(d) may not be
strictly monotonically increasing, but could instead dmn- V. CONCLUSION

stant from a certain valued, onwards, f(d)="f., for d We have studied the dynamics of the East model. Consist-
>d, . Looking at Eq.(45), however, this would lead to the ing of uncoupled spins in a downward-pointing field, the

(49)
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model has trivial equilibrium statistics. However, the kinetic spin persistence, the fluctuation-dissipation theorem, and the

constraint that spins can only flip if their left neighbor is up stationarity of up-spin concentration and domain size distri-

causes pronounced glassy features in the dynamics af,low bution in equilibrium.

when the concentration of up-spins is low. From the superdomain model predictions we finally de-
We first studied the nonequilibrium coarsening dynamicsduced that the equilibrium relaxation functions should decay

after a quench to lowr. In the limit e=exp(~1/T)—0 the  for Jow T asg(t), with g(-) being a scaling function of
equilibrium concentration of up-spins at the new temperature- (t/t, )72 This demonstrates strong stretching for 1w

is negligible (=€) and the flipping down of up-spins be- put the overall relaxation is more complicated than a
comes irreversible to leading order. This allows the dynamicsgtretched exponential. In fact, the functigh ) decays faster

to be .described as coar.sen.ing via.coales.cence of down—sp{Han exponential, and in the lim—0 at fixedt reaches
domains. The process is hierarchical, being governed by a Hini I7 f The | Bth
series of well-separated time scales. We solved this hiera#€70 at dinite value oft. The lowest temperature that we

chical coarsening dynamics exactly, using an independerﬁ‘t"’ln conveniently simulate, correspondingete0.02, is still

intervals method that becomes exact Tor-0. Anomalous ather far from the asymptoti€—0 limit but nevertheless
. . . . ' . — showed reasonable agreement between numerical simula-
coarsening results, with typical domain lengths scalingl as

; : I~ . 2 tions and appropriately extracted predictions of the superdo-
~1T"2 The dominant divergence of the equilibration time Pprop y b b

for low T 0 b timated. and is ai by the fact main model. We would suggest that stretching but not simple
or low ca;n aiso be estimated, and 1S given by the fac Orstretchedexponential behavior may be rather generic in
t, =exp(1m<In2), an EITS dependence typical of fragile

it glassy dynamics. Actual stretched exponentials could more
glasses. For large domain sizésthat are still small com-  often than not be just convenient fitting functions over a
pared to the equilibrium valué,,, the domain size distribu- limited number of decades in time. To clarify this point, a
tion approaches a scaling form. We showed that this scalingtudy of low-temperature relaxation in other solvable models
distribution is equal to that of the paste-all model, and wereexhibiting glassy dynamics would obviously be desirable.
able to define a whole family of interpolating models that all  In future work, it would be interesting to see whether the
share this scaling distribution. out-of-equilibrium response of spins to a local field could
In the second part of the paper we focused on the equialso be analyzed within the irreversible coarsening frame-
librium dynamics at lowT. We showed that the standard work we used above. This response function was simulated
relaxation functions, spin autocorrelation and persistence ah Ref. [22] and found there to be monotonic; at lowgr
up- and down-spins, become identical Tor-0, so that only  however, nonmonotonicities should appear according to a
one of them needs to be considered. We then investigated thi@ter conjecture[29]. A closer investigation of out-of-
relation between time and length scales. Generalizing fronequilibrium FDT relations would also be worthwhile. Previ-
the results in the coarsening regifde:d/d<1, we intro- ~ 0US results for thesg22] have to be regarded with some
duced a time scaling hypothesis. This implied that Tor caution since they were constructed using a disconnected
—0 one has continuous time scale separation, with domaingorrelator; see, e.g., Ref39] for a discussion of this point.

of any two different scaled sizekrelaxing on well-separated Finally, as regards the (_aqui!ibrigm dynamics, it will be i.nter-
time scales. On this basis we proposed a model of superdg-St!ng tofan?jlyze thehlmpllcatlon.s. of the kguperdomam (.je'
mains, which are bounded by up-spins that are frozen oﬁcr'ﬁt'on or ynakmuf: etercrzgenemes,hma Ing a connection
long time scales. The dynamics of this model is nontrivialtOt & recent work of Garrahan and Chand(6).

and not, as yet, analytically tractable, but can easily be simu-
lated since time is effectively measured in terms of the scaled
distanced, whose relevant values rema®(1) even forT
—0. We verified that the model obeys important consistency P.S. acknowledges financial support through Nuffield
requirements, in particular the equality of up-spin and down-Grant No. NAL/00361/G.
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