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Transport properties of dense fluid argon

Sorin Bastea*
Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550, USA
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We calculate using molecular dynamics simulations the transport properties of realistically modeled fluid
argon at pressures up to.50 GPa and temperatures up to 3000 K. In this context, we provide a critique of
some newer theoretical predictions for the diffusion coefficients of liquids and a discussion of the Enskog
theory relevance under two different adaptations: modified Enskog theory and effective diameter Enskog
theory. We also analyze a number of experimental data for the thermal conductivity of monoatomic and small
diatomic dense fluids.
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Many real fluids are very well represented as ensem
of identical molecules interacting through pairwise spheri
potentials and, except for more exotic versions of such in
actions where molecular dynamics is still a very useful t
@1#, the thermodynamics of these systems has been well
derstood for a fairly long time in the context of various s
tistical mechanics theories@2#. The transport properties, o
the other hand, i.e., self-diffusion coefficient, viscosity, th
mal conductivity, are less amenable to accurate theore
calculation and require computationally intense molecu
dynamics simulations, hence the continuing interest in th
study@3–5#. Through a natural althoughad hocextension of
the dilute gas Boltzmann equation, Enskog transport the
@6# provided the first prediction of the transport coefficien
of the hard sphere fluid and opened the way to the calc
tion of transport properties of real dense fluids. Other, m
heuristic theories have been also proposed, relying on g
eral physical concepts such as‘‘free volume,’’ ‘‘caging’’@7,8#,
and excess-entropy scaling@3,9#. The predictive capabilities
of all these methods are critically affected by both their
trinsic limitations and the additional interpretations requir
when they are applied to real fluids@10,11#. The molecular
dynamics calculation of the transport coefficients of the h
sphere fluid model@12# has provided important insights o
the limitations of the Enskog theory in the high density
gime, as well as the connection between microscopics
hydrodynamics. Experimental results on the transport pr
erties of liquids at high pressures, e.g., tens of GPa, are
now becoming available for both molecular fluids@13# and
liquid metals@14#. Here we present molecular dynamics c
culations of the transport properties of realistically mode
argon at pressures up to.50 GPa and temperatures up
3000 K. In this context we provide a critique of some new
theoretical predictions for the diffusion coefficients of liqui
and a discussion of the Enskog theory relevance under
different adaptations: modified Enskog theory~MET! and ef-
fective diameter Enskog theory. We also analyze a numbe
experimental data for the thermal conductivity of mon
atomic and small diatomic dense fluids.

Argon is generally believed to behave as a quintessen
classical fluid in a rather wide range of densities and te
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peratures and it has been often modeled as a Lennard-J
system@15#. More accurate representations of its interactio
are also available, e.g., the Barker-Fisher-Watts poten
@16#, but they are more complicated and have been tes
only at low pressures. A relatively simple pair interactio
that can account very well for the high density, high tempe
ture thermodynamics of argon@17# is the Buckingham
exponential-6potential:

u~r !5eFAe2a(r /r 0)2BS r 0

r D 6G , ~1!

with well depthe corresponding to distancer 0 anda a nu-
merical constant:A56ea/(a26), B5a/(a26), the gen-
eral properties of which have been well studied@18#. In ad-
dition to argon, theexponential-6parametrization was show
to yield appropriate thermodynamics for other molecular fl
ids as well@19#, e.g., N2 , O2 , CO2, CH4, CO, etc., particu-
larly in the dense, hot regimes corresponding, for exam
to shock waves, detonations, or planetary modeling@20#. The
understanding of such dynamic processes requires a kn
edge of both the thermodynamic and transport propertie
these fluids and their mixtures, and we study argon a
representative example. Other molecular fluids and the li
tations of exponential-6modeling for small diatomics are
also discussed in connection with the available high press
thermal transport experimental results.

We sete/kB5122 K, r 053.85 Å, a513.2 correspond-
ing to argon@17#, and perform microcanonical molecular dy
namics simulations with 500 particles~and some with 864
particles! in a cubeL3L3L with periodic boundary condi-
tions. The temperatures studied areT5298,1000,3000 K and
densities from slightly above the critical density (rc
.0.54 g/cm3) to just below freezing, i.e., approximatel
1.95 g/cm3 at 300 K, 2.75 g/cm3 at 1000 K, and 4.05 g/cm3

at 3000 K ~for comparison the triple point density i
.1.14 g/cm3). The corresponding pressures are up to ab
1.3 GPa, 9.3 GPa, and 52 GPa, respectively. The trans
coefficients,D—~self-!diffusion coefficient,h—shear vis-
cosity, andl—thermal conductivity, are calculated using th
Green-Kubo formalism@21#. This entails determining the
long time behavior of time integrals of autocorrelation fun
tions of appropriate microscopic currents:
©2003 The American Physical Society04-1
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D5 lim
t→`

D~ t !,

D~ t !5E
0

t

^v ix~0!v ix~t!&dt,

h5 lim
t→`

h~ t !,

h~ t !5
1

VkBTE0

t

^sxy~0!sxy~t!&dt, ~2a!

l5 lim
t→`

l~ t !, ~2b!

l~ t !5
1

VkBT2E0

t

^Jx
e~0!Jx

e~t!&dt, ~2c!

whereŝ andJe are the microscopic stress tensor and ene
current, respectively, easily calculated in the course of m
lecular dynamics simulations:

sxy~t!5(
i

@miv ix~t!v iy~t!1yi~t!Fix~t!#, ~3a!

Jx
e~t!5(

i
v ix~t!H 1

2
miv i

2~t!1
1

2 (
j Þ i

Vi j @r i j ~t!#J
1

1

2 (
i

(
j Þ i

@xi~t!2xj~t!#vi~t!•Fi j ~t!. ~3b!

The two main sources of errors affecting the molecu
dynamics calculation of transport coefficients are the sys
sizeL and the time limitt l im in the calculation of the above
time integrals. Finite size effects on the calculation of tra
port properties have been extensively analyzed and indi
that systems of 500 particles typically yield results with
.2 – 3 % of the infinite system size extrapolations@5,22,23#.
The effect of an integration time limitt l im is more subtle and
it has to do with the slow, algebraic decay of the Green-Ku
integrands@23#. For usual, three-dimensional systems the
integrands behave at long times asrd(t)}kd /t3/2 @24,25#; d
stands forD, h, andl. The factorskd have been calculate
using the mode-coupling formalism and depend on the s
tem thermodynamics and on the transport coefficients th
selves @24,25#. We set t l im50.95tc , where tc is the time
needed for a sound wave to traverse the system,tc5L/c, c
5(]p/]r)s

1/2 ~adiabatic sound speed!, and add the long time
contributions to the final values of the transport coefficien
We find that these corrections can be as high as 12% for
diffusion coefficient, in agreement with Ref.@22#, up to 3%
for the viscosity, and smaller than 1% for the thermal co
ductivity. For each thermodynamic point we run the simu
tions for (5 –25)3106 time steps, which corresponds, d
pending on density and temperature, to 3000–15
samples in the averaging of the autocorrelation functions

As mentioned, we would like to compare the simulati
results with the available theoretical estimates. Among th
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the Enskog theory@6# is perhaps the best known; its predi
tions for the transport coefficients of the hard sphere sys
are

DE

DB
5

rbhs

yhs
, ~4a!

hE

hB
5rbhsS 1

yhs
1

4

5
10.7614yhsD , ~4b!

lE

lB
5rbhsS 1

yhs
1

6

5
10.7574yhsD , ~4c!

where bhs52ps3/3, yhs5p/rkBT21, and the pressurep
can be accurately calculated using the Carnahan-Sta
equation @21#: p/rkBT5(11f1f22f3)/(12f)3. The
right-hand sides of the above equations depend only on
hard sphere packing fractionf5prs3/6, while the left-
hand sides contain the Boltzmann transport coefficientsDB ,
hB , andlB , obtained in the limit of low densities@6#:

DB51.019
3

8rs2 S kBT

pmD 1/2

, ~5a!

hB51.016
5

16s2 S mkBT

p D 1/2

, ~5b!

lB51.025
75

64s2 S kB
3T

pmD 1/2

, ~5c!

with r5N/V the number density,s the hard sphere diam
eter, andm the molecular mass.

The application of these results to real dense fluids
quires suitable interpretation, and the so-called MET@10# has
been widely used. The MET ingredients as applied to r
fluids are~i! the replacement ofyhs with the ‘‘thermal pres-
sure’’ of the fluid in question,y5(]p/]T)r /rkB21, which
is then required to equal that of the hard sphere fluidy
5yhs , and therefore leads by invoking the low density lim
to ~ii ! the identification ofbhs with the second virial coeffi-
cient of the real fluid and its temperature derivati
d@Tb(T)#/dT, and~iii ! the replacement ofDB , hB , andlB
with the real dilute gas transport coefficients of the flu
considered,D0 , h0, and l0. The comparison of the MET
predictions with experimental results for a variety of flui
up to densities about twice the critical density is rather
vorable @10#. However, a number of MET inconsistencie
have been pointed out@11#, and it is not clear if this approach
would continue to be useful as the density is increased.
our MET estimates, we recall that the transport coefficie
of a dilute gas of molecules interacting through some gen
potential such as that defined in Eq.~1! can be written in the
first Enskog approximation as@6#

D05
3

8rr 0
2 S kBT

pmD 1/2 1

V (1,1)* ~T* !
, ~6a!
4-2
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h05
5

16r 0
2 S mkBT

p D 1/2 1

V (2,2)* ~T* !
, ~6b!

l05
75

64r 0
2 S kB

3T

pmD 1/2 1

V (2,2)* ~T* !
, ~6c!

whereV (m,n)* (T* ), m,n51,2, are dimensionless collisio
integrals@26# depending on the interaction potential and
duced temperatureT* 5kBT/e, which we evaluate numeri
cally.

A different interpretation of the Enskog theory for re
fluids has been advocated in Ref.@11#, based on the use of
state-dependent hard sphere diameter directly in the En
relations Eqs.~4!. The success of statistical mechanics the
ries in predicting the thermodynamics of simple fluids@27# is
largely due to the idea of equivalent hard sphere diamet
which embody the dominant effect of short range repulsi
on the structure and dynamics of liquids, particularly at h
densities. The appeal of using the same diameter to calcu
both the thermodynamic and transport properties of flu
lies therefore both in its simplicity and physical consisten
In the present work, we adopt the definition of effective
ameter provided by the Mansoori-Canfield variation
method@27#, which uses the fact that the first-order pertu
bation theory approximation for the free energy of a syst
interacting through potentialu(r ) is an upper bound for the
free energy of the system. Using the hard sphere fluid a
reference, this translates into

f u~r,T!< f hs~f,T!112fE
1

`

s2ghs~s;f!u~ss!ds, ~7!

whereghs(s;f), s5r /s, is the pair-correlation function o
the hard sphere fluid. The optimal approximation for the f
energy per particlef u ~the interaction potential dependence
explicitly indicated for clarity! is obtained by minimizing the
right-hand side of Eq.~7! with respect tos, which provides
at fixed density and temperature an effective hard sph
diameter. Thermodynamics is then derived in the usual w
by taking the appropriate derivatives. A straightforwa
modification of the variational procedure Eq.~7! @28# further
improves its accuracy for dense fluids@2#, and we use it for
the calculation of the ‘‘thermal pressure’’ necessary for
MET estimates.

It is worth noting that the effective hard sphere diame
approach is not necessarily tied to the use of the Ens
theory, and can be interpreted more generally as a tes
single-variable scaling for the transport properties of flu
modeled by realistic pair interactions. Similar ideas ha
been considered for the particular case of inverse power
potentials@29#. Perhaps even more importantly, this can a
be viewed in the larger context of trying to uncover univer
features of the transport properties of real fluids by mapp
them into those of a reference system, e.g., hard sphere fl
Using a so-called ‘‘entropy packing fraction’’ suggested
the variational method Eq.~7!, a connection between trans
port coefficients and thermodynamic properties, specific
excess entropy~with respect to the ideal gas! per particlese ,
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has been proposed more than 20 years ago@9#. Another ver-
sion of the excess entropy idea for the particular case
diffusion has been more recently suggested@3#, and we
would like to analyze it here for the case of dense argon

The relationship between the diffusion coefficient and e
cess entropy postulated in Ref.@3# is

D* 5
D

s2GE

5C exp~se /kB!, ~8!

where the hard sphere diameters and the Enskog collision
frequencyGE54s2g(s)rApkBT/m are assumed to be th
relevant length and time scale, respectively, andC is be-
lieved to be a universal constant. A certain definition fors
and the contact value of the pair-correlation functiong(s),
along with an approximation forse , have also been sug
gested for real systems@3#. Here we use the definition ofs
provided by Eq.~7! and the values forse andg(s) @which
we denote bygc(f) to make explicit the dependence onf]
obtained from the Carnahan-Starling equation of state@21#:

se

kB
52

4f23f2

~12f!2
, ~9a!

gc~f!5
22f

2~12f!3
. ~9b!

Using this scaling the argon simulation results at the th
temperatures studied are presented in Fig. 1 together with
diffusion coefficient of the hard sphere system@22#; the uni-
versal curve proposed in Ref.@3#, i.e., Eq.~8!, is also shown.

We find that single-variable scaling based on the effect
hard sphere diameter of Eq.~7! holds rather well, and the
agreement with the hard sphere fluid diffusion coefficien
also reasonable. However, Eq.~8! appears to be valid only in
a limited range of excess entropiesse , as already remarked

FIG. 1. Scaled diffusion coefficient of argon as a function
excess entropy@see text—Eq.~8!#. Symbols: simulation results
~circles—T5298 K, diamonds—T51000 K, triangles—T
53000 K). Solid line: hard sphere fluid diffusion coefficient fro
Ref. @22#. Dotted line: Eq.~8! with C50.09.
4-3
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SORIN BASTEA PHYSICAL REVIEW E68, 031204 ~2003!
in Refs.@30,31#. The discrepancy at lower~in absolute value!
se , i.e., smaller packing fractionsf, is severe and somewha
troublesome given that the Enskog theory, upon which
proposed relationship is loosely based, performs well p
cisely in that domain. To understand the problem with
scaling introduced in Eq.~8!, we note that the left-hand sid
of that equation can be written up to a multiplicative const
asD/DBgc(f)f2. Therefore, in the limit of a dilute system
f→0, this term will diverge as 1/f2, while the right-hand
side of Eq. ~8! will go to the constantC. This behavior,
which is observed in Fig. 1, should be expected for a
reasonable definition ofs andg(s) andse approximation.

In order to avoid this pathology, we could for examp
replaces as the preferred length scale withl}1/rs2, the
Boltzmann mean free path. The new relationship is then

D* 5
D

DBgc~f!
5exp~C0se /kB!, ~10!

where we introduced a different constantC0. The test of this
suggested dependence is shown in Fig. 2. The hard sp
results are very well represented by the new equation w
C050.80, while for the argon results a better fit isC0
50.83. It may be interesting to test the validity of Eq.~10!
for other systems as well, e.g., liquid metals@14,32#. We also
show for comparison the predictions of the effective dia
eter Enskog theory. The disagreement with the simula
results is similar with the one observed for the hard sph
fluid @22#, and it is even bigger for MET~not shown!.

The diffusion theory of Cohen and Turnbull@7# builds
upon the physical concept of ‘‘free volume’’v f available for
a molecule, originally introduced by van der Waals to a
count for the effect of short range repulsive forces betw
molecules. The diffusion coefficient is written as

D5ga~v* !vT exp~2gv* /v f !, ~11!

FIG. 2. Scaled diffusion coefficient of argon as a function
excess entropy@see text—Eq.~10!#. Symbols ~same as Fig. 1!:
simulation results. Solid line: hard sphere fluid diffusion coefficie
from Ref. @22#. Dotted line:~effective diameter! Enskog theory.
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whereg is a geometric factor,a(v* ) is roughly the diameter
of the neighbor-induced ‘‘cage’’ inhabited by a molecule,vT
is the thermal velocity, andv* is essentially proportiona
with the molecular volumev05ps3/6 and can be identified
with it with a suitable rescaling of the constantg. This
theory has been recently recast in a more transparent for
an Arrhenius theory of activation@8#. The transformation is
done by recognizing first that in the limit of large free vo
umes relative to the molecular volume,v f@v0, the Boltz-
mann result for the diffusion coefficient should be recover
Second, the free volumev f is expressed in terms of an e
fective pressurepr that includes only the repulsive~excluded
volume! contributions, in the spirit of the van der Waa
theory:prv f5kBT. The proposed relation forD is

D

DB
5exp~2zW/kBT!, ~12!

wherez is a constant andW5prv0 is interpreted as the work
necessary to create a void of volumev0 in the liquid, under
the effective pressurepr , to be occupied by the diffusing
molecules. The ambiguity in defining this pressure is solv
by recasting the usual pressure equation for a liquid int
generalized van der Waals form@8#. There remains the tas
of defining a suitable hard core diameters, which can be
avoided for the scaling factor by usingD0 instead ofDB , but
it is required forv0. Equation~12! has therefore been applie
only to the systems modeled by interactions that explic
include a hard core, e.g., hard sphere with an attrac
square well@8#. We note that in fact Eq.~12! is unambigu-
ously defined for a hard sphere fluid:

D

DB
5exp~2zW0 /kBT!, ~13!

where W0 /kBT5pv0 /kBT5f(11f1f22f3)/(12f)3

and we used the Carnahan-Starling equation for the press
This can then be easily applied to typical van der Waals–

f

t
FIG. 3. Scaled diffusion coefficient of argon as a function

void producing workW0 @see text—Eq.~13!#. Symbols~same as
Fig. 1!: simulation results. Solid line: Eq.~13! with z50.45.
4-4
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TRANSPORT PROPERTIES OF DENSE FLUID ARGON PHYSICAL REVIEW E68, 031204 ~2003!
potentials, e.g., that of Eq.~1!, by using the hard spher
effective diameter given by Eq.~7!. The scaled argon simu
lation results are shown in Fig. 3 as a function ofW0 /kBT.
The data is well fitted byz50.45; a better representatio
is obtained with an additional prefactor, i.e
A0 exp(2zW0 /kBT), for both argon and the hard sphere flu
albeit with differentz ’s. Nevertheless, as seen for example
Fig. 2, the mapping of the argon diffusion constant into t
of the hard sphere fluid is more accurate than the Ens
theory except in a very narrow domain of intermediate d
sities.

We now turn to the discussion of the collective transp
coefficients shear viscosityh and thermal conductivityl us-
ing the same effective diameter approach. The Boltzma
scaled simulation results for the argon viscosity,h/hB , are
shown in Fig. 4 as a function of the effective packing fra
tion f. Similarly with diffusion, single-variable scaling ap
pears to hold rather well and the behavior of the viscos
largely mirrors that of the hard sphere fluid~not shown!.
Given that the Enskog theory strongly underestimates
hard sphere values at high densities@5,12#, it is not surpris-
ing that both adaptations of the theory, effective diame
Enskog and modified Enskog~MET!, fail to capture the
steep rise ofh as the system moves closer to freezing. Ne
ertheless, there are significant differences between the
approaches. The modified Enskog theory appears to w
well at lower densities, as observed in Ref.@10#, and slightly
better than the effective diameter version. This however
verses quickly as the density increases, with the effec
diameter method emerging as a much better estimator
MET at high densities. Although it may be interesting
pinpoint the origin of this different behavior, which also o
curs for the thermal conductivity, this is difficult due to th
convoluted nature of MET. It suffices perhaps to remark t
a large part of the difference between the two procedure

FIG. 4. Scaled viscosity of argon as a function of effective pa
ing fraction~see text!. Symbols~same as Fig. 1!: simulation results.
Solid line: Einstein relation with ‘‘slip’’ boundary condition (c
52p—see text!. Dot-dashed line:~effective diameter! Enskog
theory. Dotted lines: modified Enskog theory~MET!—T5298,
1000, 3000 K~top to bottom!.
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high densities is due to a smallery @see Eqs.~4! and below#
in the MET approach, which is proportional with the Ensk
theory collision frequency. The rapid increase ofh at large
packings may be better reproduced by assuming that the
fusion constant is inversely proportional with the shear v
cosity, i.e., the Einstein relation,D5kBT/chs @12#. We find
that the ‘‘slip’’ boundary conditionc52p provides a reason
ably good match to theh dependence onf in the dense
region @33#, in agreement with Ref.@12#.

Among the transport properties of the hard sphere syst
the thermal conductivity is most accurately predicted by
Enskog results up to the liquid-solid transition@5,12#. It is
therefore important to assess if the success of the theory
also be transferred to fluids well described by van d
Waals–type potentials, e.g., argon. As shown in Fig. 5,
effective hard sphere diameter allows again a very go
single-variable representation of the thermal conductivity
all temperatures studied. Moreover, the use of this diam
in the Enskog relation is successful in modeling the simu
tion results over the entire range of densities simulated.
MET, on the other hand, yields increasing discrepancies
the density rises and it is therefore not appropriate at h
pressures.

Finally, it would be desirable to test the above metho
for the calculation of transport coefficients against real de
fluids experimental data. Unfortunately, these are somew
scarce. For example, only thermal transport measurem
have been performed up to GPa pressures@34,35#, and re-
cently extended to tens of GPa just for the case of oxy
@13#. We limit ourselves therefore to the available high pre
sure thermal conductivity data and consider here argon~Ar!,
neon~Ne!, nitrogen (N2) and oxygen (O2). The first two of
these are monoatomic fluids naturally modeled by isotro
potentials. The last ones are small diatomics, but a sphe
interaction approximation turns out to be very successfu
predicting the thermodynamics of these molecular system

- FIG. 5. Scaled thermal conductivity of argon as a function
effective packing fraction~see text!. Symbols ~same as Fig. 1!:
simulation results. Solid line:~effective diameter! Enskog theory.
Dotted lines: modified Enskog theory~MET!—T5298, 1000, 3000
K ~top to bottom!.
4-5
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SORIN BASTEA PHYSICAL REVIEW E68, 031204 ~2003!
a wide domain of temperatures and pressures@19,36,37#. All
are well described by Buckinghamexponential-6potentials
with a513.2; the other parameters are (eAr/kB5122 K,
r 0

Ar53.85 Å) @17#—also used in simulations, (eNe/kB

542 K, r 0
Ne53.18 Å) @38#, (eN2/kB5101.9 K, r 0

N2

54.09 Å) @19#, and (eO2/kB5125 K, r 0
O253.86 Å) @39#.

The experimental results that we use for comparison are
ones of Refs.@13,34,35# and also Ref.@40#. The calculation
of the effective diameters is done as before with the use
Eq. ~7! and results are shown in Fig. 6.

The success of single-variable scaling for both mo
atomic and small diatomic molecules through the use of
effective hard sphere diameter is remarkable. The resul
master curve is also in very good agreement with the Ens
prediction in a large domain of packing fractions, which a
pears to roughly coincide with the equilibrium hard sphe
fluid region that extends up tof.0.494. While a compari-
son between systems described by different types of inte
tions or at least Buckingham potentials with differenta ’s
would be a more stringent test of the existence of a unive
curve for the scaled thermal conductivity, the agreement w
the Enskog theory lends very good support to this idea
fluids that are well modeled by classical van der Waals–
potentials.

The disagreement at the largestf ’s is rather interesting,
particularly because the Enskog theory is known to sligh
underestimatethe thermal conductivity of the hard sphe
system in the dense regime@5,12#. The corresponding experi
mental data have been recently obtained for dense oxy
@13#. Since the oxygen molecule is, in fact, anisotropic t

FIG. 6. Scaled experimental thermal conductivity as a funct
of effective packing fraction: triangles down—argon atT5298 K
from Ref. @35#; crosses—neon atT5298 K from Ref. @35#;
squares—nitrogen atT5298 K from Ref.@34#; circles—oxygen at
T5298 K from Ref.@13# ~high pressures! and Ref.@40# ~low pres-
sures!; diamonds—oxygen atT5473 K from Ref. @13#; triangles
up—oxygen atT5573 K from Ref.@13#. Solid line: ~effective di-
ameter! Enskog theory.
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observed discrepancy, where the effective diameter Ens
prediction significantlyoverestimatesthe experimental val-
ues, could be reasonably attributed to a breakdown of
spherical potential approximation at high densities. The f
that most calculated effective packing fractions lie in t
metastable region of the hard sphere liquid, which is un
pected for an equilibrium fluid if it is fully modeled by va
der Waals-type interactions, also seems to support this
@41#. This breakdown however appears to be rather su
because the thermodynamics based on Eq.~7! and the Buck-
ingham exponential-6potential still reproduces very well
within approximately 2%, all oxygen densities measured
the experiments.

Molecular dynamics calculations of the transport prop
ties of hard ellipsoids, which should be a better approxim
tion for the O2 molecule at high densities, indicate that if th
system is dense even a small molecular anisotropydecreases
the thermal conductivity compared to the hard sphere sys
@42#. This can be understood intuitively as follows: for ve
dense systems the collisional contribution to thermal cond
tion is dominant@43#, but the energy transfer in collisions i
less ‘‘efficient’’ for hard anisotropic bodies than for isotrop
ones. This ‘‘efficiency’’ is even further reduced for molecul
such as O2 that also posses vibrational degrees of freedo
For example, the energy exchange between translations
vibrations can involve exceedingly long relaxation tim
compared to those typical for translations alone@44#. Such
effects severely limit the usefulness of the hard sphere
tem as a reference for the description of transport proper
of dense systems with multiple—translational, rotation
vibrational—degrees of freedom, even when that may still
appropriate for thermodynamics. This would also sugg
that in this case, in addition to thermodynamics, structu
properties may become increasingly important in determ
ing dynamical behavior at high densities. With respect to
Enskog approach, the assumption of a single relaxation t
appears already to be its major drawback for such syste
even when the anisotropy, for example, is partly accoun
for @42#.

The preceding analysis indicates that the thermal cond
tivity of nitrogen (N2), whose molecular size is comparab
to that of O2, will likely exhibit a similar behavior at high
pressures when described in terms of an effective diame
while even larger deviations should be expected for m
anisotropic molecules, e.g. CO2. Moreover, the above dis
cussion should also apply to the viscositymutatis mutandis
@42#. High pressure experimental data on the transport pr
erties of these or similar molecular systems, although d
cult to obtain@13#, would help in understanding the interpla
between thermodynamic and structural properties on
hand, and transport behavior on the other, for very de
fluids.

I would like to thank E. Abramson for kindly providing
the data published in Ref.@13#. This work was performed
under the auspices of the U.S. Department of Energy
University of California Lawrence Livermore Nationa
Laboratory under Contract No. W-7405-Eng-48.
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