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The problem of the nonlinear dielectric response due to the application of a strong electric field is recon-
sidered in the context of fractional kinetic equations. To accomplish that, we start from a fractional noninertial
Fokker-Planck equation and restrict ourselves to the case of anomalous subdiffusive processes characterized by
the critical exponentr ranging from 0 to 1, the limit of normal diffusion. In particular, we evaluate the first-
and third-order nonlinear harmonic components of the electric polarization in the case of either a pure ac field
or a strong dc bias field superimposed on a weak ac field. The stationary regime is therefore calculated from an
infinite set of differential recurrence relations by using a perturbation method. The results so obtained are
illustrated by three-dimensional dispersion and absorption plots in order to show the influenceadé-Cole
diagrams are also presented, allowing one to see that the arcs become more and more flatien@dasl
corresponding to a broadening of the absorption peaks as effectively observed in complex liquids. The theo-
retical model is supported by comparison with experimental data of the third-order nonlinear dielectric per-
mittivity of a ferroelectric liquid crystal.
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I. INTRODUCTION are recovered. As soon as(or B8) becomes different from
unity, anomalous diffusion takes place, which is what effec-
In the area of physics dealing with complex fluids like tively occurs in disordered media. In order to account for the
liquid crystals, glass-forming liquids, polymeric systems, todielectric relaxation of such systems, it is possible to use a
quote but a few, it is experimentally observed that the timeractional Fokker-Planck equation, based on the continuous-
evolution of the dielectric relaxation processes can no longefime random walk, as shown recently by many auttafs-
be described in the form of an exponential function as in the_|_3] Moreover, solution of the fractional equations may be
Debye model, but rather follows the Kohlrausch-Williams- gccomplished in the same manner as that well developed for
Watt law corresponding to_ a stretched exponen;ial functionpe ysual partial differential equatiofs2).
[1-6]. As a consequence, in the frequency domain, when the | hig paper, we shall restrict ourselves to the case where
systems are acted on by ac electric fields, the absorptiofq fractal exponent ranges from 0 to 1, which corresponds
spectra are charact_erized by br(_)adened relaxation pﬁ_ébks to the subdiffusive regime characterizéd by a much slower
In View of reprodu_cmg such typical patterns, thr_ee Ollfrerentdecrease of the fractional relaxation function for long times
empirical expressions are generally used for fitting the cor- an that observed with the exponentisliperslow process

responding experimental data. Expressed in normalize . i
P 9 b P EE;4]. An attempt to give a demonstration of the Cole-Cole

forms, and considering, for instance, the responses provid . . .
with the complex electric susceptibilitiegw), » being the formula was recently derived by Novikov and Privalky),

angular frequency of the applied ac electric field, they are thd/n0 used a phenomenological relaxation function to describe
Cole-Cole equatiof8] the electric polarization. The same result was also obtained

by Coffey et al. [15] from the noninertial Fokker-Planck
equation. Hence, we shall try to extend the usual théaoy-

x(w)= 1+ (07e0) ™’ O<a<l, (1) mal diffusion of the nonlinear dielectric response to this
context of fractional dynamics. To accomplish this, we con-
the Davidson-Cole equatidi®] sider a dilute solution consisting of an assembly of noninter-

acting, rigid, polar, and symmetric-top molecules. With such
assumptions, we can consider the rotational motion of a

x(w)= (1+iwmpe)P’ 0<p=1L, 2 single molecule having a permanent dipole momeninder
the application of an external electric fieE(t). In what
and the combined Havriliak-Negami equatidt0] follows, we shall seek results obtained for two different elec-
tric fields, namely, either a pure alternating fiekl(t)
B 1 =E, cost), or a strong dc constant bias field on which is
MO T Gonp “P=1 ®  superimposed a weak ac field in the same directi(t)

=Eq+E; cost) with E;/Ey<1, and we shall calculate for
where 7¢¢, mpc, and ryy are the characteristic relaxation the stationary procegse., when the system has removed all
times, ande,B are the stretching exponents. Fer=3=1, the transient effects so that we consider its behavior a long
the well-known formulas corresponding to normal diffusiontime after the electric field has been switched tme har-
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monic components of the electric susceptibility valid up to .
the third order in the electric field strength. G (Pa(W)(1)=(2Dr)" oDy a[ —[n(n+1)/2](Py(u))(1)
n(n+1
Il. THEORY +(7v0t y1C0801) ﬁ

For one molecule whose symmetry axis makes the angle

¥ with the electric field, the orientational probability distri-
bution functionW(3,t) in the framework of fractional dy- XKP”1(u)>(t)_<P”+1(u)>(t)]]' (10
namics obeys the following partial fractional differential
equation written in configuration space only: where the angular brackets stand for ensemble averages such
that
IW( 1) " l-a a | . IW(,1) 1
ot =(2DRg)* oD >sind 39| <—aﬁ <Pn(U)>(t):f ) P,(uW)W(u,t)du
W(3,t) aV(,1) 4 .
kT iy | “@ =f P,(cos)W(9,t)sinddd, (11)
0

whereV(¥) is the orientational potential energy given by gng

V(9)=—uE(t)cosd, (5) _HEo _HEy

Yo KT ' Y1 kT (12)
D is the rotational diffusion constant equal tor)2?, =
being the Debye relaxation time, aeﬁ)tl’“ is the Riemann-

Liouville operator defined by16]

are two dimensionless parameters giving the importance of
the orientational potential energy due to the electric field
with respect to the thermal energl is the Boltzmann con-
stant andT is the absolute temperatureNow, considering
Dl—a:i D@ 6) again the Riemann-Liouville operat@ractional derivative
o=t gt ot and using the properties

with (oDF ™) " Xalat)=(alat) XDy *)~Y(alat) =D 15

0D;“W(ﬁ,t)=%fot(t—t’)—<1—W>W(19,t')dt’. 7 2

(D)t D} “=1 (identity operator, (14)

We note that Eq(4) is valid if inertial effects are completely gq. (10) becomes

ignored and reduces to the well-known Smoluchowski equa-

tion if @«=1. From Eq.(7), which has the form of a convo-

lution product, one notes the presence of a memory kernel oD{(Pn(U))(t)=(2Dg)*| —[Nn(n+1)/2](Pn(u))(t)
indicating the non-Markovian nature of the subdiffusive pro-

cess. It is also important to note that the Laplace transform of n(n+1)
Eq. (7) is simply given by[16,17] + (7ot v, COS0L) 202n+1)

LLoDy “W(3,1)]=p~ “W(9,p), ® X (P 1 (W) —(Ppy 2 (WD)
where (15

Y Since we are solely interested in the determination of the
W(8.p) = LIW( 9t :f e~ PYW( 9, t)dt. 9 §t§1_t|onary ac response, which is obV|ou§Iy|ndepenQent of the
(9.p)=LIW(D.)] 0 (9.1 © initial conditions, we can seek the solution of Ef5) in the

form [18-2(Q
Since the Riemann-Liouville operator acts only on the time +oo
variable and not on the anguléspace variable, we can use fF D =(P(U))(1)= ENo)elket 16
classical methods for solving E¢4). By settingu= cos, n(0=(Pa(W)(®) k;—m (@) ' (16

multiplying both sides of Eq4) by P,(u), thenth Legendre
polynomial, and integrating from-1 to +1 over the variable where the Fourier amplitudeB;(w) satisfy the following
u, we arrive at condition (the asterisk stands for the complex conjugate
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F" (0)=[Fl(o)]*, (17) or in condensed form

because the expectation values of the Legendre polynomiallg,

n _ n—1 _pn+1l
f,, are real functions of the time variakie K(@)Xen(@) =27 Fi (@) = Fy" H(w)]

The physical quantity that is interesting from an experi-  _ Y FR- Y (@) +Fl Hw) - Fl Y (w) - FiT X w)]=0,
mental point of view and characteristic of dielectric relax-
ation is the electric polarization defined by (21)
P(t)=Nu(P1(u))(t)=Npufy(t), (18)  where

where N represents the number of molecules per unit vol-
ume. It is this quantity that we shall now evaluate for both
types of electric field we mentioned at the end of the Intro-
duction.

Xin(@)=2(2n+1) (22)

1 iwk\“
T hint1) | 2D4

If we restrict ourselves to the third order in the electric field
Ill. DIELECTRIC RESPONSE IN THE CASE OF strength, the time-independent terﬁ‘é(w) will contain
SUPERIMPOSED ELECTRIC FIELDS guantities proportional to, yg, and yoyi only. By using a
In the situation where a strong dc bias field is superimJerturbation procedure on the set of differential recurrence
posed at the same time on a weak ac electric field, the solu€lations Eq(21), we obtain fork=0, n=1
tion for f1(t) can be presented in the form

2
+ o0 1 _ 70( 70)
. Folw)=—>511-—
fit)=F5(w)+2> ReFi(w)e*]. (19 R
k=1
_ Lo _ _ _ Yo¥i_ [ 1 2 1
The first termFg(w) in the right-hand side of Eq19) is a -~ —3 Reg + t3 ,
. . X_11 X-1X-12 OX_12
time-independent but frequency-dependent term due to the
presence of the dc field,. In order to calculate the Fourier (23
coefficients of Eq.(19), it suffices to substitute the expres-
sion for f,(t) of Eg. (16) into Eg. (15), which yields where the notation “Re” stands for the “real part of,” and

settingw’ = w/(2Dg) as reduced variable

(iwk)“ n(n+1) en
2Dg 2 k(@) X_11(0)=6[1+(—iw")"],
nin+1) Nl nn+1)
=Yoanr Lk (@ Fic (@It vigmy X_1 A0 )=101+(—iw')*3]. (24

n-1 n—1, \_ ntl, N ntl
X[Fi-1(@) P (o) =Fici(o) =Fai(o)], After some calculation, it is found that the explicit expres-

(200  sion forFj(w') is

PN (T Y3\ Y0¥ 2T+ (2312w 2%+ 4w’ *(12+ »'2*)coq mal2) + 9w ' 2% cof(wal2) + (9/2) »'2* cog wa)
ol@)=7311"15] ~ 790 [1+20 “cod mal2)+ »' 2%][9+ 6w’ @ cog mal2) + ' 2%] '
(25
|
For «=1, this equation yields the result already obtained in L 2y _, Y1 5
[21,22. F_l(w,):_X,llF_l(w,)—}_X,ll[l_FO(w,)]
We can proceed in the same manner as that used above for ‘ '
determining the first-harmonic component of the electric po- 2y 2y YoV1 ) V1 (1 yé)
Iarlzat.|0n.. By again keeping the Ehlrd-order terms. only, this X 11\ X 11X 12 3X_14) X1 15
quantity is proportional tay; and ygy1, and so provides the 26
nonlinear response in the ac electric field. Written in complex (26
form, one has fok=—1,n=1 In Eq. (26), we recognize the linear contribution given by
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(x_lyl)*l. Hence, by substituting the expressions given by
Eqg. (24) in Eq. (26), we have

1 "_ Y1
ol = g (=107
Yayr 1+[1+(—iw")[2+(~iw’)*/3] :
920 [1+(_iwl)a]2[1+(_iw/)a/3] ’ e
(27)
The second term in Eq27) is characteristic of the Langevin
saturation with a negative contribution. We can therefore as

in normal diffusion define a complex nonlinear dielectric in- 4 log,(’)
crement such that

FIG. 1. Three-dimensiondBD) plot of the steady-state compo-

A a 2F£1(w’) 1 nentX, as a function of the reduced angular frequeacyand the
€ 0 )= - PNAY: i .
nL( V1 31+ (—iw)?] fractional parametew

Y 1[4 (—ie)][2+(—iw')/3] A  vf3tet t)® tHE

T 45 [1+(—ie )P+ (—iw)3] PN =" 2512 7= Bae| 7|7 |® 7 Fea

(28) t)« 7ta71 t\@
|\ 7] |77 7= Baq ~| 7

where the subscript “NL” stands for nonlinear, and the factor T T T
of 2 beforeF! (') arises from the definition given in Eq. 3ta-1 the
(17). For =1, Eq. (298 coincides exactly with the results 1 Epol —3 ;) ] (33

previously obtained by Coffey and Paranjd28] (see also
Ref.[22]). It is interesting to make a partial fraction decom- where the symbok represents a convolution product such
position of Eq.(28) with the aim of extending this expression 55
to the time domain, which is also of importance if one refers
to some experimental work, namely,

t t
h(t)®I(t)= foh(t—t’)l(t’)dt’z jol(t—t’)h(t’)dt’,

2
Aen(@) == Ze T (Ciw) P T T (—i0)"
with the important property of the Laplace transform
3/4
T3 (Ciene| (29) LIht)®I(H)]=LIhO 1L (1)]. (35)

In order to simplify the presentation of the above results, we

In order to show the temporal evolution of each term in Eq'shall use the following reduced quantities:

(29), it is convenient to introduce the following function:

2
_ 90
te 1 to Y\ — 1 ’ _E _E
9 =— Ea,a(T)' O<e=l, @0 Yot {F(’("’) 3(1 45) okt %0
i . Agy (@)
whose Laplace transform is AXy(w0')=AX[(0")—iAX](0")=45—F—,
Yo
- 1 (37
= —pt -
G(p) fo e Pig(t)dt 1+ p® (31

whereXy(w") describes in fact the variations of the second

term in the right-hand side of ER5) since only this term is

frequency-dependent. The dc componggtw’) of the elec-

‘ tric polarization is presented in Fig. 1 far values ranging

E, (—2)= E (=2 (32) from 0 to 1 (subdiffusive procegsOne can remark that the
G k=0 I'(ak+ ) asymptotic valueXy()=0 is more rapidly attained when

a—1. Everywhere elsey(w’) takes on negative values. In

is the generalized Mittag-Leffler functiof24], which re-  Figs. 2 and 3 are pictured the reaX; and imaginaryA X}

duces to the exponential one fer=1, andris the relaxation parts of the complex nonlinear dielectric incremam; (")

time equal to (D) 1. Applying this definition to Eq(29), as a function ofw’ and @ (0<a=<1) corresponding to the

one obtains contribution of the first-harmonic component to the linear

where

+ oo
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-0.06 -0.05 -0.04 -003 -002 -0.01 0
AXy (@)
1 -2
-4 log,¢(w) FIG. 4. Cole-Cole plots of the nonlinear complex dielectric in-

_ _ o crementAX;(w'") for three different values of. Full line, a=1
FIG. 2. 3D plot of the real part of the nonlinear dielectric incre- (grownian limit); dashed line@=0.8; dotted linea=0.5.
mentAX; (first-harmonic component of the electric polarizajias

a function ofw’ anda. Fl(o )Xy n(@')= Yl[FE:%(w,)‘i‘ Frk];% w')— Fﬂii(w,)
response in the ac electric field. The higheis, the steeper —Fl )], (38
is the slope in the increase of the dispersion ploX;(w’)].

Regarding the absorption curvAX/ ('), the height of the where

peaks increases in proportion &owhile their maxima shift

to the lowest frequencies asdecreases. The Cole-Cole dia- , 2(i0'k)" o
grams(Fig. 4 demonstrate the influence of the anomalous Xkn(®@')=2(2n+1)/1+ nin+yn |0 ¢ T2pg “7

exponenta, with decreasing amplitudes of the arcsaasdli- (39
minishes. It is worth noting from these plots th&X;(w’)

and AX{(w') are always negative, with the exception of Fork=—1,n=1, we have

AXj(w") for =1 (normal diffusion, which becomes posi-

M1 o . / 1 , /

tive in the high-frequency region. Fly(o)= X,ll[l_ng(w )—Fi(0")], (40

IV. NONLINEAR DIELECTRIC RESPONSE IN PRESENCE . . 2
OF A PURE ac ELECTRIC FIELD where it suffices for our problem to evalud#é , andF3 up

to the second order in the ac field only, which yields

In the absence of the dc bias fielgl=0), there are no
longer constant terms in the dielectric response. Hence, by X 1 L 7%
limiting ourselves again to the third order of the external FZ (') = m[71|:—1(w,)]: X i@ X ag @)’
electric perturbation, we shall evaluate the analytic expres- —229@ —1R@)R-22@
sions for the harmonic components of the electric polariza- " o
tion varying at the fundamental frequeney(first harmonig X-2d @) =101+ (=2i0")"/3], (4D
and at % (third harmonig¢. From Eq.(21) in which we put
vo=0, we have now to solve the following set of differential
recurrence relations:

F3(0) = 15lF a(@)+Fio")]

- T RAFL ()]

2
Y1 1
=—Rg———|, 42
5 e{xl,l(w ) 42
@ so that
Fl ()= Y 4 S y_i ;
A , -1 B[1+(—iw)*] 360[1+(—iw’)*]?
-4 log,o(w)
2[1+w'“codmal2)] 1
FIG. 3. 3D plot of the imaginary part of the nonlinear dielectric 1+(io)? 1+ (—2iw)3|
incrementAX] (first-harmonic component of the electric polariza-
tion) as a function ofw’ and a. (43
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This expansion gives correct results as longyas<l. In
terms of the nonlinear electric susceptibiligy(w’), Eg.
(43) can be rewritten as

() 2F1 (o)
w)=—"
X1 71
2
.t m a —0.002s X3 (@)
- PNAY Toonyal2
1+ (—iw")*] 180[1+(—iw")¥] —bio0E
2[1+w'“cod mal2)] 3
1+(iw")® 3+(—2iw' )| 1 -2
(io") ( ) T, logeg(@)
(44) FIG. 5. 3D plot of the real part of the third-harmonic component
x3(w") of the electric polarization as a function of and a.
For a=1, we get
2F 4 (o)
1 "N — 3
N x3(w')=—5—
Xl(w )a:]. 3(1_|w/) Y1
¥2 9-iw' _ 1
1801+ (1-iw)(3—2i0) 60
(45 !

><[1+(—iw’)“][3+(—2im’)“][l+(—3iw’)“]
which is in agreement with previously derived results

[22,23. More interesting experimentally in the application of 1 1 1

a pure ac electric field only is the calculation of the third T 60 (—3+2%)(—143%) 1+(—iw)®
nonlinear harmonic component of the electric polarization

given by the evaluation oIFl,S(w’). Many data related to 22« 1

the study of disordered media are now available, and the

+ -
_ a a_Ql+ay 3+ (—2iw’)®
interest in an interpretation of their behavior is still growing. (=3+2%)(2%=377%) ( “’)

It is important to understand the typical features of such sys- 32
tems, essentially characterized by their nonexponential relax- + ” ot (49
ation patterns giving rise to slow diffusion. Among all these (—14+3%) (=243 %) 1+(=3i0’)

materials, ferroelectric liquid crystals in the chiral smectic-C
phase[25—-28 have caught the attention of many research-again in accord with the results of Ref21-23 for a=1. In

ers. In particular, the third order of the nonlinear dielectricFigs. 5 and 6 are shown the frequency evolution of the re-
response for such liquids in the Goldstone mode yields negaaxation spectra of3(w’) as a function ofa. The general
tive values in the same manner as those observed for gmttern of all these plots is comparable to that already exhib-
equivalent study of free rotating dipoles in ordinary fluidsited by the first-harmonic componefmhonlinear dielectric
(Langevin saturation effectSettingk=—3 andn=1in Eq.  incrementAX;(w")], with, however, smaller amplitudes by
(38) in order to calculate the third-harmonic component in
3w proportional toﬁ, one obtains

X_az1(0 )Fly(0)=yF2 ('), (46)

and using Eq(41)

3
Y1
Fl I:_ , 4
S o X ade X sde D e
where
X_31(@')=6[1+(—3iw')?]. 49) L7 legy@)

o _ - FIG. 6. 3D plot of the imaginary part of the third-harmonic
Therefore, the explicit form for the electric susceptibility componentys(w’) of the electric polarization as a function @f
x3(w') is anda.
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L, -0001s R e e ;(10-1 Fmv-2) -1 A
X37(@") 002 N v / /,

T -15
-0.0025
/ -2
~0.003

-0.0035 \ / ./.1 1.5 2 2.5 3 35

] log,,(frequency, in Hz)
~0.005 ~0.004 —0.003 —0.002 —0.001 0  0.001 10 ’

x3' (@) FIG. 8. Third-order nonlinear dispersiorz) and absorption

FIG. 7. Cole-Cole plots of the third-harmonic component (¢3) spectra for CS 1017ferroelectric liquid crystal at 50 °C.
xa(w’) for three different values of. Full line, =1 (Brownian Filled circles are experimental data taken from Kimetaal. [29].
limit); dashed line@=0.8; dotted linea=0.5. The full and dashed lines represent our best fit procedure from Eqg.

(49 for the real €3) and imaginary £3) parts of the complex
f_dielectric permittivitye s, respectively.

a factor of alImost two orders of magnitude. Some slight di
ferences are nevertheless visible by looking at the Cole-Cole

diagrams(Fig. 7) where the skewed arcs are more flattenec@n anomalous waiting time distribution function. We have
due, especially, to the positive values of the real pafto’) ~ derived in the frequency domain analytical expressions for
in the high-frequency region. We have checked our theoretthe electric susceptibilities corresponding to nonlinear ac sta-
ical expression for the third-order nonlinear electric susceptionary responses and valid up to the third order in the elec-
tibility ys(w’) given by Eq.(49) by using experimental data tric field strength. To illustrate these results, dispersion and
recently obtained by Kimurat al. [29] on the ferroelectric ~ @bsorption spectra for the first- and the third-harmonic com-
liquid crystal CS 1017(Chisso: these measurements were Ponents have been plotted in order to show the significant
made at 50 °C with an ac electric field of angular frequencydeparture from the classical Brownian behavior es: 0.
varying from 15 to 2.5 10° rad/s. This comparison between Moreover, a comparison of our theoretical model with ex-
theory and experiment is illustrated by the nonlinear relaxP€rimental data for the third-order nonlinear dielectric relax-
ation spectra in Fig. 8 where a quite good agreement can LHon spectra of a ferroelectric liquid crystal led to a quite
observed with the exception of a few poirtugithin the lim- ~ 900d agreement in fitting these dispersion and absorption
its of accuracy at low frequencies due to conductivity and Plots. To conclude, we indicate that our approach can be
electrode polarization effects which are not taken into ac€xtended to the case of anisotropically polarizable mol-
count in our analytical formulation. A least mean square fitecules. In future studies, we intend to take into account di-

leads to the numerical determination @fand 7, namely, & polar interactions alsf30], with the aim of deriving nonlin-
—0.89 andr=0.58<10 3 s. ear responses in molecular systems where concentration

effects can no longer be neglected, and to compare them to

available computer simulatiofi81]. In such a case, even the

simplest interaction potential gives rise to a coupling of the
In this paper, we have tried to introduce the fractionallongitudinal and transverse components of the polarization.

approach to the orientational motion of polar moleculesMoreover, higher-order responses can also be evaluated us-

acted on by an external perturbation, such as a timelnd the matrix continued fraction procedure in the manner

dependent electric field. This problem is treated in the condeveloped for normal diffusion in our previous papgt8—

text of noninertial rotational diffusioriconfiguration space 20]. In addition, we mention that the present theory could be

only) which leads to solving a fractional Smoluchowski @pplied with minute modifications to the case of ferrofluids

equation. Hence, we consider a physical model correspondubjected to time-dependent magnetic fields.

ing to a slow relaxation procegsubdiffusion characterized

by an anomalous exponent ranging in _the_ interva(_o,l)_ ACKNOWLEDGMENTS

(a=1 for normal diffusion. The generalization of this dif-
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