PHYSICAL REVIEW E 68, 031305 (2003
Energy of a single bead bouncing on a vibrating plate: Experiments and numerical simulations
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The energy of a single bead bouncing on a vibrating plate is determined in simulations and experiments by
tracking the bead-plate collision times. The plate oscillates sinusoidally along the vertical with the dimension-
less peak acceleratidn, and the bead-plate collisions are characterized by the velocity restitution coefficient
€. Above the threshold dimensionless peak accelerdfign0.85, which does not depend on the restitution
coefficient, the bead energy is shown to initially increase linearly with the vibration ampltudbaereas it is
found to scale Iikeuf)/(l—e), wherev, is the peak velocity of the plate, only in the limit>I"g. The
thresholdl’' is shown to decrease when the bead is subjected, in simulations, to additional nondissipative
collisions occurring with the typical frequenay.. As a consequence, the bead energy scalea;ﬁk(al— €)
for all vibration strengths in the limit,;>v% . From the experimental and numerical findings, an analytical
expression of the bead energy as a function of the experimental parameters is proposed.
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As they exhibit a wide range of unusual behaviors, granuqualitative disagreement between their theoretical and ex-
lar materials are the subject of intensive investigatidns3].  perimental findingg18]; the mean energy of the bouncing
Because of the inelastic nature of the contacts between tHeead was found to scale like the peak plate velogigyin
grains, these systems are intrinsically dissipative. In order t@xperiments whereas it was expected, theoretically and nu-
explore experimentally the effects of the dissipation on thgmerically, to scale |ikezf,. Experimentally, the velocity dis-
properties of granular systems, it is convenient to producdributions and the mean energy were determined by tracking
stationary states; they are achieved by continuously providthe bead with high speed photography. The theoretical scal-
ing the system with energy, compensating the energy intrining was found by writing a discrete-time Langevin equation.
sically lost when the grains are in motion. Among these studBecause of the experimental method, only a small number of
ies, one can note the experimental realization tab- bounces could be analyzed. Inaccuracies due to air drag,
dimensional (2D) granular gasesconsisting of inelastic small sample size, and human biases were thought to be
beads constituting less than one-layer coverage on a vertiargely responsible for this discrepancy. We present an alter-
cally shaken, horizontal plaf&—8] (the experimental situa- native experimental method permitting the analysis of a large
tion has been the framework of molecular-dynamics simulanumber of bounces, and hence making possible the determi-
tions by Nieet al. [9]). The velocity distributions, granular nation of the velocity distributions and the energy with a
temperature, pressure, as well as phase transitions have bdegiter accuracy. A good agreement is found between the ex-
studied as functions of the vibration strength, usually charperimental results and a numerical simulation similar to that
acterized by the peak plate accelerationNevertheless, de- presented in Ref{18]. In addition, the numerical study is
tailed analysis of thelusteringtransition and of the pressure extended in order to account for the effects of the collisions
indicates that the vibrating boundary becomes inefficient tdetween beads within the gas.
thermalize the system when the acceleration or the density of Let us now consider the case of a single bead bouncing on
the gas are decreased. The energy input by the vibrating plate. The plate undergoes harmonic oscillations in the ver-
boundary has been the subject of several theoretical studidical direction according ta(t) = A cos(2rit+ ¢), with A the
[10-13; the scaling law for the energy as a function of thevibration amplitude and'= w/27 the frequency. The energy
vibration strength has been shown to depend on the shape dissipation, associated with the bead-plate collisions, is char-
the boundary vibratiofsinusoidal, sawtooth, elcand on the acterized by the velocity restitution coefficiantwe assume,
nature of the dissipation within the gasscous, inelastic In in the following, thate does not depend on the impact ve-
these studies, the assumption was made that the bead itocity [19,20, and neglect rolling or sliding frictions plausi-
pinges randomly on the boundary; we note that this is not thély involved in the bead-plate contadi&l,22)).
case when the bead collides more than once with the bound- We consider first the numerical simulation. For conve-
ary between two collisions with another bead. One can easilpience, we normalize the lengths to the vibration amplitude
show that the velocity is exponentially correlated betweer and the times to the characteristic time #i2 The bead,
two successive collisions in this case. It is hence relevant tahen not in contact with the plate, moves under the force of
study the dynamical behavior of a single bead bouncing on gravity according to
vibrating plate, and to determine the mean enédigy of the
bead as a function of the vibration strength. The system has
been widely studied, but, since the seminal work of Fermi
[14], most of the studies focused on the period-doubling 5 _
route to chaog$15-17. Moreover, Warret al, considering whereh, andv,, are, respectively, the initial dimensionless
the situation both theoretically and experimentally, found aheight and the velocity of the particle after th& collision
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with the plate that occurred at, (the dimensionless peak 80
plate acceleratiolf =Aw?/g, whereg denotes the accelera-

tion due to gravity. The corresponding dimensionless energy

of the bead (or dimensionless bouncing heightH, 60
=E/mgAis constant between two successive collisions with

the plate and can be written &,=I"v%/2+h. The velocity

of the bead , is given by ok

<H>

vn=(1+€)v,—ev, 2 ol

where is the bead velocity prior to the collision ang,
= —cos{,+ ¢), the plate velocity at,,. The next collision =
time 7,,, is the first root of z(7,.1)=h(7h+1) (Tniy

>'7.). In order to handlehattering[16] or inelastic collapse

[23], we stick the bead to the plate when the time interval FIG. 1. Mean bouncing heightH,) vs acceleration. The

between successive collisioAs,=7,,— 7,_, is smaller than  trajectories are computed, for different values of the restitution co-
efficient e, during 18 periods of the plate oscillation.

a cutoff time (7<10"%). The bead then moves with the

plate until the acceleratioE(T) is sufficient to release the ma? (T-T)T
particle into a new trajectory. We point out that the relation (E)=a— S 5
[Eg. (2)] between the dimensionless bead velocities before ®® (1—e)+b(l-e)

(v) and after ,,) collision with the vibrating plate depends

only on the collision timér, and not on the characteristic T o0 :
amplitude A and frequencyr of the plate vibration. Thus, +0.02, andFS—FS.=O.%5iO.01. According to Eq(3),.the
it appears clearly that the only control parameter in theN€rgy(E) scales likev, only whenI'>T's, whereas it in-

problem is the dimensionless acceleratiorihat appears in  créases linearly with vibration amplitude when I'=I's.
Eq. (1). Moreover, the results show that there exists a threshold di-

In order to account for the effects of the bead-bead collimensionless peak acceleration of the platg, above which
sions (assumed to be nondissipative and to occur with théh® bead can experience a nontrivial trajectory; the mean
typical frequencyr,), when the vibrating plate is used as €nergy of the bead ), is then given by Eq(3).
energy input for a granular gas, we allow the numerical pro- We compared th_e numerical results, obta_lned in the case
cedure to renew the initial conditions of the bead, keeping®f the freely bouncing beadv{=0), to experimental mea-

the energyE(t) unchanged. The main purpose of the modelsurements. The experimental setup consists of one horizontal
is to study the effects of the resulting loss of correlationdlass plate (X2 cnt) which is vibrated vertically. A glass
between the particle motion and the plate vibration. We asPlate is used in order to avoid any wear of the plate surface;
sume that the duratiodt of the free motion of the bead indeed successive impacts of the bead at the same location

between two successive bead-bead collisions satisfies tif the surface of metallic plates always led to the formation
probability distribution(8t) ~exp(— &), where v, is the of_ a visible small indent. The system is wp_rated v_ertlcally
typical collision frequency. In the numerical simulation, one With the help of an electromagnetic shakBruel & Kjaer,
collision is accounted as follows: the phageof the plate  1YP€ 4803 driven by sine wavesy(=40-80 Hz) from a low
motion is chosen randomly in the intenied,2#] and the distortion signal generatofStanford Research Systems,

Lo~ : . T DS345 and a power amplifie(Kepco, BOP50-4NM The
bead velocityv randomly in the intervall —v2H,/T, amplitudeA of the vertical motion is measured with the help

+2H,/I']. The corresponding bead heighthen satisfies  of an inductive sensofElectrocorp, EMD1058s0 that the
h=H,—Tv?2, so that the collision does not change thepeak plate acceleratiofie[0,3] is known to within 0.01.
energy of the bead but only its time phase with respect to th&he beadMarteau & Lemarie steel, diameteD =10 mm)
plate. is guided by a glass tub@ner diameter 10.1 mjrso that it

The numerical results obtained for a bead bouncing freelyloes not escape the system. The bottom edge of the glass
(v.=0) are presented in Fig. 1. We find that the mean valueube is placed about 5 mm above the plate surface in order to
over time,(H,), of the dimensionless mean bouncing heightavoid air to be trapped underneath the bead. An impact sen-
depends linearly o according to{Hp)=(—a+ BI'). Re-  sor(PCB-200B is placed between the vibrator and the plate.
sults obtained for different values @f show that the slope The signal is recorded on a PC equipped with a data acqui-
B~1[(1—e€)+b(1—€)?] whereas, by contrast, the ratio sition board(Data Translation, DT300Q and the collision
I's=a/B does not to depend on the restitution coefficient timesr, are detected numerically. The energy of the bead is
As a consequence, the mean energy of the b@af calculated from the successive collision timgsand from
=mgA(H,) reads the corresponding vertical positions of the plate. Seeking for

()

with the constant parametera=a®=3.8+0.1, b=4.45
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FIG. 2. Probability distributiorP(A 7) vs A 7. The synchroniza- FIG. 3. Energ¥ E) vs acceleratiod’. Diamonds: experimental
tion of the bead to the plate motiok£ 1 andk=2) is pointed out ~ data (“=60 Hz, sampling frequency is 60 kHz during B Bashed
by the two distributions aF =0.9. For the sake of clarity, the dis- lines: energy of the periodic mod& . Vertical dashes: minimum
tributions are rescaled and shifted=60 Hz, sampling frequency acceleratiorl’,. Solid line: Eq.(3) with €=0.88.
is 60 kHz during 8 &

down toI'=0.7>T",. For I'<<0.7, the bead experiences a
eriodic trajectory witik=1 down tol";=0.2, below which
he beadsticksto the plate. By contrast, when the accelera-
tion I' is increased, the energy of the bead, which initially
mg? experiences the first periodic trajectork=1), increases
En=TAT§, (4 continuously according to Eq1) abovel'>1.07.
In order to evaluate the effect of the bead-bead collisions,
whereA 7,= 1., ,— 7, stands for the flight duration with en- We increased the frequeney in the numerical simulations;
ergy E,. From the experimental distributions dfr, (Fig. ~ the mean bouncing heigliti,) decreases at large accelera-

2), the mean energy of the bead over time is estimated as tion whereas it increases at small acceleratiig. 4). This
behavior results from a simultaneous decrease of the thresh-

old acceleratior’g and of the slope. By contrast, the pa-

simplicity, we neglect the vibration amplitudewith respect
to the bouncing height, and write the energy of the bea
betweenr, and 7, ., as

3
E EnA T, mg’ 2 A, rameterb remains unchanged within the scatter of the nu-
(E)= -3 : (5  merical data. The threshold acceleratidhy decreases
> A, > A, exponentially with increasing collision frequeney accord-
ing to

We measure the mean energy of the by as a func-
tion of the dimensionless acceleratidh by changing the

30

vibration amplitudeA at constant frequency. The experi- | v e=0.85v,=v/1000
mental measurements agree quantitatively with the numeri- ¢ £=0.85v,=v/30 v
cal simulations at large acceleratiottypically I'>1.4) 25 0 g=0.85v,=v/3

whereas departure from E¢l) is observed when the bead
motion synchronizes to the plate oscillati@fig. 3). In this

case, the bead experiences periodic trajectories With

=k/v (k is an integer associated with the constant energy é},

'
2 71_2k2
Ek:m%(7+\/r2—rﬁ

which depends only slightly on the plate acceleration
Such a periodic trajectory can exist for accelerations larger
thanT',=k#w(1—€)/(1+€). Due to synchronization of the
bead motion to the plate oscillation, we observe hysteresis
for small values ofl” (Fig. 3). When the acceleratioh' is
decreased, the bead synchronizes to the plate motioh' for
=1.5 and then experiences a periodic trajectory With2 FIG. 4. Mean bouncing heigH,) vs acceleratiof .

: (6)
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collisions is large enough, the phageof the plate motion is

A& e=0.75 v=v/3 0 - .
% =080 v,=v/10 not correlated between two successive bead-plate collisions.
sl © e=0.85v=vi30 /o The raljdom phage approximation is then fulfilled and the
v £=0.90 v,=v/100 /o A Langevin description is relevant. As a consequence, the en-
0 £=0.95 v;=v/300 Y ergy (E) scales Iikevf), as predicted theoretically by Warr
30} /O P ‘v et al.[18].
A P oV v In conclusion, the numerical and experimental studies of
v ,é' o v 4,<5<> the energy E) of a single bead bouncing freely on a vibrat-
AF 1 oy P ing plate agree quantitatively. From the numerical data, we
,V/V “ & ¢ S X propose an analytical expression_ of the mean energy of the
ok vaﬁgzxz =% N bead as a function of the experlr_nental pa_lramete_rs_. For all
/ v/ SR ZETN PN accelerations, the energy scales like #(d) in the limit e
,/,_,_é_a}—_% bl —1. Above the dimensionless threshold acceleratign
o ----- I’/"’ | . . | =0.85, which does not depend on the restitution coefficient
0.0 05 1.0 15 20 25 e, the energy of the bead, experiencing a complicated mo-

r tion, increases almost linearly with the vibration amplitude
A. The energy scales Iikeg, wherev, is the peak plate
velocity, only at large enough acceleratioh>%I'g). The
threshold acceleratiohg is shown to decrease when the bead
is subjected, in simulations, to additional nondissipative col-
lisions occurring with the typical frequency,. The bead
energy scales Iikeﬁ/(l— €) for all vibration strengths in the
limit v.>v}, where v} is a characteristic collision fre-
. . N quency which depends on the bead-plate restitution coeffi-
where the lc;bglgacterlstlc collision frequency; =(1.4  ¢jent ¢ and on the vibration frequency. These results are
i%-3)(1_ €)~> v depends on the restitution coefficient  jmportant clues for understanding the properties of vertically
[I's=0.85 denotes the threshold dimensionless peak acceliprated granular gases. For instance, the dependence of the
eration of the plate in the limit.—0 Eq.(3)]. In the same mean energy of the bead on the bead-bead collision fre-
way, the coefficient satisfies quencyv, could partly explain the hysteresis observed in the
transition from the crystal to the gas phase in 2D granular
gases. We plan to make use of the experimental method to
determine accurately the probability distributions and corre-
lation functions of the bead and plate velocities at the impact
times. The results should help in writing a statistical theory
b>¢epicting the dependence of the bead energy on the vibration
strength, and then improving the understanding of the ther-
malization of granular materials by vibrating boundaries.

FIG. 5. Mean bouncing heightH,) vs acceleratiod”. Sym-
bols: numerical simulations. Dashed lines: E).with I'¢ [Eq. (7)]

anda [Eq. (8)].
Fszl“gex% - v—f) : (7)
VC

Ve
a=a*+(a°—a*)ex;{—v—*), (8)

Cc
with a* =1.7+0.1 and the same typical frequeney . The
numerical data are successfully described to within 10%
Eq. (3) for e[0.7,0.93 andI" €[ 1.0,2.5 (Fig. 5. Accord-
ing to Eq.(3), in the limit v.>v%, the mean energyE)
=a*v,2)/[(1—e)+b(1—e)2] scales Iikevﬁ for all accelera- The authors wish to thank E. Legee and T. Biben for
tions I'; when the typical frequency, of the bead-bead helpful conversations.
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