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Transport properties of dense fluid argon
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We calculate using molecular dynamics simulations the transport properties of realistically modeled fluid
argon at pressures up t850 GPa and temperatures up to 3000 K. In this context, we provide a critique of
some newer theoretical predictions for the diffusion coefficients of liquids and a discussion of the Enskog
theory relevance under two different adaptations: modified Enskog theory and effective diameter Enskog
theory. We also analyze a number of experimental data for the thermal conductivity of monoatomic and small
diatomic dense fluids.
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Many real fluids are very well represented as ensembleperatures and it has been often modeled as a Lennard-Jones
of identical molecules interacting through pairwise sphericabystem15]. More accurate representations of its interactions
potentials and, except for more exotic versions of such interare also available, e.g., the Barker-Fisher-Watts potential
actions where molecular dynamics is still a very useful tooll16], but they are more complicated and have been tested
[1], the thermodynamics of these systems has been well u@nly at low pressures. A relatively simple pair interaction
derstood for a fairly long time in the context of various sta-that can account very well for the high density, high tempera-
tistical mechanics theorig®]. The transport properties, on ture thermodynamics of argofil7] is the Buckingham
the other hand, i.e., self-diffusion coefficient, viscosity, ther-exponential-Gotential:
mal conductivity, are less amenable to accurate theoretical
calculation and require computationally intense molecular
dynamics simulations, hence the continuing interest in their u(ry=e
study[3-5]. Through a natural althougid hocextension of
the dilute gas Boltzmann equation, Enskog transport theory
[6] provided the first prediction of the transport coefficientswith well depthe corresponding to distanag and « a nu-
of the hard sphere fluid and opened the way to the calculamerical constantA=6e“/(a«—6), B=a/(a—6), the gen-
tion of transport properties of real dense fluids. Other, moreral properties of which have been well studjé8]. In ad-
heuristic theories have been also proposed, relying on gerlition to argon, thexponential-Garametrization was shown
eral physical concepts such as“free volume,” “cagingd;8, to yield appropriate thermodynamics for other molecular flu-
and excess-entropy scalifg,9]. The predictive capabilities ids as well[19], e.g., N, O,, CO,, CH,, CO, etc., particu-
of all these methods are critically affected by both their in-larly in the dense, hot regimes corresponding, for example,
trinsic limitations and the additional interpretations requiredto shock waves, detonations, or planetary moddla@. The
when they are applied to real fluidi$0,11]. The molecular understanding of such dynamic processes requires a knowl-
dynamics calculation of the transport coefficients of the harcdedge of both the thermodynamic and transport properties of
sphere fluid modeJ12] has provided important insights on these fluids and their mixtures, and we study argon as a
the limitations of the Enskog theory in the high density re-representative example. Other molecular fluids and the limi-
gime, as well as the connection between microscopics anttions of exponential-6modeling for small diatomics are
hydrodynamics. Experimental results on the transport propalso discussed in connection with the available high pressure
erties of liquids at high pressures, e.g., tens of GPa, are onlpermal transport experimental results.
now becoming available for both molecular fluigk3] and We sete/kg=122 K, r,=3.85 A, a=13.2 correspond-
liquid metals[14]. Here we present molecular dynamics cal-ing to argon17], and perform microcanonical molecular dy-
culations of the transport properties of realistically modelednamics simulations with 500 particléand some with 864
argon at pressures up t650 GPa and temperatures up to particleg in a cubeL XL X L with periodic boundary condi-
3000 K. In this context we provide a critique of some newertions. The temperatures studied are 298,1000,3000 K and
theoretical predictions for the diffusion coefficients of liquids densities from slightly above the critical densityp.(
and a discussion of the Enskog theory relevance under twe-0.54 g/cni) to just below freezing, i.e., approximately
different adaptations: modified Enskog the®ET) and ef-  1.95 g/cnt at 300 K, 2.75 g/crhat 1000 K, and 4.05 g/cin
fective diameter Enskog theory. We also analyze a number ait 3000 K (for comparison the triple point density is
experimental data for the thermal conductivity of mono-=1.14 g/cni). The corresponding pressures are up to about
atomic and small diatomic dense fluids. 1.3 GPa, 9.3 GPa, and 52 GPa, respectively. The transport

Argon is generally believed to behave as a quintessentiadoefficients, D—(self-)diffusion coefficient, p—shear vis-
classical fluid in a rather wide range of densities and temeosity, and\—thermal conductivity, are calculated using the

Green-Kubo formalism{21]. This entails determining the
long time behavior of time integrals of autocorrelation func-
*Electronic address: bastea2@lInl.gov tions of appropriate microscopic currents:
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D=IlimD(t), the Enskog theory6] is perhaps the best known; its predic-
t—oo tions for the transport coefficients of the hard sphere system
are
t
D(t)= JO<Uix(0)Uix(7)>d71 E: pbps (43)
DB Yhs
n=lim 5(t),
t—o yis 1 4
— =pb,d —+=+0.7614/,|, (4b)
1 ¢ 7B Yhs O
n(t)= Wﬂfo<axy(0)0xy(7')>d7- (2a) Ae 1 6
)\_:ths _+§+0757th y (4C)
A= limA(t), 2b) 5 Yns

t—oo

where b=270°%/3, yh,s=p/pkgT—1, and the pressurp

can be accurately calculated using the Carnahan-Starling
equation [21]: p/pkgT=(1+ ¢+ ¢>— ¢°)/(1— ). The
right-hand sides of the above equations depend only on the
hard sphere packing fractiop=mwpo>/6, while the left-
whereo andJ® are the microscopic stress tensor and energjtand sides contain the Boltzmann transport coefficiens
current, respectively, easily calculated in the course of mo#s, and\g, obtained in the limit of low densitiel6]:

lecular dynamics simulations:

1
VkgT?

t
A= JO<J§(0)J§(7)>dT, (20)

3 ( BT)l/Z
Dr=1.019——| — , (59
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3= vl gmei(n+ 3 3, Vylry(n)] 7e=101 1602( =) 5D
1 3\ 112
123 S xi(n-x(Dvi(n)-Fy(r). (3b) No=1.025 > [KeT) (50
29 = B 642\ ™M

The two main sources of errors affecting the molecular,, p=N/V the number densityr the hard sphere diam-

dynamics calculation of transport coefficients are the SysteMiar andm the molecular mass.

sizeL and the time limitt;r, in the calculation of the above 1,5 5npiication of these results to real dense fluids re-
time integrals. Finite size effects on the calculation of trans- uires suitable interpretation, and the so-called MIET] has
port properties have been extensiyely an.alyzed and indiga een widely used. The MET ingredients as applied to real
that systems of_5(_)O_ particles typlcally yield _results W|th|nﬂuids are(i) the replacement ofy,. with the “thermal pres-
=2-3 % of the !nf|n|te ;ystgm size extrapolatuiﬁszz,za, sure” of the fluid in questiony=(dp/dT),/pkg—1, which
The effect of an integration time limtt;,, is more subtle and is then required to equal that of the ﬁard sphere flyid,

it has to do with the slow, algebraic decay of the Green-Kubo

) ; - =Vns, and therefore leads by invoking the low density limit
!ntegrangs[%)B]h For uslual, three-dlmer;sllo7agllzsyésie2m§ (tsheseto (i) the identification ofb,,s with the second virial coeffi-
integrands behave at long times @gt) «k,/t"* 24,25 cient of the real fluid and its temperature derivative
stands forD, », and\. The factorsk s have been calculated d[Th(T)]/dT, and(iii) the replacement g, 7s, and\g

using the mode—cqupllng formalism and depenq on the SYSith the real dilute gas transport coefficients of the fluid
tem thermodynamics and on the transport coefficients themEOnSideredDO 70, and\o. The comparison of the MET

selves[24,29. We sett;,=0.99;, wheret is the time predictions with experimental results for a variety of fluids
needed folrlza sqund wave to traverse the systeml/c, ©  up to densities about twice the critical density is rather fa-
=(dp/dp)s "~ (adiabatic sound spepdand add the long time  \5rapje[10]. However, a number of MET inconsistencies
contributions to the final values of the transport coefficientsygve peen pointed o{it1], and it is not clear if this approach
We find that these corrections can be as high as 12% for thgoy|q continue to be useful as the density is increased. For
diffusion coefficient, in agreement with R¢R2], upto 3%  oyr MET estimates, we recall that the transport coefficients
for the viscosity, and smaller than 1% for the thermal con-yf 5 dgjlute gas of molecules interacting through some general

ductivity. For each thermodynamic point we run the SimU|a'potentiaI such as that defined in E@) can be written in the
tions for (5—25) 10° time steps, which corresponds, de- first Enskog approximation d§]

pending on density and temperature, to 3000-15000

samples in the averaging of the autocorrelation functions. 3 (kgT|Y2 1
As mentioned, we would like to compare the simulation Do=—— —) PR ym— (6a)
results with the available theoretical estimates. Among them 8pro\ ™M/ QI (T*)
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0~ 16[‘3 w 9(2,2)* (T*) ’ (6 )
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where Q(MW*(T*) 'm,n=1,2, are dimensionless collision
integrals[26] depending on the interaction potential and re-
duced temperaturg* =kgT/e, which we evaluate numeri-
cally.

A different interpretation of the Enskog theory for real
fluids has been advocated in REE1], based on the use of a 107 L s s s
state-dependent hard sphere diameter directly in the Enskog 0 1 2 3 4 5
relations Eqgs(4). The success of statistical mechanics theo- ‘Se/ke
ries in predicting the thermodynamics of simple fluidg] is
largely due to the idea of equivalent hard sphere diameters, FIG. 1. Scaled diffusion coefficient of argon as a function of
which embody the dominant effect of short range repulsion§Xcess entropysee text—Eq.(8)]. Symbols: simulation results
on the structure and dynamics of liquids, particularly at high(circles—T=298 K, diamonds—=+=1000 K,  triangles—+
densities. The appeal of using the same diameter to calculafe3000 K). Solid !lne: hard sphere fluid diffusion coefficient from
both the thermodynamic and transport properties of fluidsie" [22)- Dotted line: Eq/(8) with C=0.09.

lies therefore both in its simplicity and physical consistency.
In the present work, we adopt the definition of effective di—h.as been proposed more than 20 years[§goAnother ver-

ameter provided by the Mansoori-Canfield variational " Qf the excess entropy idea for the particular case of
method[27], which uses the fact that the first-order pertur-d'ﬁus'OF1 has been more recently sugges{é and we
bation theory approximation for the free energy of a systerﬁNOUId like to ana_lyze it here for the case of de_n_se argon.
interacting through potential(r) is an upper bound for the The relationship betwgen the Q|ﬁu5|on coefficient and ex-
free energy of the system. Using the hard sphere fluid as gess entropy postulated in Re8] is

reference, this translates into

D*= oT =C exp(ss/kg), (8)

1‘u(p,T)$1‘hs(¢,T)+12¢fl S°Ons(S;p)u(as)ds, (7) 7E
where the hard sphere diameterand the Enskog collision
whereg«(s;#), s=r/o, is the pair-correlation function of frequencyl'e=40?g(a)p\/mkgT/m are assumed to be the
the hard sphere fluid. The optimal approximation for the fregrelevant length and time scale, respectively, @hds be-
energy per particlé, (the interaction potential dependence is lieved to be a universal constant. A certain definition gor
explicitly indicated for clarity is obtained by minimizing the and the contact value of the pair-correlation functiye),
right-hand side of Eq(7) with respect tar, which provides along with an approximation fos,, have also been sug-
at fixed density and temperature an effective hard sphergested for real systenj8]. Here we use the definition af
diameter. Thermodynamics is then derived in the usual wayrovided by Eq.7) and the values fos, andg(o) [which
by taking the appropriate derivatives. A straightforwardwe denote byg.(¢) to make explicit the dependence @i
modification of the variational procedure E@) [28] further ~ obtained from the Carnahan-Starling equation of dt21g:
improves its accuracy for dense fluig, and we use it for
the calculation of the “thermal pressure” necessary for the Se 4¢p—3¢?
MET estimates. k_B =" W
It is worth noting that the effective hard sphere diameter
approach is not necessarily tied to the use of the Enskog
theory, and can be interpreted more generally as a test of _ 2—¢
- : . . . de( @) : (9b)
single-variable scaling for the transport properties of fluids 2(1—¢)°
modeled by realistic pair interactions. Similar ideas have
been considered for the particular case of inverse power-lawsing this scaling the argon simulation results at the three
potentialg[29]. Perhaps even more importantly, this can alsotemperatures studied are presented in Fig. 1 together with the
be viewed in the larger context of trying to uncover universaldiffusion coefficient of the hard sphere systE22]; the uni-
features of the transport properties of real fluids by mappingersal curve proposed in R¢8B], i.e., Eq.(8), is also shown.
them into those of a reference system, e.g., hard sphere fluid. We find that single-variable scaling based on the effective
Using a so-called “entropy packing fraction” suggested byhard sphere diameter of EG7) holds rather well, and the
the variational method Ed7), a connection between trans- agreement with the hard sphere fluid diffusion coefficient is
port coefficients and thermodynamic properties, specificallalso reasonable. However, Eg) appears to be valid only in
excess entropywith respect to the ideal gaper particles,, a limited range of excess entropigs, as already remarked

(9a)
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FIG. 3. Scaled diffusion coefficient of argon as a function of

void producing workW, [see text—EQq(13)]. Symbols(same as
Fig. 1): simulation results. Solid line: Eq13) with {=0.45.

FIG. 2. Scaled diffusion coefficient of argon as a function of
excess entropysee text—EQq.(10)]. Symbols(same as Fig. )1
simulation results. Solid line: hard sphere fluid diffusion coefficient
from Ref.[22]. Dotted line:(effective diameterEnskog theory.

in Refs.[30,31. The discrepancy at lowein absolute value  whereg is a geometric factog(v*) is roughly the diameter
Se, i.€., smaller packing fractiong, is severe and somewhat of the neighbor-induced “cage” inhabited by a moleculg,
troublesome given that the Enskog theory, upon which thés the thermal velocity, and* is essentially proportional
proposed relationship is loosely based, performs well prewith the molecular volume ,= 7¢%/6 and can be identified
cisely in that domain. To understand the problem with thewith it with a suitable rescaling of the constagt This
scaling introduced in Eq8), we note that the left-hand side theory has been recently recast in a more transparent form as
of that equation can be written up to a multiplicative constantan Arrhenius theory of activatiof8]. The transformation is
asD/Dggc(¢) $°. Therefore, in the limit of a dilute system, done by recognizing first that in the limit of large free vol-
$—0, this term will diverge as #?, while the right-hand umes relative to the molecular volume;>v,, the Boltz-
side of Eq.(8) will go to the constantC. This behavior, mann result for the diffusion coefficient should be recovered.
which is observed in Fig. 1, should be expected for anySecond, the free volume; is expressed in terms of an ef-
reasonable definition of andg(o) ands, approximation.  fective pressurg, that includes only the repulsivexcluded

In order to avoid this pathology, we could for example yvolume contributions, in the spirit of the van der Waals

replaceo as the preferred length scale withr 1/p0'2, the  theory:p,vi=kgT. The proposed relation fdb is
Boltzmann mean free path. The new relationship is then

D
D-= exp(— {W/kgT), (12
B
D* =————=exp(CyS./Kg), 10
Dggc(¢) M(Cose/ke) (19 where/ is a constant ant=p,v,, is interpreted as the work

necessary to create a void of volumgin the liquid, under

where we introduced a different constaly. The test of this  the effective pressurg,, to be occupied by the diffusing
suggested dependence is shown in Fig. 2. The hard Spherr‘réolecules_. The ambiguity in defining th_|5 pressure is s_olved
results are very well represented by the new equation wittyy recasting the usual pressure equation for a liquid into a
Co,=0.80, while for the argon results a better fit & generall'zed van'der Waals fori8]. There remains the task
=0.83. It may be interesting to test the validity of Eg0) ~ Of defining a suitable hard core diametey which can be
for other systems as well, e.g., liquid metflg,37. We also ~ @voided for the scaling factor by usiiiy instead oDg, but
show for comparison the predictions of the effective diam-it iS réquired for,. Equation(12) has therefore been applied
eter Enskog theory. The disagreement with the simulatioPnly t0 the systems modeled by interactions that explicitly
results is similar with the one observed for the hard spherdiclude a hard core, e.g., hard sphere with an attractive
fluid [22], and it is even bigger for METnot shown. square w.eII[S]. We note that in facF Eq(12) is unambigu-
The diffusion theory of Cohen and Turnbylf] builds ~ ©usly defined for a hard sphere fluid:
upon the physical concept of “free volume’; available for D
a molecule, originally introduced by van der Waals to ac- — =exp(— {Wy/kgT), (13
count for the effect of short range repulsive forces between Dg

molecules. The diffusion coefficient is written as where Wi /keT=po/keT=b(1+ ¢+ ¢?— ¢3)/(1— )°
and we used the Carnahan-Starling equation for the pressure.
D=ga(v*)vtexp —yv*/vy), (1)  This can then be easily applied to typical van der Waals—like
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FIG. 4. Scaled viscosity of argon as a function of effective pack- _FIG- 5. Scaled thermal conductivity of argon as a function of
ing fraction(see text Symbols(same as Fig.)1 simulation results. ~ €ffective packing fractionsee text Symbols(same as Fig. 1
Solid line: Einstein relation with “slip” boundary conditionc( S|mulat|9n results_._Solld lineteffective diameter Enskog theory.
—27—see text Dot-dashed line:(effective diameter Enskog Dotted lines: modified Enskog theofWMET)—T =298, 1000, 3000
theory. Dotted lines: modified Enskog theofMET)—T=298, K (top to bottom.

1000, 3000 K(top to bottom.

high densities is due to a smallgfsee Eqs(4) and below

potentials, e.g., that of Eq1), by using the hard sphere inthe MET approach, which is proportional with the Enskog
effective diameter given by E@7). The scaled argon simu- theory collision frequency. The rapid increasespft large
lation results are shown in Fig. 3 as a functionVé§ /kgT. packings may be better reproduced by assuming that the dif-
The data is well fitted by=0.45; a better representation fusion constant is inversely proportional with the shear vis-
is obtained with an additional prefactor, i.e., cosity, i.e., the Einstein relatiol=kgT/cno [12]. We find
Ay exp(— Wy /KgT), for both argon and the hard sphere fluid, that the “slip” boundary conditiort =2 provides a reason-
albeit with different/’s. Nevertheless, as seen for example inably good match to the; dependence owp in the dense
Fig. 2, the mapping of the argon diffusion constant into thatregion[33], in agreement with Ref12].
of the hard sphere fluid is more accurate than the Enskog Among the transport properties of the hard sphere system,
theory except in a very narrow domain of intermediate denthe thermal conductivity is most accurately predicted by the
sities. Enskog results up to the liquid-solid transitis,12]. It is

We now turn to the discussion of the collective transporttherefore important to assess if the success of the theory can
coefficients shear viscosity and thermal conductivitk us-  also be transferred to fluids well described by van der
ing the same effective diameter approach. The Boltzmanrwaals—type potentials, e.g., argon. As shown in Fig. 5, the
scaled simulation results for the argon viscosiyzg, are  effective hard sphere diameter allows again a very good
shown in Fig. 4 as a function of the effective packing frac-single-variable representation of the thermal conductivity for
tion ¢. Similarly with diffusion, single-variable scaling ap- all temperatures studied. Moreover, the use of this diameter
pears to hold rather well and the behavior of the viscosityin the Enskog relation is successful in modeling the simula-
largely mirrors that of the hard sphere fluidot shown. tion results over the entire range of densities simulated. The
Given that the Enskog theory strongly underestimates th&® ET, on the other hand, yields increasing discrepancies as
hard sphere values at high densitiésl2], it is not surpris- the density rises and it is therefore not appropriate at high
ing that both adaptations of the theory, effective diametepressures.
Enskog and modified Ensko@VIET), fail to capture the Finally, it would be desirable to test the above methods
steep rise ofy as the system moves closer to freezing. Nev-for the calculation of transport coefficients against real dense
ertheless, there are significant differences between the twituids experimental data. Unfortunately, these are somewhat
approaches. The modified Enskog theory appears to workcarce. For example, only thermal transport measurements
well at lower densities, as observed in Réf0], and slightly  have been performed up to GPa pressiiBzs35, and re-
better than the effective diameter version. This however reeently extended to tens of GPa just for the case of oxygen
verses quickly as the density increases, with the effectivgl3]. We limit ourselves therefore to the available high pres-
diameter method emerging as a much better estimator thasure thermal conductivity data and consider here afdoj
MET at high densities. Although it may be interesting to neon(Ne), nitrogen (N) and oxygen (). The first two of
pinpoint the origin of this different behavior, which also oc- these are monoatomic fluids naturally modeled by isotropic
curs for the thermal conductivity, this is difficult due to the potentials. The last ones are small diatomics, but a spherical
convoluted nature of MET. It suffices perhaps to remark thatnteraction approximation turns out to be very successful in
a large part of the difference between the two procedures airedicting the thermodynamics of these molecular systems in
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30

— observed discrepancy, where the effective diameter Enskog
prediction significantlyoverestimateshe experimental val-
ues, could be reasonably attributed to a breakdown of the
spherical potential approximation at high densities. The fact
that most calculated effective packing fractions lie in the

20 i metastable region of the hard sphere liquid, which is unex-
& pected for an equilibrium fluid if it is fully modeled by van
= der Waals-type interactions, also seems to support this idea
[41]. This breakdown however appears to be rather subtle
10 i because the thermodynamics based on(Bgand the Buck-

ingham exponential-6potential still reproduces very well,
within approximately 2%, all oxygen densities measured in
the experiments.

Molecular dynamics calculations of the transport proper-

0 ! ties of hard ellipsoids, which should be a better approxima-
0 0.2 0-34 0.6 tion for the G molecule at high densities, indicate that if the
d=mpc 16 system is dense even a small molecular anisotdgnyeases

the thermal conductivity compared to the hard sphere system
FIG. 6. Scaled experimental thermal conductivity as a function[42]. This can be understood intuitively as follows: for very

of effective packing fraction: triangles down—argonTat 298 K dense systems the collisional contribution to thermal conduc-
from Ref. [35]; crosses—neon af =298 K from Ref. [35];  tion is dominan{43], but the energy transfer in collisions is
squares—nitrogen &t=298 K from Ref.[34]; circles—oxygen at  |ess “efficient” for hard anisotropic bodies than for isotropic
T=298 K from Ref.[13] (high pressurgsand Ref.[40] (low pres-  gnes. This “efficiency” is even further reduced for molecules
sureg; diamonds—oxygen af =473 K from Ref.[13]; triangles  gch as @ that also posses vibrational degrees of freedom.
up—oxygen aff =573 K from Ref.[13]. Solid line: (effective di-  £qr example, the energy exchange between translations and
ametey Enskog theory. vibrations can involve exceedingly long relaxation times

compared to those typical for translations aldAd]. Such
a wide domain of temperatures and press{ii€s36,37. All effects severely limit the usefulness of the hard sphere sys-
are well described by Buckinghaexponential-6potentials  tem as a reference for the description of transport properties
with «=13.2; the other parameters are”(kg=122 K, of dense systems with multiple—translational, rotational,
réf:3_85 A) [17)—also used in simulations, e{'¥kg vibrational—degrees of freedom, even when that may still be
—42K, re=318A) [38], (eM/kg=101.9K, rglz ?r]p;)trppr;ste for th_ermgg){_r]amtlcst.hTms (\j/vould.also tsugtgeslt
_ - 0, at in this case, in addition to thermodynamics, structura
=4.09 A) _[19], and (%2/kg=125 K, ry2=3.86 /-\.) [39]. properties may become increasingly important in determin-
The experimental results that we use for comparison are thﬁg dynamical behavior at high densities. With respect to the
ones of Refs[13,34,33 and also Ref[40]. The calculation  ngog approach, the assumption of a single relaxation time

of the effective diameters is done as before with the use Oéppears already to be its major drawback for such systems,

Eq. (7) and results are shown in Fig. 6. even when the anisotropy, for example, is partly accounted
The success of single-variable scaling for both monosz,, [42].

atomic and small diatomic molecules through the use of the 14 preceding analysis indicates that the thermal conduc-

effective hard. spherg diameter is remarkable._The resultingvity of nitrogen (N,), whose molecular size is comparable
master curve is also in very good agreement with the Enskog, w4t of o, " will likely exhibit a similar behavior at high
prediction in a large domain of packing fractions, which ap-p g\ res when described in terms of an effective diameter,

pears to roughly coincide with the equilibrium hard sphereypije even larger deviations should be expected for more
fluid region that extends up t¢=0.494. While a compari-  5nigatropic molecules, e.g. GOMoreover, the above dis-

son between systems described by different types of interag;,ssion should also apply to the viscosiyitatis mutandis

tions or at least Buckingham potentials with differef 451 High pressure experimental data on the transport prop-
would be a more stringent test of the existence of a universglyies of these or similar molecular systems, although diffi-
curve for the scaled thermal conductivity, the agree_ment Withy it to obtain[13], would help in understanding the interplay

the Enskog theory lends very good support to this idea fopanyeen thermodynamic and structural properties on one

fluids that are well modeled by classical van der Waals—likg,5nq and transport behavior on the other, for very dense
potentials. fluids. |

The disagreement at the largess is rather interesting,
particularly because the Enskog theory is known to slightly | would like to thank E. Abramson for kindly providing
underestimatehe thermal conductivity of the hard sphere the data published in Ref13]. This work was performed
system in the dense regirf® 12]. The corresponding experi- under the auspices of the U.S. Department of Energy by
mental data have been recently obtained for dense oxygdoniversity of California Lawrence Livermore National
[13]. Since the oxygen molecule is, in fact, anisotropic theLaboratory under Contract No. W-7405-Eng-48.
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