
PHYSICAL REVIEW E 68, 031504 ~2003!
Glassy dynamics in the asymmetrically constrained kinetic Ising chain
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We study the dynamics of the East model, comprising a chain of uncoupled spins in a downward-pointing
field. Glassy effects arise at low temperaturesT from the kinetic constraint that spins can only flip if their left
neighbor is up. We give details of our previous solution of the nonequilibrium coarsening dynamics after a
quench to lowT @Phys. Rev. Lett.83, 3238~1999!#, including the anomalous coarsening of down-spin domains

with typical size d̄;tT ln 2, and the pronounced ‘‘fragile glass’’ divergence of equilibration times ast*
5exp(1/T2 ln 2). We also link the model to the paste-all coarsening model, defining a family of interpolating
models that all have the same scaling distribution of domain sizes. We then proceed to the problem of
equilibrium dynamics at lowT. Based on a scaling hypothesis for the relation between time scales and length
scales, we propose a model for the dynamics of ‘‘superdomains’’ which are bounded by up-spins that are frozen
on long time scales. From this we deduce that the equilibrium spin correlation and persistence functions should

exhibit identical scaling behavior for lowT, decaying asg( t̃ ). The scaling variable ist̃ 5(t/t* )T ln 2, giving
strongly stretched behavior for lowT. The scaling functiong(•) decays faster than exponential, however, and

in the limit T→0 at fixed t̃ reaches zero at afinite value of t̃ .

DOI: 10.1103/PhysRevE.68.031504 PACS number~s!: 64.70.Pf, 05.70.Ln, 05.20.2y, 75.10.Hk
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I. INTRODUCTION

The phenomenology of glassy systems—see, e.g., R
@1–4# for excellent reviews—has inspired many theoreti
descriptions and explanations. Experimentally, long rel
ation times are observed; when these become much lo
than the observation time scale a glass transition is sai
occur. Other signatures of glassy dynamics are correla
functions that can be fitted by a stretched exponential de
law and aging phenomena@5# where, since the system is ou
of thermal equilibrium, it keeps evolving as time goes by a
time-translation invariance is broken.

From a modeling perspective the same phenomeno
arises when one studies simple model systems by comp
simulation. Again, relaxation times can outstrip the tim
available to run a simulation and one never explores
equilibrium state.

The long relaxation times in glasses typically show a p
nounced divergence as the temperatureT is lowered and are
often fitted experimentally by the Vogel-Tammann-Fulch
~VTF! law

t5t0 exp@2A/~T2T0!#. ~1!

The relaxation timet may characterize, for example, th
time for a density fluctuation or an externally imposed str
to relax. Although some heuristic justifications have be
offered@6#, for practical purposes VTF is just a fit with thre
parameterst0 ,A,T0. For T050 it reduces to an Arrheniu
law. A system for whichT0 is small, so that one has som
thing close to Arrhenius behavior, is referred to as a ‘‘stro
glass,’’ whereas a system exhibiting large deviations fr
Arrhenius behavior is called a ‘‘fragile glass.’’ Generally,T0
is much lower than the experimental temperatures so tha
mathematical singularity in the fit~1! is not physically rel-
evant in an experiment. From the theoretical point of vie
1063-651X/2003/68~3!/031504~16!/$20.00 68 0315
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however, there has been a long debate over whetherT0 might
represent a true thermodynamic transition temperature w
would in principle be measurable in the limit of infinitel
slow cooling.

Although ~1! is popular, it is not the only possibility for a
fit. For example, the exponential inverse temperature squ
~EITS! form

t5t0 exp~B/T2! ~2!

has been proposed as an alternative. This form does no
hibit a singularity at any finiteT. Experimentally, or in a
computer simulation, it is difficult to distinguish betwee
VTF and EITS behavior due to obvious limitations on t
longest accessible time scales; both can represent the ex
mentally observedt(T) in many materials@7#. Theoretical
work is thus essential for clarifying whether VTF or EIT
might be more appropriate.

Stretched exponential decay of a relaxation function,
us say an autocorrelationq(t), is expressed by the
Kohlrausch-Williams-Watt law

q~ t !;exp@2~ t/t!b#, ~3!

where the stretching exponentb,1. An heuristic explana-
tion for this law is that there is a broad distributionV(t) of
relaxation modes with decay constantst,

q~ t !5E dtV~t!exp~2t/t!. ~4!

For example, if one assumesV(t);exp(2at) then for large
t the dominant modes havet5(t/a)1/2 which leads to Eq.~3!
with b51/2. This however leaves the physical mechanis
by which such a relaxation time distribution would arise u
clear.
©2003 The American Physical Society04-1
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P. SOLLICH AND M. R. EVANS PHYSICAL REVIEW E68, 031504 ~2003!
One idea proposed to generate a broad distribution of
laxation times from an explicit dynamical model was that
a hierarchy of degrees of freedom@8#. The different levels in
the hierarchy then relax in series, the degrees of freedom
one level having to wait for the degrees of freedom in
level below to reach some configuration before they are
to evolve. This latter condition is a realization of akinetic
constraint.

A more concrete realization of a kinetic constraint is t
f-spin facilitated kinetic Ising model introduced by Fredric
son and Andersen@9#. Here no hierarchical structure needs
be posited by hand to generate slow dynamics. All mic
scopic degrees of freedom are of the same kind, nam
noninteracting Ising spins on a simple cubic lattice in
downward-pointing field. However a spin can only flip if
least f nearest neighbor spins are pointing up~against the
field!. For f >2 this gives rise to slow cooperative relaxatio
as reviewed in, e.g., Ref.@10#. The physical motivation for
the kinetic constraint in this model becomes clear if o
thinks of the spins as coarse-grained density variables
supercooled liquid, with up- and down-spins correspond
to low- and high-density regions. The constraint then sta
that a change in local density is only possible if the ove
density in the surrounding regions is low enough for t
particles to be able to rearrange.

An interesting modification of the Fredrickson-Anders
model arises when the kinetic constraints are made an
tropic. In the one-dimensional version considered he
called the East model@11#, a spin can only flip if its left
~west! neighbor is pointing up, so that information prop
gates only to the east. The rates for flipping mobile spins
1 for down-flips ande5exp(21/T) for up-flips, giving a
small equilibrium concentrationc5e/(11e) of up-spins at
low T ~see Sec. II for details!. The number of spins which ar
mobile because their left neighbor is up will then also
small, and this makes it plausible that the dynamics will sl
down dramatically asT decreases.

In this paper we study the glassy dynamics of the E
model, both in equilibrium and out of equilibrium. We focu
on low temperaturesT. This is the regime that is most inte
esting since glassy features will be most pronounced; i
also the regime where theoretical studies such as ours
most needed, since the extremely long relaxation time sc
make numerical simulations difficult or impossible.

Before outlining the structure of this paper, we give
brief review of existing work on the East model. Much r
search to date has concerned theequilibrium dynamics, as
encoded, e.g., in relaxation functions such as spin autoco
lation C(t) or persistenceP1(t) ~see Sec. IV A for defini-
tions!. Already when the model was first proposed@11# it was
argued that relaxation time scales should remain finite
any T.0, thus excluding a transition to a nonergodic st
where relaxation functions fail to decay to zero. This h
recently been proved rigorously: the longest relaxation tim
defined as the inverse of the smallest decay rate that
would find by full diagonalization of the master equation,
bounded between exp(1/2T2 ln 2) and exp(1/T2 ln 2) in the
limit of small temperatures@12#. The form of the bounds
demonstrates that the East model has EITS behavior; we
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find below that it is the upper boundt* 5exp(1/T2 ln 2) that
gives the dominant low-T behavior of the relaxation times.

A number of approaches have been used to predict
actual shape of the equilibrium relaxation functions. An ‘‘e
fective medium approximation’’@11,13# for C(t) leads to a
self-consistency equation typical of mode-coupling appro
mations~MCA! and predicts a spurious nonergodic transiti
at c50.5 (e51); effectively the same result was later d
rived using diagrammatic methods@14#. The version of MCA
derived by Kawasaki@15# also gives a spurious transition, a
c50.2 (e51/4). Both approximations can therefore only b
reasonable at sufficiently largee, or for short times at
smaller e; a comparison with numerical simulations@16#
shows that the effective medium approximation is genera
more accurate in these regimes. Improved diagrammatic
summations@14# avoid the prediction of a spurious trans
tion, and are quantitatively more satisfactory over a lar
range oft and e. However, for smalle they still predict a
decay ofC(t) that is too fast and too similar to an expone
tial compared with numerical simulations. The nonexpon
tial behavior ofC(t) had been noticed early on@11#, but is
well fitted by a stretched exponential only over a limite
time range. We conjectured in Ref.@17#, and will find below,
that the correct scaling variable forC(t) at lowT is indeed of
a ‘‘stretched’’ form, t̃ 5(t/t* )T ln 2, but that the relevant scal
ing function decays more quickly than an exponential. T
stretching exponentT ln 2 was also found to govern the de
cay of the up-spin persistenceP1(t) @18,19#.

Recently, interest in the East model has shifted to m
complicated features of the equilibrium dynamics, e.g.,
existence of dynamical heterogeneities@20#, and to the out-
of-equilibrium behavior. In Ref.@21#, nonlinear relaxation
processes after large changes inT were simulated. Other-
wise, interest has centered on the behavior after a que
from high to low temperature. For a quench to exactlyT
50, the dynamics is exactly solvable@22,23#. The solution
is essentially equivalent to that of the corresponding mo
with isotropic constraints, i.e., the one-dimension
Fredrickson-Andersen model withf 51 @24,25#, and in fact
also applies to a whole family of models that interpola
between the isotropic and anisotropic limits@18,19#. For a
quench to nonzeroT, the autocorrelation functionC(t,tw)
between spins at timestw and t after the quench and th
corresponding response were simulated in Ref.@22#. The cor-
relationC(t,tw) exhibits plateaux, which we will see in Se
III C can be rationalized from the hierarchical nature of t
dynamics. Nonequilibrium steady states caused by apply
an external ‘‘drive’’ have recently also been studied, usin
‘‘tapping dynamics’’ inspired by ideas from granular med
@26# as well as ‘‘rheological driving’’ designed to model th
effect of a shear flow@27#. Finally, we mention an interesting
two-dimensional spin model, which can be mapped ont
system of noninteracting defects with kinetic constraints a
turns out to have low-T behavior very similar to that of the
East model@28–30#.

The paper is organized as follows. After defining the E
model fully in Sec. II, we turn to the out-of-equilibrium dy
namics in Sec. III, giving details of the results announced
4-2
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GLASSY DYNAMICS IN THE ASYMMETRICALLY . . . PHYSICAL REVIEW E 68, 031504 ~2003!
Ref. @17#. After a quench to low temperature, the equilibriu
concentration of up-spins at the newT is small compared to
its initial value. Thus up-spins are eliminated, essentially
reversibly, and the dynamics can be viewed as a coarse
process whereby down-spin domains coalesce as up-s
disappear. We find the scaling of the rates at which doma
of lengthd disappear, which follow a hierarchical pattern
that the coarsening dynamics splits into well-separa
stages. This allows us to find an exact solution forT→0.
The overall scaling of the rates, asG(d);d21/T ln 2, also im-
plies that the system exhibits anomalous coarsening, w
typical domain sizes increasing with time asd̄;tT ln 2. Ex-
trapolating to equilibrium domain lengthsd̄eq'1/e ~see be-
low! then gives the dominant divergence of the equilibrat
time ast* ;exp(1/T2 ln 2). Interestingly, in the scaling limi
of the out-of-equilibrium dynamics (1!d̄!d̄eq), we find
that the domain size distribution is identical to that of t
paste-all model@31#. We rationalize this observation, an
provide in Sec. III D a family of models with identical sca
ing distributions that interpolate between the paste-all
East model limits.

In Sec. IV we shall then explore theequilibrium dynam-
ics. Based on a plausible conjecture regarding the scalin
relaxation times with distance at lowT, we introduce a sim-
plified picture which we refer to as thesuperdomain model.
This should capture the essence of the equilibrium dynam
and become exact in theT→0 limit. The model enables us t
probe the long time scales of the equilibrium dynamics
merically, and leads us to a scaling form for the equilibriu
spin autocorrelation function, C(t)5g( t̃ ), with t̃
5(t/t* )T ln 2. This shows strong stretching forT→0, but it
will turn out that the scaling functiong decays more quickly
than an exponential, actually decreasing to zero at a fi
value of t̃ . Finally, a brief summary of our results and ou
look to future work is given in Sec. V.

II. MODEL DEFINITION

The model comprisesL Ising spinssi50,1 on a one-
dimensional lattice with periodic boundary conditions~site
i 5L11 is identified with sitei 51). The dynamics are de
fined by the following spin-flip rates:

11→10 with rate 1,

10→11 with rate e5exp~21/T!. ~5!

Thus a spin can only flip if its left neighbor is pointing u
~note that in the original paper@11# the mirror image of the
above definition was used, so that theright neighbor had to
point up for a spin to be able to flip!. By a rate, sayx, we
mean that in a small timedt the event happens with prob
ability x dt. It is easy to check that the dynamics obey d
tailed balance with respect to the energy functionE
5( i 51

L si , i.e., the equilibrium distribution corresponds
free spins in a downwards pointing field:
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~11e!L
. ~6!

It follows that the equilibrium concentration of up-spins,c
5^si&, is given by

c5
e

11e
. ~7!

To show that this is the unique steady state we require
the ~finite! system is ergodic, i.e., that any configuration c
be reached from any other. This is true for all configuratio
except for that with all spins down; this is a configuratio
that can be neither entered nor left and that we there
ignore. To see that the rest of the configuration space is
godic, note that from any configuration with a nonzero nu
ber of up-spins one can flip spins up until the ‘‘all up’’ con
figuration is reached. Then, to obtain any desir
configuration one flips spins down in an ordered way to c
ate the appropriate regions of down-spins.

The basic objects that we use for the description of
system aredomains. As shown by the vertical lines in

. . . 0u1000u1u1u10u100u1u1u10u10 . . . ,

a domain consists of an up-spin and all the down-spins
separate it from the nearest up-spin to the right.~This con-
vention is opposite to that of Ref.@17#, but leads to equiva-
lent conclusions and will be more convenient in our tre
ment of equilibrium dynamics in Sec. IV below.! The length
d of a domain then gives the distance between the up-sp
its left edge and the next up-spin to the right. Note th
adjacent up-spins are counted as separate domains of le
d51. In equilibrium, it follows from Eq.~6! that the domain
lengths are geometrically distributed

Peq~d!5e/~11e!d ~8!

with mean

d̄eq5
11e

e
. ~9!

As explained, our aim will be to pursue analytical calcu
tions where possible, but we explain briefly how simulatio
were carried out. We used a continuous-time Bortz-Kal
Lebowitz ~BKL ! @32# algorithm, where the time interval
between spin flips are sampled directly; a standard Mo
Carlo algorithm where spin flips are first proposed and th
accepted or rejected would be much slower at lowT. In the
BKL algorithm, once the time interval to the next flip i
determined one decides probabilistically which of the mob
spins to flip, choosing each with a probabilitypi proportional
to its flip rate~1 or e). A simple method for doing this would
be to sample a uniform random variabler on @0,1# and then
go through the mobile spins until the spini is found for
which ( j 51

i 21pj,r<( j 51
i pj . This search fori takes O(L)

steps, however, and in fact for largeL quickly becomes the
most computationally intensive part of the algorithm. I
4-3
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P. SOLLICH AND M. R. EVANS PHYSICAL REVIEW E68, 031504 ~2003!
stead, we define partial sumsqj ,a over all blocks of spins of
length 2a, wherea50, . . . ,l if the total chain length isL
52l . Theqj ,a can be defined recursively byqj ,a505pj and

qj ,a5q2 j 21,a211q2 j ,a21 ~ j 51, . . . ,L/2a!.

~In fact, we work with analogous partial sums for the numb
of mobile up- and down-spins separately, from which t
qj ,a can easily be retrieved; this allow us to use fast inte
arithmetic.! The qj ,a can be thought of as arranged on
binary tree, and finding the spini to flip becomes a simple
walk from the top levela5 l to the bottom levela50,
branching left or right on each level to keepr within theqj ,a
values bounding the remaining subpart of the tree. This ta
l; ln L steps, and theqj ,a can be updated in similar tim
once a spin has been flipped, giving a reduction in compu
time ;(ln L)/L. Compared to earlier simulations, e.g., R
@21#, rather longer time scales~up to t51011) can be ac-
cessed with this method.

III. NONEQUILIBRIUM DYNAMICS

A. Coarsening dynamics

In this section we consider the dynamics of the E
model after a quench from equilibrium at some high init
temperatureT@1 to low temperatureT!1 (e→0) @17#. At
the new temperature the equilibrium concentration of
spins is much smaller than before, so that the numbe
up-spins must decrease in time. Correspondingly, the typ
domain sizes must grow: the system coarsens.

To understand the nature of this coarsening process, re
first that the equilibrium concentration of up-spins is, fro
Eq. ~7!, c51/d̄eq5e1O(e2). Hence the equilibrium prob
ability of finding an up-spin within a chain segment offinite
lengthd is O(de) and tends to zero fore→0. In the limit

e→0 at fixed d, ~10!

the flipping down of up-spins therefore becomesirreversible
to leading order@33#. In terms of domains, this means th
the coarsening dynamics of the system is one of coalesc
of domains: an up-spin that flips down merges two neighb
ing domains into one large domain. Note that the limit~10!
does not extend to include equilibrium domain lengths t
scale asd;1/e. Therefore the irreversible coarsening is
purely nonequilibrium phenomenon and does not pertain
the equilibrium dynamics; this is why at lowT the former is
in fact easierto analyze than the latter, as we shall see.

Irreversible coarsening processes such as that above
been studied in a variety of contexts. In particular, if the r
of elimination depends solely on the domain size and not
the sizes of neighboring domains there is a very conven
property: during such a process, no correlations between
lengths of neighboring domains can build up if there a
none in the initial state. The proof is an easy generaliza
of that of Ref. @34#. We include it for completeness her
Consider first an initial arrangement ofN domains on a ring.
There areN! ways for this system to coarsen, i.e.,N possi-
bilities for the first domain to disappear,N21 possibilities
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for the second, etc. Each possibility is weighted with a pro
ability that is a function of the rates of disappearance of
N domains. Summing over the (N21)! possible initial ar-
rangements of theN domains on the ring impliesN!(N
21)! possible ‘‘histories’’ for the dynamics.

Now note that if the domains are uncorrelated then
dynamics becomes equivalent to a mean-field model~often
referred to as a bag model or an independent interv
theory!: when a domain is eliminated one picks a domain
random to be its right neighbor and coalesces the two. In
dynamics there are at each stepN(N21) possibilities: the
factor N comes from which domain is eliminated and th
factorN21 from which domain is picked to be its neighbo
Therefore forN initial domains there areN!(N21)! pos-
sible histories, each weighted by the probability for the d
mains to be eliminated in the specified sequence. These
sible histories are in one-to-one correspondence with
possible histories for the full model when summed over
possible initial arrangements. One also easily verifies that
probabilities with which these histories occur, as well as
distributions for the times that separate successive ev
within each history, are the same in both cases. This pro
that throughout the irreversible coarsening process the
mains are uncorrelated.

B. Energy barriers

We now estimate the typical time scaleG21(d) for the
disappearance of domains of lengthd through coalescence
with their right neighbors. This then defines a typical ra
G(d) for the elimination of domains. Because domain co
lescence corresponds to the flipping down of up-spins,G(d)
can also be defined as follows. Consider an open spin c
of lengthd, with a ‘‘clamped’’ up-spin (s051) added on the
left. Starting from the state (s0 ,s1 , . . . ,sd)510 . . . 01,
G21(d) is the typical time needed to reach the ‘‘empty’’ sta
10 . . . 00where spinsd has relaxed, i.e., has flipped dow
Any instance of this relaxation process can be thought o
a path connecting the two states. Let us call the maxim
number of ‘‘excited’’ spins~up-spins excepts0) encountered
along a path its heighth. One might think that the relaxation
of spin sd needs to proceed via the state 11 . . . 1, giving a
path of heightd. In fact, the minimal path heighth(d) is
much lower and is given by

h~d!5n11 for 2n21,d<2n, ~11!

wheren50,1, . . . .
To get a feel for the result~11! consider in Fig. 1 some

small domain sizes. The figure illustrates that to generate
up-spin adjacent to that to be relaxed~which is the first spin
of the next domain on the right! one can proceed via a se
quence of stepping stones, e.g., ford54 one first generates
an isolated up-spin in the middle of the domain, then u
this stepping stone to generate the subsequent excited
in a similar manner to the relaxation of ad52 domain. It-
eration of this argument straightforwardly proves Eq.~11! for
d52n @35#.
4-4
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In order to prove Eq.~11! generally we introduce the
quantityl (h,k) which is defined for the open chain discuss
above. It is the length of the longest configuration that c
tains exactlyk up-spins, always counted ignoring the fixe
up-spins0, and that can be reached from an initially emp
chain~again, except fors0) along some path of heighth. The
length of a configuration is defined here as the position of
furthest up-spin to the right. Note thatl (h,k). l (h,k21);
thus l (h,h) gives the longest configuration that can
reached along any path of heighth.

Now consider how a configuration realizingl (h,k) could
be constructed. First one generates an isolated up-spin a
to the right as possible. This distance isl (h,1). Then one
starts from the up-spin just generated to generate a se
up-spin as far to the right of the first as possible. Since
first up-spin remains up, there is one less unit of energy
play with to generate the second up-spin and the total
tance from the origin will bel (h,1)1 l (h21,1). Continuing
in this fashion to generate allk up-spins, one arrives at

l ~h,k!5 (
m51

k

l ~h2m11,1!. ~12!

To close the set of equations~12! we need an expression fo
l (h,1). This can be obtained by invoking the reversibility
paths: since the dynamics obeys detailed balance, the
tence of a path of heighth from an initial to a final state
implies that the reversed path connects the final to the in
state and is also of heighth. Thusl (h,1) gives the size of the
longest domain that can be relaxed along some path of he
h. It is easy to see that the final step in this process requ
an up-spin adjacent to the up-spin that is to be relaxed. Si
with this latter up-spin, we have already used up one uni
energy or height, the maximum distance from the origin
which such an up-spin could be generated isl (h21,h21).
Therefore we conclude

l ~h,1!5 l ~h21,h21!11 ~13!

with boundary conditionl (0,0)50. Inserting Eq.~13! into
Eq. ~12! gives

FIG. 1. Elimination of a domain of sized. Shown are paths
through spin configurations that traverse the minimum energy
rier. The height of the barrier ish(d) and the excited spins ar
underlined in the highest energy configuration~s! along the path.
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Settingk5h, Eq. ~14! has solutionl (h,h)52h21. Substi-
tuting this back into Eq.~14! yields

l ~h,k!52h22h2k. ~15!

In particular the longest domain that can be relaxed vi
path of heighth5n11 is given by l (n11,1)5 l (n,n)11
52n from which we deduce Eq.~11!. Related results on the
number of configurations reachable at or below heighth can
be found in Ref.@36#.

C. Solution of the dynamics

From result~11! it follows that the coarsening dynamic
naturally divides into stages distinguished byn5h(d)21
50,1, . . . . During stagen, the domains with lengths 2n21

,d<2n disappear; we call these the ‘‘active’’ domains. Th
process takes place on a time scale ofO„G21(d)…
5O(e2n); because the time scales for different stages di
by factors of 1/e, we can treat them separately in the lim
e→0. Thus during stagen active domains are eliminated
The distribution of inactive domains (d.2n) changes be-
cause elimination of an active domain implies coalesce
with a neighboring domain on the right; since the small
active domains have lengthd52n2111, any new domain
will have length>2(2n2111).2n and thus be inactive.

Let N(d,t) be the number of domains of lengthd at time
t, N(t)5(dN(d,t) be the total number of domains, an
P(d,t)5N(d,t)/N(t) be the domain size distribution. The
for a general process of coarsening by coalescence one
using that there are no spatial correlations between doma

]

]t
N~d,t !52G~d!N~d,t !2N~d,t !(

d8
G~d8!P~d8,t !

1(
d8

N~d2d8,t !G~d8!P~d8,t !. ~16!

The first term accounts for the disappearance of a domain
coalescence with its right neighbor, the second for coa
cence with a domain on the left of lengthd8, and the third
for creation of larger domains during coalescence. Summ
Eq. ~16! over d one finds]N(t)/]t52(dG(d)N(d,t), and
hence

]

]t
P~d,t !52G~d!P~d,t !1(

d8
P~d2d8,t !G~d8!P~d8,t !.

~17!

We now apply this general result to the scenario at hand.
change to a rescaled time variable appropriate to thenth
stage of the dynamics,t5ten. To be in thenth stage,t has to
obey the restrictionse2(n21)!t!e2(n11), giving e!t
!e21; in the limit e→0 we can thus lett range over@0,̀ #.

The rescaled ratesG̃(d)5e2nG(d) are nonzero only for the
domains withd<2n; on the other hand,P(d,t) is nonzero

r-
4-5
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only for d.2n21 since smaller domains have disappea
during earlier stages. Thus the sum overd8 on the right-hand
side~rhs! of Eq. ~17! is restricted to 2n21,d8<2n, i.e., the
active domains. Furthermore, ifd is an active domain then
d2d8,2n21 and hence the factorP(d2d8,t) vanishes for
every term in the sum, reflecting the fact that active doma
cannot be created. Equation~17! thus becomes for 2n21,d
<2n

]

]t
P~d,t!52G̃~d!P~d,t!. ~18!

For d.2n, on the other hand, thefirst term in Eq.~17! does
not contribute and one gets

]

]t
P~d,t!5 (

2n21,d8<2n
P~d2d8,t !G̃~d8!P~d8,t !.

~19!

Combining the last two results one finds that the rates d
out, giving ford.2n

]

]t
P~d,t!5 (

2n21,d8<2n
P~d2d8,t!F2

]

]t
P~d8,t!G .

~20!

There is one subtlety in this derivation which we have so
ignored. Even in terms of the rescaled timet, i.e., taking into
account only those relaxation processes that cross the m
mum energy barrier ofn, the ‘‘survival probability’’ for a
domain not to have coalesced with its right neighbor is
necessarily a single exponential which can be character

by a rate constantG̃(d) @37#. This is because several rela
ation processes with different rescaled rates ofO(1) may

exist. In Eqs.~18! and~19! one should then replaceG̃(d) by
the negative derivative of the survival probability, resulti

in an effective, time-dependent rate G̃(d,t)
52@]P(d,t)/]t#/P(d,t); but the rates can again be elim
nated and Eq.~20! follows as before. Note that equation~20!
in fact also has a simple intuitive meaning: it expresses
fact that active domains eliminated during thenth stage coa-
lesce with neighboring domains of random size, formi
stable domains of sized.2n. Equation~20! then determines
the time dependence of the size distribution of the inac
domains for a given time dependence of the distribution
the active domains.

To solve the equation of motion~20! we define the gen-
erating function

G~z,t!5 (
d52n2111

`

P~d,t!zd ~21!

and its analog for the active domains,

H~z,t!5 (
d52n2111

2n

P~d,t!zd. ~22!
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Then multiplying Eq.~20! by zd and summing overd.2n

yields

]

]t
@G~z,t!2H~z,t!#

5 (
d52n11

`

(
d852n2111

2n

P~d2d8,t!F2
]

]t
P~d8,t!Gzd

5 (
d952n2111

`

(
d852n2111

2n

P~d9,t!F2
]

]t
P~d8,t!Gzd91d8

52G~z,t!
]

]t
H~z,t!, ~23!

where we have used that in stagen of the dynamics
P(d9,t)50 for d9<2n21. We may integrate Eq.~23! by
rewriting it as

1

@12G~z,t!#

]

]t
G~z,t!5

]

]t
H~d,t! ~24!

giving

12G~z,t!

12G~z,0!
5exp@2H~z,t!1H~z,0!#. ~25!

At the end of stagen, corresponding tot→`, all domains
that were active during that stage have disappeared, an
H(z,`)50. Thus

G~z,`!215@G~z,0!21#exp@H~z,0!#. ~26!

Now recall that we are considering stagen of the dynamics.
The initial condition for stagen11 of the dynamics will be
given by the distributionP(d,t) at the end of stagen. Thus
definingGn(z)[G(z,0) for stagen, with a similar definition
for the active generating functionHn(z), Eq. ~26! relates the
different stages of the dynamics through

Gn11~z!215@Gn~z!21#exp@Hn~z!#. ~27!

This exact result connects, through their generating fu
tions, Pn(d) and Pn11(d) which are defined as the doma
length distributions at the end of stagesn21 andn of the
dynamics, respectively. It can be checked that forn50,
where the system does not cross energy barriers, Eq.~27!
gives results compatible with the known exact solution of
T50 dynamics@22#.

Iterating Eq.~27! from a given initial distributionP0(d)
gives Pn(d) for all n51,2, . . . . Figure 2 shows numerica
results for the case whereP0(d) is the equilibrium distribu-
tion ~8! corresponding to an initial temperature ofT5`. It is
clear that a scaling limit emerges for largen, i.e., that the
rescaled distributions

P̃n~x!52n21Pn~d! wherex5
d

2n21
~28!
4-6
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converge to a limiting distributionP̃(x) for the scaled do-
main sizex. This is just a statement of the invariance of t
coarsening processes in each stage once the domain siz
rescaled by the characteristic size 2n21.

The change to a continuous variablex for the domain
lengths simply results in the generating functio
Gn(z),Hn(z) being replaced by Laplace transformsgn(s)
and hn(s), via the correspondencezd→e2sx. Invariance of
the scaled domain distribution under Eq.~27! then gives the
equation

g~2s!215@g~s!21#exp@h~s!#, ~29!

where

g~s!5E
1

`

dxP̃~x!e2sx, h~s!5E
1

2

dxP̃~x!e2sx.

We found a solution to Eq.~29! by noting that the numerics
strongly suggestP̃(x)51/x for 1,x,2. Using this as an
ansatz implies

h~s!5Ei~s!2Ei~2s! where Ei~s!5E
s

`e2u

u
du,

which when inserted into Eq.~29! yields

@12g~s!#exp@Ei~s!#5const.

The requirement thatg(s)→0 for larges fixes the constan
as unity, giving

g~s!512exp@2Ei~s!#. ~30!

Expanding the exponential as a series allows the Lap
transform to be inverted term by term and one obtains

FIG. 2. Domain length distributionsPn(d) at the end of stage
n21 of the low-T coarsening dynamics, for initial temperatureT
5`. Open symbols and lines: theoretical results, calculated f
Eq. ~27!, for n50 (s; initial condition!, 1 (h), 2 (L), 3 (n).
Filled symbols: simulation results for a chain of lengthL5215 and
e51024 (n51,2) ande51023 (n53). Inset: Scaled prediction
2n21Pn(d52n21x) vs x for n51, . . . ,8. Thick line: predicted
scaling function~31!.
03150
are

ce

P̃~x!5
1

2p i Eg2 i`

g1 i`

dsesxg~s!

5
1

2p i Eg2 i`

g1 i`

dsesx(
m51

`
~21!m11

m!
Eim~s!

5 (
m51

`
~21!m11

m! E
1

`

)
j 51

m
duj

uj
dS (

k51

m

uk2xD
5Q~x21!

1

x
2Q~x22!

ln~x21!

x
1 . . . , ~31!

whereQ(x) is the Heaviside step function. This result for th
scaling function is shown in Fig. 2 and shows good agr
ment with the numerically calculatedPn(d) for largen. Note
that series~31! has singularities in thekth derivative at the
integer valuesx5k11, k12, . . . , a fact whose physical
origin we discuss further in the following. The average d
main length in the scaling limit is given byd̄n52n21x̄; from
the results forP̃(x) we find x̄5exp(g)51.78 . . . ,whereg is
Euler’s constant.

D. A family of related coarsening models

Surprisingly, the scaling function~31! for coarsening dy-
namics in the East model is identical to that for the ‘‘pas
all’’ model of coarsening dynamics, where at each step in
dynamics the shortest domain is selected and ‘‘pasted’’ o
its left or right neighbor@31#. To understand this, we decid
for definiteness that domains are to be pasted to the ri
Then the paste-all model can be obtained from a modifi
tion of the hierarchical coarsening dynamics discussed
far—one merely needs to assume that the ratesG(d) are now
all well separated from each other, so that at any given st
in the dynamics only domains of a single sized are active. It
is then natural to consider a family of models which interp
lates between the paste-all and the East model, by assu
that the active domain sizesd at any stagen—whose coales-
cence ratesG(d) are comparable to each other but well sep
rated from all other rates—are those withan21,d<an, with
a a constant in the range 1,a<2.

All of the arguments in the preceding section apply to t
modified model if powers of 2 are replaced by powers ofa in
the appropriate places. In particular, Eq.~29! for the Laplace
transform of the scaling distribution becomes

g~as!215@g~s!21#exp@ha~s!# ~32!

with

ha~s!5E
1

a

dxP̃~x!e2sx ~33!

generalizing the earlierh(s)[h2(s). We now show that Eq.
~32! has the same family of solutions for anya<2, thus
proving in particular the link between the scaling distrib
tions of the East model (a52) and the paste-all model (a
→1). To see this, consider firsta→1; we should then re-

m

4-7
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cover the scaling equation for the paste-all model. Inde
settinga511d and expanding to first order ind, Eq. ~32!
becomes

sg8~s!5@g~s!21# P̃~1!e2s, ~34!

which is equivalent to Eq.~38! in Ref. @31#. Integrating Eq.
~34! gives@31# g(s)512exp@2P̃(1)Ei(s)#, and the Laplace
transform can be inverted as in Eq.~31!, giving

P̃~x!5Q~x21!
P̃~1!

x
2Q~x22!

P̃2~1!ln~x21!

x
1•••.

Given that only the first term contributes forx<2, it is now
easy to verify that this is also a solution of Eq.~32! for any
a<2: from Eq. ~33! one has ha(s)52 P̃(1)@Ei(as)
2Ei(s)#5 ln@12g(as)#2ln@12g(s)#.

In summary, we have shown that there is a whole fam
of coarsening models that interpolate between the past
and East models and which have the same scaling solu
The solution is, in principle, parametrized byP̃(1) but, as
discussed in Ref.@31#, the requirement of a finite mean fo
the scaling distribution imposesP̃(1)51. Thus g(s)51
2exp@2Ei(s)# as we found in Eq.~30!.

Physically, the common feature of all the models in t
family is that active domains can never be created during
stage where they are active; this breaks down fora.2 where
indeed the scaling solution no longer applies. This argum
clarifies the origin of the singularities at integer arguments
P̃(x): the existence of a shortest scaled domain lengtx
51 implies that the shortest inactive domain that can
created hasx52, and this effect then propagates tox
53,4, . . . , as thedynamics is iterated. We initially though
the fact that in the East model the active domains cove
range xP@1,2# bounded by two integers, was significan
However, this is clearly not the case since for generala<2
this range becomesxP@1,a#.

E. Anomalous coarsening

Having solved the dynamics in terms of the differe
stages labeled byn, we now translate these results into actu
time dependencies. As before, we consider a sys
quenched from, say,T5`, to a temperatureT!1 at timet

50. If data for, e.g., the average domain lengthd̄ are plotted
against the scaled time variablen5T ln t, then forT→0 the
nth stage of the dynamics shrinks to the pointn5n. In this
limit we predict that, forn21,n,n, the domain length
distribution isPn(d) as defined by recursion~27!. The aver-
age domain lengthd̄(n) will follow a ‘‘staircase’’ function,
jumping at n5n from d̄n5(dPn(d)d to d̄n11. This was
illustrated and verified by low-T simulations in Ref.@17#.

For largen, i.e., in the scaling regime of larged̄ ~but still
d̄!d̄eq), we know thatd̄n52n21x̄ wherex̄51.78 . . . . The
staircase functiond̄(n) is therefore bounded betwee
2n21x̄<d̄<2nx̄, giving 1

2 <d̄/( x̄tT ln 2)<1 when expressed in
terms of ordinary timet. This shows that the hierarchica
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dynamics gives rise to anomalous coarsening, i.e., the typ

domain size grows asd̄;tT ln 2, more slowly in time than a
usual power law withT-independent exponent. The expone

can also be deduced from the scalingt;G(d̄)21;en

5exp(n/T) of the time required to eliminate a domain of th

typical size d̄. Since d̄;2n asymptotically, one hasn

' ln d̄/ln 2 and this time scales ast;d̄1/T ln 2, giving d̄
;tT ln 2 as before. For decreasingT the coarsening become
anomalously slow and in fact logarithmic forT→0.

By extrapolating the anomalous coarsening law to
equilibrium domain lengthd̄eq5exp(1/T)1O(1), we can es-
timate the equilibration time of the system forT→0 as teq
;t* 5exp(1/T2 ln 2). Of course, in performing this extrapo
lation, we are using the anomalous coarsening law in
regime where domain sizes areO(1/e) and the assumption
of irreversible down-flips no longer holds. Given this w
could have equally well extrapolatedd̄;tT ln 2 to some mul-
tiple ad̄eq of the equilibrium domain length, which would
yield teq5exp(1/T2 ln 22A/T) with A52 ln a/ln 2. With the
sign as defined,A should be positive, corresponding toa
,1; a negative value ofA is excluded as it would violate the
relaxation time bound of Ref.@12#. Thus we expectt* to
give only the dominant divergence of the equilibration tim
teq, with subdominant correction factors exp(2A/T) making
teq!t* generically. Our analysis in Sec. IV suggests, on
other hand, that the longest relaxation time scalesat equilib-
rium are given directly byt* . This is not unreasonable: th
time to reach equilibrium from an initial high-temperatu
configuration is expected to be much shorter than the t
for correlations to be erased starting from an equilibriu
~low-temperature! initial condition, simply because the typi
cal domains to be eliminated are shorter.

Finally, we comment briefly on the implications of th
coarsening dynamics for the two-time spin autocorrelat
function C(t,tw)5^si(t)si(tw)&2^si(t)&^si(tw)&, where t
.tw . Since in the limitT→0 spins flip down irreversibly,
si(t)51 implies thatsi(tw)51 at the earlier timetw , thus
C(t,tw)5c(t)@12c(tw)# wherec(t) is the time-dependen
up-spin concentration. As a function oft, C(t,tw) will thus
exhibit the same plateaux asc(t), and these were indee
observed in the simulations of Ref.@22#. Also, the normal-
ized autocorrelation becomes simplyC(t,tw)/C(tw ,tw)
5c(t)/c(tw)5d̄(tw)/d̄(t). This dependence on only the ra
tio of the relevant length scales at timestw andt is natural for
a coarsening process, and gives a good fit to the data of
@22#.

IV. EQUILIBRIUM DYNAMICS

A. Functions of interest

We now turn to the equilibrium dynamics of the Ea
model at low temperatures. These are encoded in relaxa
functions such as correlations and spin persistence~see be-
low!; response functions provide no new information sin
they are related to correlations via the fluctuation-dissipat
theorem~FDT!. For correlation functions standard choic
would be the local spin autocorrelation^si(t)si(0)&2c2 or
4-8
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the correlation function of the up-spin concentration~or
magnetization! M (t)5(1/L)( isi(t). However, the direction-
ality of the kinetic constraint can be shown to imply that
nonlocal correlationŝsi(t)sj (0)&2c2 vanish @38# so these
two choices give the same information. We can thus focus
the normalized autocorrelation function

C~ t !5
^si~ t !si~0!&2c2

c2c2
5

P„si~ t !51usi~0!51…2c

12c
.

~35!

This decays fromC(0)51 to C(t→`)50; the second
equality in Eq.~35! implies that it is essentially the cond
tional probability for an up-spin that was up at time 0 also
be up at timet. Closely related is the up-spin persisten
functionP1(t), which gives the probability that a spin is u
throughout the time interval@0,t#, and the analogously de
fined down-spin persistenceP0(t).

Fortunately, it turns out thatC, P1, andP0 do not need to
be analyzed separately because they all become identic
the limit T→0 @taken at a constant value of, say,C(t)] that
we are interested in. To see this, note that since in the
model the spins are only coupled via the kinetic constra
which acts to the right, the dynamics of a spinsi cannot
influence that of its left neighborsi 21. ~This is strictly true
only in the limit of an infinite chainL→`, but that is pre-
cisely the case of interest.! Furthermore, the dynamical evo
lution of spinsi is that of a single spin in a field wheneve
si 2151, and is completely frozen otherwise. It follows th
if, between times 0 andt, si 21 has been up a fractionm of
the time, then the evolution ofsi has been that of a singl
spin over timemt. But the single-spin correlation and pe
sistence functions are trivial to work out; denoting the dis
bution ofm for a givent by P(m;t), one thus has the simpl
expressions

C~ t !5E
0

1

dmP~m;t !e2(11e)mt, ~36!

P1~ t !5E
0

1

dmP~m;t !e2mt, ~37!

P0~ t !5E
0

1

dm P~m;t !e2emt. ~38!

It follows trivially that

C~ t !<P1~ t !<P0~ t !. ~39!

Now sinceP(si(t)51usi(0)51)>P1(t) ~the probability for
a spin to be up at times 0 andt must be greater than that fo
it to be up at 0 andt and all intermediate times!, one has
from Eq. ~35!

~12c!C~ t !1c>P1~ t !. ~40!

Equations~39! and ~40! together show thatC(t) andP1(t)
coincide in the low-T limit ( c'e→0) whenever the value
of the functions themselves are ofO(1).
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To get the analogous result forC and P0, consider
P(m;t). The concentration of persistent up-spins and dow
spins in the system iscP1(t) and (12c)P0(t), respectively,
and these havem51 andm50. Thus

P~m;t !5~12c!P0~ t !d~m!1cP1~ t !d~m21!1•••,
~41!

where the dots indicate contributions form strictly between 0
and 1. Inserting into Eq.~37! and separating off thed(m)
term gives

P1~ t !5~12c!P0~ t !1E
.0

1

dmP~m;t !e2mt>~12c!P0~ t !.

Together with Eq.~39! it follows that alsoP1(t) andP0(t)
coincide forc→0. ThusC5P15P0 in the limit, and we can
restrict attention to, e.g., the up-spin persistenceP1(t) in the
following.

We stress once more that the directionality of the kine
constraint is essential for the above arguments to work
the undirected version of the East model, i.e., the o
dimensional Fredrickson-Andersen model withf 51, it
would still be true that the dynamics of spinsi is determined
by the amount of time thatsi 21 ~and si 11) spend in the
up-state. But this time cannot be determined independe
of the state of spinsi , sincesi itself affects the dynamics o
si 21 ~andsi 11).

B. First passage times

To get some insight into the equilibrium dynamics, w
generalize the domain coalescence ratesG(d), discussed in
Sec. III for d5O(1) and e→0, to the regime of domain
sizes typically found in equilibrium,d;d̄eq'1/e. Starting
from the state (s0 ,s1 , . . . ,sd)510 . . . 01, wedefine a mean
first passage time~MFPT! tmfp(d) as the mean time for the
spin sd to flip down for the first time, and we setG(d)
5tmfp

21(d). Note that in Sec. III B we required for a ‘‘firs
passage’’ that not justsd but all other spinss1 , . . . ,sd21 be
down; here we just require thatsd50. In the regime consid-
ered in Sec. III, the two definitions are equivalent to lead
order, since the relaxation process has passed its ‘‘hig
point’’ once sd has flipped down, resulting in the same e
ergy barrier whether or not the process continues to
empty state.

Consider now the dependence oftmfp(d) on d. From the
discussion of the out-of-equilibrium dynamics we know th
tmfp(d) exhibits a steplike variation withd for d5O(1) and
small e, varying only by factors of order unity within eac
range 2n21,d<2n but increasing by;e21 between ranges
As n increases at fixede, however, theO(1) changes within
ranges become larger and eventually comparable toe21;
tmfp(d) will then increase more smoothly withd. The nu-
merically simulated MFPTs in Fig. 3 confirm this. Finall
for d larger thand̄eq'1/e, the figure shows that the MFPT
increase linearly withd. Intuitively, one then has a ‘‘front’’ of
up-spins that creeps ‘‘ballistically’’ along the chain. This ca
be motivated by arguing that, ford above the typical equi-
4-9
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librium length scaled̄eq, the spin front no longer remembe
that it originated from a single up-spin a distanced to the
left. Instead it behaves as on an infinite chain, where
propagation velocity is necessarily constant.

So far we have considered the variation oftmfp(d) with d
at fixede. One suspects, however, that, e.g., the decay of
persistence functionP1(t) is governed by a length scal
d(t), giving the size of the largest domains that have h
time to equilibrate, and more precisely—since we are c
sidering equilibrium dynamics—by the ratiod(t)/d̄eq. We
thus define scaled domain sizesd̃5ed (5d/d̄eq for e→0)
and now ask howtmfp(d̃) scales withT for fixed d̃. For small
d̃, extrapolating from the regime ofd5O(1), andusing n
' ln d/ln 2, one expects

tmfp~ d̃!;e2 ln d/ ln 25e2 ln d̃/ ln 221/(T ln 2)

5expS ln d̃

T ln 2
1

1

T2 ln 2
D .

Rearranging, one has

S tmfp~ d̃!

t*
D T ln 2

;d̃.

From the downward curvature of the lines in Fig. 3, one s
that this expression will not be valid for largerd̃, where the
rhs will cross over to a slower increase withd̃. We thus make
a time scaling hypothesiswhich replacesd̃ by a more genera
scaling functionf (d̃) of d̃, i.e., we assume that the rescal
MFPT approaches

t̃mfp~ d̃![S tmfp~ d̃!

t*
D T ln 2

→ f ~ d̃! for T→0 ~42!

FIG. 3. Simulated MFTPstmfp for down-flips ~solid! and tmfp8
for up-flips ~dashed! as a function of unscaled distanced, for e
50.3,0.2,0.1,0.05,0.02~bottom to top!. The thin solid lines have
slope 1, showing that for larged the MFPTs vary linearly withd.
Error bars are too small to show on the scale of the plot (<3.5%
relative error ontmfp andtmfp8 ).
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when the limit is taken at fixedd̃. Figure 4~a! represents
numerical data for the MFPTs in this scaled form and sho
that the assumption~42! is certainly plausible for not-too-
large d̃. For largerd̃, convergence to a scaling limit is no
yet evident from the data that we can generate on prac
simulation time scales. This is because ford@d̄eq the ballis-
tic propagation discussed above impliest̃mfp}dT ln 2}d̃T ln 2

which will tend to a constant asT→0 but does so very
slowly. For the scaling functionf (d̃) this implies that it must
approach a constant asd̃→`; recall that this limit is taken
after the limit T→0 at fixedd̃. We note that the bounds o
Ref. @12# imply that the MFPTstmfp cannot exceedt* by
more than factors ofO(1); this implies from Eq.~42! that
f (d̃)<1. Our numerical data in Fig. 4~a! are restricted to
values ofT which are still too large to determinef (d̃) with
any accuracy, but the tentative extrapolation toT→0 indi-
cated in the figure is certainly consistent with the bou
f (d̃)<1.

We work below with a slightly strengthened version
Eq. ~42!. The first passage timet for down-flips is a fluctu-
ating quantity, with meantmfp . We assume that fluctuation
in t are small enough that Eq.~42! holds even for the fluc-
tuating t, which means that forT→0 the rescaled FPT
t̃(d̃)5@t(d̃)/t* #T ln 2 becomes nonfluctuating. This assum
tion is not as strong as it may sound; because of the ex
nentiation byT ln 2 it holds, e.g., if the relative fluctuation
of the unscaled FPTt(d̃) remain ofO(1) asT→0. Further
confirmation comes from Fig. 4~b! which shows numerica
data ford̃50.1.

FIG. 4. ~a! Logarithmic plot of scaled FPTst̃, as defined in Eq.

~42!, vs scaled distanced̃, for e50.2,0.1,0.05,0.02~top to bottom
on right!. The dotted line shows a qualitative sketch of the scal

function f (d̃), with f→1 (ln f→0) for d̃→`; see text.~b! Up-flip
~dashed! vs down-flip ~solid! FPTs and their fluctuations vse for

constant d̃5ed50.1. Thin lines and error bars: mean an

6
1
2 ~standard deviation! of the log-rescaled FPT lnt̃. Thick lines:

ln t̃mfp . As e decreases, the fluctuations in lnt̃ are seen to decrease

error bars shrink, and lnt̃mfp and the mean of lnt̃ become closer.
Also, up-flip and down-flip times become closer; both observatio
support our scaling hypothesis for the FPTs.
4-10
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GLASSY DYNAMICS IN THE ASYMMETRICALLY . . . PHYSICAL REVIEW E 68, 031504 ~2003!
In a final generalization we also assume that Eq.~42!
applies if we consider FPTst8 for up-flips, where we start
with the empty state 10 . . . 00 andt8 is the first time where
the last spinsd has flipped up. Naively one might have su
pected thatt8 and t differ by a factor;1/e. However, the
equivalence ofP1(t) and P0(t) that we proved for lowT
already suggests otherwise. The correct intuition is that b
up- and down-spins only become mobile once an up-s
‘‘front’’ from an up-spin to the left has reached them, an
that for T→0 the time required for this front propagatio
vastly dominates the effect of the different flip rates of u
and down-spins once the front has reached them. Figure~b!

again supports this assumption with numerical data fod̃
50.1.

In summary, we assume in the following that Eq.~42! is
valid for unaveraged up-flip and down-flip FPTs, with th
same scaling functionf (d̃). A consequence of this iscon-
tinuous time scale separation: for any two rescaled distance
d̃1,d̃2, the ratio of the corresponding FPTs

@ f (d̃2)/ f (d̃1)#1/(T ln 2) and diverges asT→0. In the limit, this
means that the equilibration of domains of lengthd̃1 pro-
ceeds infinitely more quickly than for any even slight
larger lengthd̃2. This insight is the key for the constructio
of the superdomain model described next. A proviso is t
we have assumed here that the scaling functionf (d̃) is
strictly monotonically increasing withd̃. In principle, it is
possible thatf (d̃) could increase monotonically only up t
some finite d̃* , and be exactly constant thereafter. Th
seems implausible to us, however—e.g., it is difficult to co
ceive of a physical mechanism causing the singularity
d̃* —and, as discussed below, would also give very unus
predictions for the time dependence of the low-T relaxation
functions.

C. Superdomain model

We now exploit the idea of continuous time scale sepa
tion to construct an effective description for the low-T equi-
librium dynamics of the East model. It is natural to wo
with the equilibrated length scaled̃r that corresponds to th
relaxation time scalet r we are considering; from Eq.~42!,
the two are related by

S t r

t*
D T ln 2

5 f ~ d̃r!.

Here and in the following, the limitT→0 ~or equivalently
e→0, orc→0) is always understood. For simplicity we wi
simply call d̃r ‘‘time’’ where there is no ambiguity. We stres
that we work withrescaledlength scalesd̃5de throughout;
a value ofd̃ of order unity thus corresponds to a very lar
domain lengthd5d̃/e in the limit e→0.

Consider now an equilibrium configuration of the sp
chain, consisting of up-spins separated by long doma
of down-spins. From Eq.~8!, the ~rescaled! domain sizes
are distributed according to a simple exponential,P(d̃)
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5exp(2d̃). A ‘‘time’’ d̃r later, each of the up-spins will hav

developed an equilibrated zone of lengthd̃r to its right: from
continuous time scale separation, the FPT to reach any
within this zone is much shorter thant r . Throughout the
zone we should thus indeed haveequilibratedspins, which
are independently up with probabilityc5e/(11e)'e. The
domains defined by up-spins within these equilibrated zo
will not be of interest in the following. Instead we focus o
the ‘‘superdomains’’ which are naturally defined by the u
equilibrated up-spins, to which we refer as ‘‘superspin
Thus each superdomain is bounded on the left by suc

superspin, followed by an equilibrated zone of lengthd̃r and
then a string of down-spins.

To understand the dynamics of superdomains as we l
at increasing timesd̃r , it is easiest to consider a system f
which the rescaled chain lengtheL and therefore the typica
number of superdomains is large but finite; there is then a
times a nonzero minimum superdomain length. On incre
ing d̃r from zero, all superspins remain as they are as long
the equilibrated zone of each superdomain has not
reached the superspin to the right. However, whend̃r be-
comes equal to the smallest superdomain length in the
tem, say d̃1, then this superdomain’s equilibrated zon
‘‘catches up’’ with superspin 2 bounding the next superd
main ~of length d̃2) on the right. This superspin now be
comes equilibrated, and so one might assume that the
superdomains just coalesce, forming a single superdoma
length d̃11d̃2. This, however, will only be the case if ther
are no up-spins in the equilibrated zone of superspin 2 at
time; since this zone has lengthd̃r , the probability for this
event is exp(2d̃r). Otherwise, i.e., with probability 1
2exp(2d̃r), there will be at least one up-spin in the equi
brated zone of superspin 2. The leftmost of these, having
the superspin from which it became equilibrated, becom
frozen and thus itself turns into a superspin, 28. The distance
d between 28 and the old superspin 2 has probability dist
bution exp(2d)/@12exp(2d̃r)# over the intervaldP@0,d̃r#,
and the two new superdomains have lengthd̃185d̃11d and

d̃285d̃22d ~see Fig. 5!.
What makes the superdomain model nontrivial is that

the second case the process of superspin elimination an
generation can now continue. Superspin 28 will immediately
~on the time scaled̃r being considered! equilibrate a zone of
length d̃r . If d̃28,d̃r , then this zone includes superspin
which now becomes equilibrated along with a segment
length d̃r2d̃28 to its right. This, however, still leaves a seg

ment of lengthd̃r2(d̃r2d̃28)5d̃28 of the old equilibrated zone
of superspin 3, which is now frozen~see Fig. 5!. If there is
no up-spin within this segment when superspin 3 equ
brates, then superdomains 28 and 3 coalesce; this happen
with probability exp(2d̃28). Otherwise, the leftmost up-spi
in the segment freezes into a new superspin 38, and the
process continues by iteration. It is clear that only super
mains of lengthd̃.d̃r have been generated when the proc
4-11
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P. SOLLICH AND M. R. EVANS PHYSICAL REVIEW E68, 031504 ~2003!
terminates. One can thus now increased̃r until the new mini-
mum superdomain size is reached, at which point a n
relaxation process as described above starts.

Above, we arrived at the superdomain model start
from the hypothesis of continuous time scale separation.
model lets us access, via an effective description, very
temperatures corresponding to extremely long relaxa
times. By definition it is therefore difficult to demonstra

FIG. 5. Illustration of superdomain dynamics. Superspins
shown by the thin vertical rectangles; each has an equilibrated

of length d̃r to its right, indicated by a horizontal rectangle. Show

is a situation where the relaxation timed̃r has just become equal t

the smallest superdomain length,d̃1. The equilibrated zone of su
perspin 1 then catches up with 2 and equilibrates this spin~first
line!. At this moment, there can be up-spins within the form
equilibrated zone of 2; if there are, the leftmost of these becom

new superspin 28, bounding a superdomain of lengthd̃28 ~second

line!. If d̃28,d̃r , the newly created equilibrated zone of 28 catches

superspin 3. Within the zone of lengthd̃28 that is now no longer
equilibrated~dashed! up-spins can again remain, with the leftmo
becoming a new superspin 38. In the example, the relaxation pro

cess atd̃r stops at this point sinced̃38.d̃r ; otherwise, it would
continue in the same fashion.
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superdomain-type dynamics on the time scales of a num
cal simulation. Nevertheless, the sample run ate50.02
shown in Fig. 6 illustrates some important features of sup
domain dynamics, in particular the regeneration of sup
spins and the resulting propagation of equilibrated zones

To summarize the superdomain model, let us restate
dynamics. We present this in the form of a schematic sim
lation algorithm; a formal definition of the stochastic evol
tion of the sequence of superdomain lengths is, of cou
possible but would be more awkward. We reemphasize
all lengths arerescaledlengths,d̃5de.

1. Initialize superdomain lengths from an exponential d
tribution P(d̃)5exp(2d̃).

2. Setd̃r equal to the size of the smallest current super
main. Let that size bed̃1, with d̃2 ,d̃3 , . . . , thesizes of the
superdomains on the right. Seti 51.

3. Delete the now equilibrated superspini 11. With prob-
ability exp(2d̃i), the superdomainsi and i 11 coalesce and
the relaxation process at thisd̃r is complete: letd̃i←d̃i

1d̃i 11, delete superdomaini 11, and go back to step 2.
4. Otherwise, a new superspin (i 11)8 is created, a dis-

tanced to the right of the old one which is distributed a
cording to P(d)}exp(2d) over the rangedP@ d̃r2d̃i ,d̃r#.
This gives new superdomain lengths:d̃i←d̃i1d and d̃i 11

←d̃i 112d. If d̃i 11<d̃r , increasei← i 11, and go back to
step 3. Otherwise the relaxation process at thisd̃r is com-
plete; go back to step 2.

Ideally, one would like to solve the above superdoma
model directly and thus compute the dependence of the
sistence function ond̃r analytically. The iterative process o
superspin elimination and regeneration is difficult to ke
track of, however, and we have not been able to find
analytical solution. Nevertheless, because the superdom
model expresses times in terms of the length scalesd̃r ,
which unlike the time scales themselves do not diverge
T→0, it can be simulated easily and accurately; we ha

e
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ly defined
FIG. 6. A direct simulation run on a system ate50.02 which provides support for the notion of superdomain-type dynamics. Show
a section of 180 spins out of a much longer chain, for a single simulation run. The lines correspond to seven successive time
@1010a27,1010a26#, . . . ,@1010a21,1010a20#, with a51.485 so that the first interval begins at 1010a2756.263108. ~Geometrically increas-
ing intervals were chosen because, from Eq.~42!, relaxation time scalest r are expected to increase very quickly with superdomain leng

d̃r for low T.! The boxes indicate the current magnetizationss̄i of the spins, determined by averaging over the relevant time interva

logarithmic scale is used, so that the highest boxes correspond tos̄i51, the dashed lines to the equilibrium values̄i5c, and the baselines

to s̄i5c2. ~Lower values ofs̄i are not shown.! Filled boxes indicate spins that are persistently up over the entire time interval (s̄i51). Note
the similarity between the first two lines here and the superdomain dynamics sketched in Fig. 5: within the time interval~ii !, the equilibrated
zone of superspin 1 catches up with 2; a new superspin (28) is created and eliminates superspin 3. Lines~v! and ~vii ! show events where
superspins 1 and 4 are eliminated. Of course,e here is still too large to be in the asymptotic limitT→0 where superdomain dynamics appli
exactly. This is why, in contrast to Fig. 5, the equilibrated zones of the superspins are not all of the same length, do not have sharp
boundaries, and also do not increase perfectly monotonically in time.
4-12
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GLASSY DYNAMICS IN THE ASYMMETRICALLY . . . PHYSICAL REVIEW E 68, 031504 ~2003!
used systems of 105 superdomains~at d̃r50), checking that
finite-size effects are negligible and typically averaging o
results over 104 simulation runs.

The key quantity that we want to predict from the sup
domain model is the persistence function. The up-spin p
sistenceP1 is the fraction of up-spins that have never flipp

sinced̃r50. Since atd̃r50 all up-spins are superspins,P1 is
the fraction of these initial superspins that have never b
equilibrated. We show the results in Fig. 7;P1 initially de-

creases linearly withd̃r , but then the decay becomes mu

faster and indeed superexponential ind̃r .
If, as we have claimed, the superdomain model is

correct effective description for theT→0 dynamics of the
East model, then it must obey the exact identityP15P0

derived in Sec. IV A.P0 is measured in the superdoma
model as the fraction of the chain which has never b
swept by an equilibrated zone, a quantity that one might
have naively suspected to be connected to the numbe
persistent superspins. Nevertheless, our simulations s
that indeedP15P0 to very high accuracy (;1%, less than
the relative error on the measurements ofP1 andP0) in the
superdomain model. In fact, both quantities are plotted
Fig. 7, but are indistinguishable by eye. This provides stro
support for the correctness of the superdomain model
e.g., the mechanism for regenerating superdomains is
glected, one finds that the conditionP05P1 is violated.

A further consistency check on the model is obtain
from the requirement that it should represent theequilibrium
dynamics. The concentration of up-spins in the system,
the magnetizationM5(1/L)( isi , should thus remain inde
pendent ofd̃r . Within the superdomain model, if there areNs

superspins at timed̃r , one has

FIG. 7. Predictions of the superdomain model. Main pl
dashed lines: Response functions fore0 /e50.95 ande0 /e51.05 vs

relaxation timed̃r ; on the latter, a few error bars are shown whe
they are significant. Solid lines: Persistence functionsP1 and P0;
the two lines are indistinguishable by eye. The inset shows

scaling functiong( t̃ ) for the equilibrium relaxation functions, a
derived from the superdomain persistence and the scaling func
for the FPTs sketched in Fig. 4~a!.
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M5Ns~11cd̃r /e!/L'~Ns/L !~11d̃r! ~43!

since in addition to the superspins there are a furt
cNsd̃r /e up-spins on theNsd̃r /e sites covered by the equili
brated zones. This quantity should equalM5c'e indepen-
dently of d̃r . Hence the average~rescaled! distance between
superspins,eL/Ns, which is identical to the average supe
domain length, must equal 11d̃r at time d̃r . This is indeed
what our simulations of the superdomain model show. O
can push this comparison further and consider not just
total up-spin concentration, but the distribution of sizes
the domains formed by all spins~rather than just the super
spins!. This distribution must be a pure exponential, indepe
dently of d̃r . It can be expressed in terms of the superdom
distribution by an appropriate convolution which accoun
for the fact that additional up-spins exist in the equilibrat
zones. Omitting the details, we only state that one finds
this way that the superdomain size distribution at timed̃r
must be

P~ d̃;d̃r!5Q~ d̃2d̃r!e
2(d̃2d̃r). ~44!

Again we find that this is verified in our simulations. No
that Eq. ~44! has a simple intuitive interpretation: it corre
sponds to an exponential distribution of the segments
down-spins separating the equilibrated zone of each supe
main from the next superspin on the right.

A final check on the superdomain model is that it shou
obey FDT—since the original model obeys detailed balan
FDT is automatically satisfied but this is not guaranteed
the superdomain description. As explained in Sec. IV A,
nonlocal correlation~and hence response! functions vanish in
the East model, so that one is free to consider either a lo
response ofsi to a local field or a response of the magne
zation M to a uniform fieldh. Choosing the second option
the energy function is modified toE5(12h)( isi which is
equivalent to changinge to e85e exp(h/T) @or temperature
from T to T/(12h)]. The response to a fieldh switched on
in the distant past and switched off att50 can thus be mea
sured by initializing the system in an equilibrium state co
responding toe8 and monitoring the evolution ofM during
the subsequent dynamics ate. By FDT this switch-off re-
sponse should have the same time dependence as the c
lation ~and hence the persistence! functions. In the superdo
main model, the measurement is performed by initializi
the superdomains with a modified domain size distribut
P(d̃)5(e8/e)exp@2(e8/e)d̃# and then tracking the decay o
the magnetization, measured as in Eq.~43!, to its equilibrium
value. The response functions simulated fore8/e50.95 and
1.05 are plotted in Fig. 7 above, and show that the supe
main model indeed obeys FDT.

Pushing the above scenario further, one could cons
nonlinear responses in the superdomain model, in partic
a large ratioe8/e which corresponds to a quench to a mu
lower temperature.~For the superdomain model to rema
applicable we still neede8!1, of course.! The initial scaled
domain lengths in the system are then of ordere/e8!1. In

,

e
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P. SOLLICH AND M. R. EVANS PHYSICAL REVIEW E68, 031504 ~2003!
the regime of smalld̃r where these domain lengths are r
moved from the system, one sees that the probability
2exp(2d̃r)'d̃r of creating a new superspin is very sma
tending to zero ford̃r;e/e8→0. In this limit the superdo-
main dynamics becomes ‘‘take the smallest superdomain
coalesce it with its neighbor on the right,’’ which is precise
the paste-all model discussed in Sec. III D. While super
main sizes remain!1, the domain size distribution will thu
be driven to the scaling distribution of the paste-all mod
As demonstrated in Sec. III D, this scaling distribution is t
sameas that for the coarsening dynamics of the East mo
Thus, the prediction of the superdomain model for the fo
of the domain size distribution, a long time after a quen
from e8 to e with 1@e8@e, matches up precisely with tha
predicted in Sec. III C for a quench from 1'e8@e. ~Note
that in the first case we are in principle talking about t
superdomainsize distribution, not the actual domain distr
bution as in Sec. III C. However, for smalld̃r the two are
identical since the number of up-spins within the equilibra
zones of the superdomains is negligible.!

Writing our result for the persistence function in the s
perdomain model~eitherP1 or P0, since they are identical!

asPsd(d̃r), we can now translate it into a scaling predictio
for the time dependence of the correlation and persiste
functions at lowT in the East model. Using the inverse of th
scaling functionf (d̃) from Eq. ~42!, one has

C~ t !5P1~ t !5P0~ t !5Psd„f
21~ t̃ !…, t̃ 5S t

t*
D T ln 2

.

~45!

Thus the relaxation functions show strong stretching, w
the stretching exponentT ln 2 decreasing to zero forT→0.
However, the scaling functiong( t̃ )5Psd„f

21( t̃ )… is nonex-
ponential. In fact, sincef (d̃) approaches a constantf ` for
d̃→` as argued after Eq.~42!, the scaling function in Eq
~45! decays to zero at afinite value t̃ 5 f ` . On the basis of
the results of Ref.@12# we would conjecture this value to b
f `51, see below Eq.~42!; the scaling functiong( t̃ ) for this
case is sketched in the inset of Fig. 7. It is important to b
in mind that the limit ofT→0 considered here is taken
constantd̃r or, equivalently, constantt̃ . If we look instead at
fixed nonzeroT then the relaxation functions are, of cours
nonzero for allt, but this does not contradictg( t̃ ) dropping
to zero att̃ 5 f ` . To see this, note that the asymptotic dec
of all relaxation functions should be to leading order an
ponential with the longest relaxation time,;exp(2t/t* ).
This does remain nonzero for allt; but in terms of the scaled
time t̃ it becomes;exp(2 t̃1/T ln 2) which converges to zero
for T→0 at any fixedt̃ .1.

We can now also come back to a point discussed at
end of Sec IV B: in principle the functionf (d̃) may not be
strictly monotonically increasing, but could instead becon-

stant from a certain valued̃* onwards, f (d̃)5 f ` for d̃

.d̃* . Looking at Eq.~45!, however, this would lead to th
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conclusion that for anyt̃ , f ` the relaxation functions are
nonzero, approaching a nonzero limit ast̃→ f ` but then
dropping discontinuously to zero~in the limit T→0). This
makes this hypothetical behavior off (d̃) rather unlikely.

As explained, one of the main benefits of the superdom
model is that it allows one to access very long time sca
that diverge extremely quickly asT decreases. Since this i
precisely the regime that is hard to probe with simulatio
comparing the theoretical predictions with numerical data
not straightforward. We chosee50.02, the lowest value for
which we can simulate a significant part of the equilibriu
relaxation. As Fig. 4 shows, the relation between resca
FPTst̃ and rescaled distancesd̃5ed has not yet reached it
e→0 form, so it would make no sense to compare numer
data with superdomain predictions based on the latter.
stead, we use the numerically obtained FPTs to link ti
scales and length scales. In detail, we obtain for each un
malized distanced the measured FPT, and plot against th
time the superdomain model’s persistence functionPsd(d̃) at
the relevant scaled distanced̃5ed. Since we measured FP
in four different ways—for up- and down-flips, and avera
ing FPTs or log FPTs—which we expect to become identi
only for T→0, this procedure gives four slightly differen
curves for the superdomain predictions. As shown in Fig
these bracket the numerically simulated up-spin persiste
and correlation functions rather well, especially given th
there are no fit parameters in the comparison. The larg
deviations occur for large times, corresponding to la
length scales. This is consistent with Fig. 4, which sho
that in this regime the behavior still differs substantially fro
that expected in the limitT→0.

V. CONCLUSION

We have studied the dynamics of the East model. Cons
ing of uncoupled spins in a downward-pointing field, th

FIG. 8. Comparison of up-spin persistence functionP1 from
simulations with prediction of superdomain model, fore50.02. A
log-log plot of 2 ln P1(t) is shown, which would be straight fo
stretched exponential relaxation. The inset showsP1(t) directly.
Thick lines:P1 as simulated in three runs for a chain of lengthL
5217; the correlation functionC(t) is also shown for one run but is
indistinguishable fromP1(t) as predicted for lowe. Thin lines:
Predictions of the superdomain model~see text!. Dashed/solid:t
determined from FPTs for up- and down-flips, respectively. Le
right curve of each pair: using mean of the log-FPT and the log
the MFPT, respectively.
4-14
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GLASSY DYNAMICS IN THE ASYMMETRICALLY . . . PHYSICAL REVIEW E 68, 031504 ~2003!
model has trivial equilibrium statistics. However, the kine
constraint that spins can only flip if their left neighbor is u
causes pronounced glassy features in the dynamics at loT,
when the concentration of up-spins is low.

We first studied the nonequilibrium coarsening dynam
after a quench to lowT. In the limit e5exp(21/T)→0 the
equilibrium concentration of up-spins at the new temperat
is negligible ('e) and the flipping down of up-spins be
comes irreversible to leading order. This allows the dynam
to be described as coarsening via coalescence of down
domains. The process is hierarchical, being governed b
series of well-separated time scales. We solved this hie
chical coarsening dynamics exactly, using an independ
intervals method that becomes exact forT→0. Anomalous
coarsening results, with typical domain lengths scaling ad̄
;tT ln 2. The dominant divergence of the equilibration tim
for low T can also be estimated, and is given by the fac
t* 5exp(1/T2 ln 2), an EITS dependence typical of fragi
glasses. For large domain sizesd̄ that are still small com-
pared to the equilibrium valued̄eq, the domain size distribu
tion approaches a scaling form. We showed that this sca
distribution is equal to that of the paste-all model, and w
able to define a whole family of interpolating models that
share this scaling distribution.

In the second part of the paper we focused on the e
librium dynamics at lowT. We showed that the standar
relaxation functions, spin autocorrelation and persistenc
up- and down-spins, become identical forT→0, so that only
one of them needs to be considered. We then investigate
relation between time and length scales. Generalizing fr
the results in the coarsening regimed̃5d/d̄eq!1, we intro-
duced a time scaling hypothesis. This implied that forT
→0 one has continuous time scale separation, with dom
of any two different scaled sizesd̃ relaxing on well-separated
time scales. On this basis we proposed a model of supe
mains, which are bounded by up-spins that are frozen
long time scales. The dynamics of this model is nontriv
and not, as yet, analytically tractable, but can easily be si
lated since time is effectively measured in terms of the sca
distanced̃, whose relevant values remainO(1) even forT
→0. We verified that the model obeys important consiste
requirements, in particular the equality of up-spin and dow
-
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spin persistence, the fluctuation-dissipation theorem, and
stationarity of up-spin concentration and domain size dis
bution in equilibrium.

From the superdomain model predictions we finally d
duced that the equilibrium relaxation functions should dec
for low T as g( t̃ ), with g(•) being a scaling function oft̃
5(t/t* )T ln 2. This demonstrates strong stretching for lowT,
but the overall relaxation is more complicated than
stretched exponential. In fact, the functiong(•) decays faster
than exponential, and in the limitT→0 at fixed t̃ reaches
zero at afinite value of t̃ . The lowest temperatureT that we
can conveniently simulate, corresponding toe50.02, is still
rather far from the asymptoticT→0 limit but nevertheless
showed reasonable agreement between numerical sim
tions and appropriately extracted predictions of the super
main model. We would suggest that stretching but not sim
stretchedexponentialbehavior may be rather generic i
glassy dynamics. Actual stretched exponentials could m
often than not be just convenient fitting functions over
limited number of decades in time. To clarify this point,
study of low-temperature relaxation in other solvable mod
exhibiting glassy dynamics would obviously be desirable

In future work, it would be interesting to see whether t
out-of-equilibrium response of spins to a local field cou
also be analyzed within the irreversible coarsening fram
work we used above. This response function was simula
in Ref. @22# and found there to be monotonic; at lowerT,
however, nonmonotonicities should appear according t
later conjecture@29#. A closer investigation of out-of-
equilibrium FDT relations would also be worthwhile. Prev
ous results for these@22# have to be regarded with som
caution since they were constructed using a disconne
correlator; see, e.g., Ref.@39# for a discussion of this point
Finally, as regards the equilibrium dynamics, it will be inte
esting to analyze the implications of the superdomain
scription for dynamic heterogeneities, making a connect
to the recent work of Garrahan and Chandler@20#.
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