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Sensitivity of explosion to departure from partial equilibrium
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We study a thermochemical gaseous system in the vicinity of the bifurcation related to the emergence of
bistability. Corrections to the standard deterministic dynamics induced by the perturbation of the particle
velocity distribution are obtained from the solution of the Boltzmann equation. Using these results, analytical
expressions including the nonequilibrium effects are derived for the ignition time in the explosive regime and
mean first passage time in the bistable regime. It is demonstrated that a departure from partial equilibrium can
shift the bifurcation point. The system which was bistable according to the standard deterministic approach,
can become monostable and explosive in the presence of nonequilibrium effects. Even when the system
remains in the bistable regime, the mean first passage time can be changed by several orders of magnitude. In
the monostable domain, the ignition time can be about ten times smaller than the unperturbed value. These
analytical predictions agree well with the results of the microscopic simulations of the dilute gas system.
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I. INTRODUCTION

Kinetic theory studies based on the Boltzmann equa
have revealed that a chemical reaction may lead to a de
ture of the particle velocity distribution from the equilibrium
shape@1–6#. This microscopic phenomenon, known as a d
parture from partial or incomplete equilibrium@7#, influences
the macroscopic dynamics of the gaseous chemical syst
In this paper we address the case of an exothermal rea
taking place in a closed vessel in contact with a thermos
We consider the model introduced by Semenov@8# in order
to describe the temperature evolution of such a reactive
mixture. It is the simplest model reproducing the transiti
between a regime of slow oxidation and a flame, i.e., allo
ing for studying the bifurcation between bistable a
monostable regimes. In the monostable domain, the sys
possesses an explosive character: the temperature evo
has a typical sigmoidal shape, revealing a long induct
period followed by a violent increase and a relaxation tow
the single stationary state. The large fluctuations grow
during the induction stage have been investigated in de
@9–11#. In the bistable domain, the deterministic evoluti
reproduces a slow reaction associated with a small temp
ture increase. However, in the presence of fluctuations, t
sitions through the potential barrier are observed and we
ready studied the probability distribution of the first passa
time @11#.

The effects of the perturbation of velocity distribution o
the temperature profile in an inhomogeneous exother
chemical system have already been analyzed@12#, but the
studied deviations from the equilibrium predictions we
small. The propagation velocity and the shape of isother
chemical waves in inhomogeneous media can also be
fected by a departure from partial equilibrium. The cases
pulled @13# and pushed@14# fronts have been both characte
ized. For these isothermal systems, the departures from
equilibrium predictions do not exceed a few percent wh
the activation energy of the reaction is larger than 4kT. In
1063-651X/2003/68~3!/031105~9!/$20.00 68 0311
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homogeneous isothermal chemical systems@15# the vicinity
of the bifurcation associated with bistability has been stud
and the distortion of the particle velocity distribution h
been shown to induce a deformation of the bifurcation d
gram. In the case of an exothermal reaction we expect h
large nonequilibrium effects on ignition time and mean fi
passage time due to their extreme sensitivity to the activa
barrier. We calculate the nonequilibrium corrections to t
macroscopic description using the Boltzmann equation
take into account these perturbations in the analysis of
stochastic behavior of the system. These analytical pre
tions are compared with the results of microscopic simu
tions based on the direct simulation Monte Carlo~DSMC!
method@16#.

The paper is organized as follows. We first give in Sec
the macroscopic equation governing the evolution of te
perature in the Semenov model. Section III is devoted t
perturbative treatment of the Boltzmann equation for parti
velocity distribution. The nonequilibrium corrections to th
macroscopic equation for temperature are then derived.
most technical parts of the calculation are presented in
Appendix. The microscopic simulation method is presen
in Sec. IV. The analytical predictions deduced from the Bo
zmann equation and the simulation results are compare
Sec. V. Nonequilibrium effects on ignition time in the expl
sive regime and mean first passage time in the bistable
main are discussed. Section VI contains conclusions.

II. DETERMINISTIC APPROACH
TO THE SEMENOV MODEL

We consider a closed reactor of volumeV containing a
reactive dilute gas. The gas is subject to an energy bala
due to an exothermal reaction in the bulk and to Newton
heat transfer through the walls of the reactor. The tempe
ture of the walls is assumed to be fixed atTw by fast energy
exchanges with an external thermostat. In order to focus
thermal properties and to reduce the deterministic dynam
©2003 The American Physical Society05-1
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B. NOWAKOWSKI AND A. LEMARCHAND PHYSICAL REVIEW E 68, 031105 ~2003!
to the evolution of a single variable, Semenov model@8#
introduces the simplest feasible chemical reactionA1A
→products1heatQ and neglects the consumption of rea
tant A. It amounts to considering the following scheme:

A1A→A1A1heatQ ~1!

in the presence of an external light source. Hence, the t
number of particles,N, in the system is constant. The dete
ministic equation of energy balance reads@8#

dE
dt8

5kr

N2

V
Q2ka

N

V
2k~T2Tw!, ~2!

where t8 is time; kr and ka are, respectively, the rate con
stants of reaction and accommodation at the walls. Th
expressions are deduced from the frequencies of collis
either in the bulk or with the walls of the reactor. Standa
results of kinetic theory yield@17,16,10#

kr52ssrA kT

pm
expS 2

E*

kTD , ~3!

ka5SsaA kT

2pm
, ~4!

wheres is the total collisional cross section in the bulk,m is
the mass of particleA, E* is the activation energy of reactio
~1!; sr is a steric factor related to an independent geome
condition for reaction,S is the surface of the walls, andsa is
a steric factor for thermal accommodation. For the redu
temperature,u5T/Tw , Eq. ~2! leads to

du

dt
5

1

3
AuFexpS 2

«

u D2g~u21!G , ~5!

where we have used the dimensionless time and heat
ables

t54nssr S kTw

pmD 1/2

qt8, «5E* /kTw , q5
Q

kTw
, ~6!

and we have introduced a reduced coefficient for Newton
heat exchange

g5
Sl

V

sa

srq
. ~7!

Here,l5(A2ns)21 denotes the molecular mean free pa
Parameterg gives some measure of the efficiency of Ne
tonian cooling with respect to heat production by the e
thermal reaction. The prefactorAu of the two terms in Eq.
~5! appears because the kinetic theory calculation reveals
dependence of collision rates on the square root of temp
ture @17#. In the standard macroscopic description of the S
menov model@8#, this weak dependence onAu is omitted,
but it has already been included in previous microsco
treatments of thermochemical systems@12,18,10#.
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Depending on the parameter values controlling the p
duction of reaction heat and Newtonian cooling, differe
dynamical regimes are observed. The lineg(u21) and the
curve exp(2«/u) can have either one or three intersecti
points@8# which correspond to the stationary solutions of E
~5!. Thus, the system has either a unique stable steady
or two stable states,u1,u2, separated by an unstable on
uu . The bistability arises and vanishes at bifurcati
points, at which the lineg(u21) becomes tangential to
exp(2«/u). For a given«, this condition yields the following
critical values ofg:

gc
65

1

4
«S 16A12

4

« D 2

expF2
1

2
«S 16A12

4

« D G .
~8!

Bistability can appear only if«.4, in the range ofg
bounded by the critical values,gc

1,g,gc
2 . For higher val-

ues,g.gc
2 , the system evolves at moderate rate toward

single stationary temperature which lies on the extinct
~lower! branch of the steady states denoted byu1. The op-
posite, below-bistability domaing,gc

1 is the explosion re-
gion: after a long induction period, the temperature of t
system grows in a characteristic, explosive manner
reaches the stable steady stateu2 on the combustion~upper!
branch.

III. THE BOLTZMANN EQUATION
AND NONEQUILIBRIUM CORRECTIONS

TO MACROSCOPIC EQUATIONS

Many kinetic theory studies of gaseous chemical syste
@1–3,6# have demonstrated that a reaction may induce a
nificant perturbation of the particle velocity distribution, an
that such a deformation influences the system dynamics.
velocity distribution function is obtained from the Boltzman
equation which for the Semenov system can be written in
form

] f

]t
5E @ f ~v8! f ~v18!2 f ~v! f ~v1!#uv2v1udsedv11S ] f

]t D
r

1

2S ] f

]t D
r

2

1S ] f

]t D
w

1

2S ] f

]t D
w

2

. ~9!

f (v,t) is the distribution function for particlesA @only ve-
locities are indicated explicitly as arguments off in Eq. ~9!#.
The first term on the right-hand side of this equation is
integral for elastic collisions anddse is the usual differential
cross section for elastic collisions@19#. Velocitiesv8 andv18
correspond to an inverse collision in which$v8,v18% are trans-
formed into $v,v1%. The next two terms on the right-han
side of Eq.~9! describe the effect of inelastic collisions re
lated to reaction~1!. The loss part has the usual form

S ] f

]t D
r

2

5E f ~v! f ~v1!uv2v1uds* dv1 , ~10!
5-2
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SENSITIVITY OF EXPLOSION TO DEPARTURE FROM . . . PHYSICAL REVIEW E68, 031105 ~2003!
wheres* is the cross section for reaction~1!. The gain coun-
terpart

S ] f

]t D
r

1

5E f ~v9! f ~v19!uv92v19uds*
]~v9,v19!

]~v,v1!
dv1 ~11!

involves the rule of inverse collision:v9 and v19 are such
initial velocities that yieldv andv1 after a reactive collision.
Equation~11! must include the factor](v9,v19)/](v,v1)Þ1
which gives the change of a volume element of velocities
an inelastic collision@1,20#. Finally, the two last terms of Eq
~9! account for inelastic collisions of particles with th
boundary walls, related to the exchange of energy with
thermostat. We omit the elastic collisions with the walls, b
cause they do not change the speed of a particle, and co
quently do not contribute to the Maxwellization of the spe
distribution. The loss term is simply determined by the f
quency of inelastic collisions, which for the cubic contain
has the form

S ] f

]t D
w

2

5sa

S

6

1

V
f ~v!~ uvxu1uvyu1uvzu!. ~12!

The associated gain portion provides the rate of appearin
particlesA with velocity v after bouncing from the wall of
the reactor. After thermal accommodation at the bound
wall, the bounced particles have the~biased! Maxwellian ve-
locity distribution with temperatureTw of the thermostat, and
the influx of particles from the walls is given by

S ] f

]t D
w

1

5sa

S

6

1

V
f Tw

(0)~ uvxu1uvyu1uvzu!, ~13!

where f Tw

(0)5nw(m/2pkTw)3/2exp(2mv2/2kTw) denotes the

Maxwellian distribution at temperatureTw of bounced par-
ticles. Concentrationnw in f Tw

(0) is determined from the con

dition of vanishing of the mass flux through the walls

E
v',0

f Tw

(0)~v!uv'udv5E
v'.0

f ~v!v' dv, ~14!

where v' is the velocity component perpendicular to t
wall. Thus, Eq.~13! involves ~implicitly ! the distribution
function f. Sincef and f Tw

(0) are isotropic in the homogeneou

system, the orientation ofv' is irrelevant; we may putv'

5vx and calculate explicitly the integral in the influx term o
the left-hand side of Eq.~14!.

The relation between the kinetic energy of the partic
and the gas temperature

E f ~v!
mv2

2
dv5

3

2
nkT ~15!

allows us to obtain the evolution equation for temperat
from the Boltzmann equation, after multiplying by1

2 mv2 and
integration over velocities. In the lowest approximation,f is
the Maxwellian distribution corresponding to the instan
neous system temperatureT(t),
03110
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f (0)~v,t !5n~m/2pkT!3/2exp~2mv2/2kT!. ~16!

This function is used to obtain the lowest approximation
the dynamics of temperature by means of Eq.~15!.

In order to calculate the contribution to energy balan
due to the reaction we must specify the reaction cross sec
s* . We use the molecular model of reactive hard sphe
@21#, which attributes a part of the hard sphere cross sec
to reactive collisions. A collision can be reactive if the rel
tive velocity g of colliding molecules satisfies the followin
condition:

e•g>g* , ~17!

wheree denotes the unit vector along the line connecting
centers of hard spheres at the instant of impact, andg* is the
threshold relative velocity. The condition given in Eq.~17!
implies that the activation energy for reaction in this mode
given by

E* 5
mg* 2

2
, ~18!

where m5m/2 is the reduced mass of two identical mo
ecules. Provided the energetic condition is satisfied, the
lision is actually reactive with the probabilitysr , which fol-
lows from steric constraints.

The contribution of reactive collisions to the dynamics
temperature is obtained by means of Eq.~15! from integrals
~10! and ~11! with f (0). For the model of reactive hard
spheres, the result has the following form in the dimensi
less variables:

S du

dt D
r

(0)

5
1

3
Au expS 2

«

u D . ~19!

Equation ~14! in the lowest approximation readsnw
(0)ATw

5nAT, and the calculation of the energy exchange ter
gives then

S du

dt D
w

(0)

52
1

3
Aug~u21!. ~20!

The elastic collisions integral never gives a contribution
du/dt because energy is conserved in elastic collisio
Thus, in the lowest order approximation the sum of the t
terms given in Eqs.~19! and ~20! yields the dynamics of
temperature given by Eq.~5!.

However, the simple Maxwellian distribution is not th
solution of the Boltzmann equation; the exact distributi
function f contains the perturbation of the Maxwellian~16!
induced by the reaction and the thermal exchange proc
The departure from the Maxwellian distribution results in t
correction to the standard equation@Eq. ~5!#. The solution for
f can be obtained by means of the Chapman-Enskog me
@22#, which is valid if the relaxation of the velocity distribu
tion by elastic collisions is much faster than all the oth
processes. For chemical systems it means that reaction
relatively slow@3,6#, and for the Semenov model this cond
5-3
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B. NOWAKOWSKI AND A. LEMARCHAND PHYSICAL REVIEW E 68, 031105 ~2003!
tion includes as well energy transfer through the boundar
The distribution function is assumed in the form of an e
pansion in Sonine polynomials@22#, and it was shown@23#
that the few first terms can provide satisfactory approxim
tion. If the perturbation is represented by one term of
expansion, the correction to the deterministic equation~5!
can be presented in the following form:

S du

dt D
1

(1)

5S du

dt D
r

(0) 1

16

srq

u
r 2@exp~2«/u!f2r2gf2w#

1S du

dt D
w

(0) 1

16

srq

u
w2@exp~2«/u!f2r2gf2w#.

~21!

The two-term expansion gives the following extended c
rection:

S du

dt D
2

(1)

5S du

dt D
1

(1)

1S du

dt D
r

(0) 1

480

srq

u
~4r 31r 2!

3@exp~2«/u!~f2r14f3r !2g~f2w14f3w!#

1S du

dt D
w

(0) 1

480

srq

u
~4w31w2!

3@exp~2«/u!~f2r14f3r !2g~f2w14f3w!#.

~22!

In these equations,r i ( i 52,3) are given by Eqs.~A13! in the
Appendix,wi by Eqs.~A15!, f ir by Eqs.~A20!, andf iw by
Eqs.~A22!; these coefficients are simple polynomials of«/u
andq/u.

It is to be noted that the corrections to the macrosco
evolution induced by a deviation from equilibrium veloci
distribution do not vanish for large systems, unlike the p
turbations due to fluctuations. For systems of mesosco
size, these two kinds of effects interfere. The perturbation
the deterministic dynamics due to a departure from equi
rium influence as well the stochastic evolution. In recent
pers @10,11# we developed the master equation which go
erns the stochastic dynamics of the thermochem
Semenov model. The expansion of this master equation
systems with large particle numberN gives the following
Fokker-Planck equation@11# for the probability distribution
of temperatureP(u,t):

]

]t
P~u,t !52

]

]u
@a~u!P~u,t !#1

1

2

]2

]u2 @b~u!P~u,t !#.

~23!

The coefficienta in the Fokker-Planck equation is related
the deterministic dynamics; it is equal to the right-hand s
of the deterministic equation given in Eq.~5!. The simplest
way to include the nonequilibrium effects in the mesosco
description is to introduce the corrections given in Eq.~21!
or Eq.~22! in the coefficienta in the Fokker-Planck equatio
~23!. The coefficientb describes the dispersion of the tem
perature distribution due to fluctuations according to@11#
03110
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b~u!5
2

9N
AuFq expS 2

«

u D1g~324u13u2!G . ~24!

Note thatb contains the scaling factor 1/N, which indicates
that fluctuations are relatively weaker for large systems. T
Fokker-Planck equation gives a simple analytical express
@24# for the mean first passage time^t(u)& in a bistable
system:

^t&52pS b~uu!

ua8~u1!ua8~uu!b~u1!
D 1/2

exp@U~uu!2U~u1!#,

~25!

whereu1 is the stable steady state of low temperature,uu the
unstable steady state,a8(u)5da/du is the derivative of
a(u), andU is defined bydU/du52a(u)/b(u).

IV. MICROSCOPIC SIMULATION METHOD

We use the DSMC method developed by Bird@16# to
simulate particle collisions in a dilute gas. Assuming that
system is homogeneous, we disregard the positions of
particles and only follow the evolution of their velocitie
Rather than exactly calculating collisions as in molecu
dynamics, the DSMC method generates collisions stocha
cally with scattering rates and postcollision velocity distrib
tions determined from the kinetic theory of a dilute gas.
standard acceptance-rejection method is used to choos
tual encounters. The collisions between two randomly c
sen particlesk andl are accepted proportionally to their rela
tive velocity (vk2vl). As in the analytical treatment of th
Boltzmann equation, we choose the molecular model of
active hard spheres. An accepted collision between parti
k and l is reactive, with the probability given by the ster
factor sr , if their relative velocity along the direction con
necting their centers at impact exceeds a certain thres
value,g* . This threshold is related to the activation ener
of the reaction by Eq.~18!. After a reactive collision, the
kinetic energy of the particles that reacted is increased by
value of the reaction heatQ.

The collisions of the particles with the walls of the react
are treated as follows. We assume that the container is c
so that collisions with the boundaries inx, y, andz directions
are chosen with equal probability. Particles hitting the wa
are thermally accommodated with the probabilitysa , other-
wise they are specularly reflected. We neglect collisions w
elastic reflection, because they do not have any therma
fect nor contribute to Maxwellization of the particle veloci
distribution. Velocities of particles emitted after thermal a
commodation are sampled from the following biased Ma
wellian distribution at temperatureTw :

f w~v!5
1

2p S m

kTw
D 2

uv'uexpS 2
mv2

2kTw
D , ~26!

wherev' is the component of velocity perpendicular to th
wall chosen for collision. Starting from particles at the wa
temperatureu51, we follow the evolution of their kinetic
energy and determine timet necessary for the temperature
5-4
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SENSITIVITY OF EXPLOSION TO DEPARTURE FROM . . . PHYSICAL REVIEW E68, 031105 ~2003!
reach the valueu53, close to the unstable stationary state
the bistable domain. Depending on the value of Newton
exchange coefficientg, the system is either explosive o
bistable. In the explosive regime, mean timet is called ig-
nition time. In the bistable case and in the presence of fl
tuations, it is called mean first passage time and define
the time necessary to overcome the potential barrier betw
the two stable stationary states. We previously checked u
a master equation approach@25,11# that the mean first pas
sage time obeys Eq.~25! for sufficiently large particle num-
bersN.5000. At smallerN, specific fluctuation effects alte
the behavior oft. To remain in the domain of validity of Eq
~25!, we perform microscopic simulations for a sufficient
large particle number, but nevertheless as small as possib
reduce computation time. The chosen value,N510 000, of-
fers a good compromise.

V. NONEQUILIBRIUM EFFECTS ON IGNITION TIME
AND MEAN FIRST PASSAGE TIME

We now compare the analytical predictions, with or wit
out nonequilibrium corrections, with the results of the micr
scopic simulations. The amplitude of the corrections given
Eq. ~21! or Eq. ~22! depends in a nontrivial manner on th
perturbations induced by cooling and reaction. For a fix
value of Newtonian exchange coefficientg controlling the
distance from the bifurcation, the nonequilibrium correctio
induced by reaction prevail when the activation ene
reaches«55 and they increase with heat releaseq. Correc-
tions of both origins are comparable for the parameter cho
«54.5 andq55 examined later.

We first study the behavior of the system in the explos
regime. Following an analogous procedure as for mic
scopic simulations, the ignition time values are obtained
integrating the unperturbed and corrected deterministic eq
tions over a time such that temperature varies fromu51 to
u53. As shown in Fig. 1 for«55 andq58, the nonequi-
librium perturbations qualitatively affect the behavior of t
system around the emergence of bistability and stron
change the value of ignition time. When using one~two!
Sonine polynomial~s! in the calculation of nonequilibrium
corrections, the critical value ofg, associated with the diver
gence of ignition time, is 10% (13%) higher than the unp
turbed prediction. In a large interval defined by 0.071,g
,0.077, the uncorrected deterministic equation ensures
the temperature of the system will remain small whereas
plosion is predicted when taking into account the noneq
librium corrections. In the explosive regime, the microsco
simulations qualitatively confirm the analytical predictio
given in Eqs.~21! and ~22!. Their quantitative agreemen
with the nonequilibrium corrections calculated with one S
nine polynomial according to Eq.~21! is excellent. The dis-
crepancy with the unperturbed deterministic prediction
very large: near the bifurcation point, forg50.07, the modi-
fied value of the ignition time is about ten times smaller th
the unperturbed value. In the bistable domain, we use
expression of mean first passage time given in Eq.~25! and
deduced from the Fokker-Planck equation, to compute
unperturbed value of̂t& depicted in Fig. 1. The variations o
03110
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mean first passage time including nonequilibrium effects
obtained by introducing corrected values ofU anda8 in Eq.
~25!. The nonequilibrium corrections to the diffusion termb
are supposed to be negligible.

In the bistable domain, thanks to the presence of fluct
tions in a system ofN510 000 particles, the potential barrie
separating the two stationary states, is overcome and ex
sion is observed. As shown in Fig. 1, the variation withg of
the results of the microscopic simulations in the bistable
main agrees very well with the stochastic predictions inclu
ing nonequilibrium corrections with one Sonine polynomi
Due to the shift of the bifurcation to higher values ofg, the
discrepancy between results taking nonequilibrium effe
into account and the unperturbed predictions is enorm
and can reach several orders of magnitude.

Exothermic chemical systems near a bifurcation pres
an exacerbate sensitivity toa priori small disturbances o
microscopic origin. As shown here in the case of a bista
system, the macroscopic consequences of a departure
partial equilibrium may be dramatic: explosion occurs in
extended domain of parameters where unperturbed m
rosocpic equations predict a soft evolution without exp
sion.

The origin of the discrepancy between microscopic sim
lations and standard deterministic approach can be cle
attributed to nonequilibrium effects as revealed by the va
tion of ignition time with steric factor for reaction,sr , in the
monostable domain. The results of the different approac
are given in Fig. 2. The unperturbed deterministic equat
~5! does not depend onsr . For given values of«, q, andg,
the ignition time tends to the unperturbed value predicted
Eq. ~25! when the steric factor tends to zero. For parame
values where nonequilibrium effects are dominated by

FIG. 1. Logarithm of the ignition time and mean first passa
time ^t& vs Newtonian exchange coefficientg. Thin lines are pre-
dicted by deterministic equations in the explosive regime. Th
lines are deduced from Fokker-Planck equations in the bistable
gime. Dotted lines are obtained without nonequilibrium correctio
solid ~dashed! lines include nonequilibrium corrections predicte
with one ~two! Sonine polynomial~s!. The solid squares depict th
results obtained from microscopic DSMC simulations for the f
lowing parameter values: reduced activation energy«55, reaction
steric factorsr51, reduced heat releaseq58, particle numberN
510 000, ratio of mean free path and length of the systeml/L
50.5.
5-5
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contribution of reaction, departure from partial equilibriu
monotonically decreases as the perturbations induced b
action become weaker. We also study in Fig. 3 the varia
of ignition time with sr , but for a higher value ofg. For
sr51, the nonequilibrium corrections predict that the syst
is monostable, but assr decreases, the bifurcation point
crossed. In the bistable domain, the predictions of the m
first passage time, deduced from Fokker-Planck equation
nonequilibrium corrections including two Sonine polynom
als, agree rather well with the microscopic simulation resu

In order to check more precisely our analytical pred

FIG. 2. Ignition time^t& vs reaction steric factorsr in the ex-
plosive regime for Newtonian exchange coefficientg50.0695. The
values of the other parameters are the same as in Fig. 1. Dotted
is the prediction of the deterministic equation without nonequil
rium corrections. Solid~dashed! line is the deterministic prediction
including nonequilibrium corrections for one~two! Sonine polyno-
mial~s!. The solid squares depict the results obtained from mic
scopic DSMC simulations.

FIG. 3. Logarithm of the ignition time and mean first passa
time ^t& vs reaction steric factorsr for Newtonian exchange coef
ficient g50.077. The values of the other parameters are the sam
in Fig. 1. Equation~25! without nonequilibrium corrections predict
t51.831029 whateversr . Thin lines are predicted by determinist
equations with nonequilibrium corrections in the explosive regim
Thick lines are deduced from Fokker-Planck equations in
bistable regime. Solid~dashed! lines include nonequilibrium correc
tions predicted with one~two! Sonine polynomial~s!. The solid
squares depict the results obtained from microscopic DSMC si
lations.
03110
re-
n

n
or
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-

tions, and in particular the expression of the nonequilibriu
terms induced by the cooling at the walls, we perform
second series of simulations for smaller values of activat
energy,«54.5, and heat release,q55. For these paramete
values, the corrections induced by reaction are smaller t
in the previous series at«55 andq58. The order of mag-
nitude of the two sources of nonequilibrium, i.e., exotherm
reaction and cooling at the walls, become comparable,
the two contributions have an opposite sign as shown in E
~21! and ~22!. Whereas nonequilibrium effects for high va
ues of« and q clearly result in a decrease in ignition tim
and postpone the emergence of bistability for higher val
of g, more intricate results are obtained in Fig. 4 for«
54.5 andq55. As expected, the simulation results and t
analytical predictions tend to the unperturbed determini
ignition time as the reaction steric factorsr tends to zero.
However, assr increases, the nonequilibrium correction
predict a nonmonotonic evolution oft confirmed by the
simulation results: the ignition time goes through a minimu
for sr.0.5 and then increases. Forsr51, the simulation
results even lead to an ignition time larger than the unp
turbed deterministic prediction. Note that the agreement
tween simulation and analytical predictions observed in F
4 constitutes a fine discriminating test of theory: we che
variations of ignition time smaller than 5%. Obtaining Fig.
required a higher precision than Fig. 2 for the determinat
of the simulation results: the average values oft were ob-
tained from samples of 1500 runs whereas averaging o
200 runs was sufficient for the precision needed in Fig. 2

VI. CONCLUSION

An exothermal reactive system has been studied in
vicinity of the bifurcation leading to bistability. We obtaine
the analytical corrections to the macroscopic dynamics
duced by a perturbation of particle velocity distribution. O
theoretical predictions agree well with the results of the m
croscopic simulations. These nonequilibrium effects ha
been shown not only to influence the deterministic evolut

ine
-

-

e

as

.
e

u-

FIG. 4. Same as Fig. 2, but for the following parameter valu
reduced activation energy«54.5, Newtonian exchange coefficien
g50.0942, reduced heat releaseq55, particle number N
510 000, ratio of mean free path and length of the systeml/L
50.5.
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but also the stochastic behavior. We have demonstrated t
departure from Maxwellian velocity distribution may induc
qualitative changes of the system properties. Whereas
system was bistable according to the standard determin
approach, it can become monostable in the presence of
equilibrium effects. It means that explosion may occur in
parameter domain that was considered safe in the stan
description. Even when the system remains in the same
gime, the quantitative effects can be enormous. In
bistable domain, the mean first passage time can be dim
ished by several orders of magnitude. In the explosive
gime, the ignition time can be, for example, decreased
nearly a factor of 10. Contrary to the corrections introduc
in the deterministic dynamics by mesoscopic fluctuatio
@9,26,10,11,25#, these nonequilibrium effects induce macr
scopic perturbations that do not vanish in the limit of lar
systems.
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APPENDIX: CHAPMAN-ENSKOG SOLUTION
OF THE BOLTZMANN EQUATION „9…

The basic assumption of the method is that elastic co
sions are the dominant process in the system. Accordin
the time derivative and the terms related to inelastic co
sions in Eq.~9! are treated as perturbations of the elas
collision integral. The lowest order solution forf is given by
the Maxwellian distribution in Eq.~16!. Introducing this
function in the reaction and exchange terms of the Bo
mann equation and integrating according to Eq.~15!, we
obtain the contributions to the rate equation for temperat
For the model of reactive hard spheres, the terms conne
to reaction and energy exchange are, respectively, given

S d

dt

3

2
nkTD

r

(0)

52Qsn2S kT

pmD 1/2

sr expS 2
E*

kTD , ~A1!

S d

dt

3

2
nkTD

w

(0)

52sa

S

V
nS 2kT

pm D 1/2

~kT2kTw!. ~A2!
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In the dimensionless variables~6! and ~7!, these equations
have the form of Eqs.~19! and ~20!.

In the next order approximation,f (0) is used to calculate
the perturbation terms in the Boltzmann equation; for e
ample, the time derivative off has the form

S ] f

]t D
(0)

5S ] f (0)

]T D S dT

dt D
(0)

. ~A3!

In the higher order approximation,f contains the perturbation
of the Maxwellian distribution

f 5 f (0)~11c!. ~A4!

In the homogeneous system,f is an isotropic function which
depends only onv2. Correctionc is assumed in the form o
an expansion in Sonine polynomials@22#. The two first poly-
nomials are excluded due to conservation of particle num
and energy in elastic collisions. It has been shown that s
ficiently accurate approximation can be obtained with
expansion containing the two first terms only@23#

c5a2S1/2
(2)~c2!1a3S1/2

(3)~c2!, ~A5!

where the Sonine polynomials ofc25mv2/2kT used here are
given by

S1/2
(2)~c2!5

15

8
2

5

2
c21

1

2
c4,

S1/2
(3)~c2!5

35

16
2

35

8
c21

7

4
c42

1

6
c6. ~A6!

The equations for coefficientsa2 and a3 in expansion~A5!
are obtained by integrating over velocities the Boltzma
equation multiplied by the Sonine polynomialsS1/2

( i ) (c2), for
i 52,3. Only the terms that are linear with respect to t
perturbationc are retained in the kinetic equation in th
approximation. The equations for coefficientsai are

2Ri2Wi5 (
k52,3

akJik , i 52,3, ~A7!

whereRi , Wi , andJik denote the following collision inte-
grals:
Ri5
1

2E f (0)f 1
(0)
„S1/2

( i ) ~cr
2!1S1/2

( i ) ~c1r
2 !2S1/2

( i ) ~c2!2S1/2
( i ) ~c1

2!…uv2v1uds* dv1dv, ~A8!

Wi5n
S

V S 2kT

pm D 1/2E
c.0

exp~2c2!FS1/2
( i ) S Tw

T
c2D2S1/2

( i ) ~c2!Gc3dc, ~A9!

Jik52
1

4E f (0)f 1
(0)
„S1/2

(k)~c82!1S1/2
(k)~c18

2!2S1/2
(k)~c2!2S1/2

(k)~c1
2!…3@S1/2

( i ) ~c82!1S1/2
( i ) ~c18

2!2S1/2
( i ) ~c2!2S1/2

( i ) ~c1
2!#uv2v1udsdv1dv.

~A10!
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In theRi integral for reaction,cr andc1r are the final veloci-
ties obtained from initial onesc andc1 after a reactive col-
lision. Specifically for the Chapman-Enskog method,
term of the time derivative vanishes upon integration o
velocities.

The integralsJik for elastic collisions can be extended o
the entire, unperturbed cross sections for elastic hard
spheres@6#. It is then convenient to represent all the collisio
integrals in Eqs.~A7! in the dimensionless form, obtained b
scaling bysn2(kT/pm)1/2. The elastic collision terms ar
@21#

J22524, J235J3251, J3352
31

4
. ~A11!

The reaction terms are given by

Ri5
srq

u
expS 2

«

u D r i , ~A12!

where

r 252
1

2
1

1

2

q

u
1

«

u
,

r 352
3

16
1

3

4

«

u
2

1

4 S «

u D 2

1
3

8

q

u
2

1

4

«

u

q

u
2

1

12S q

u D 2

.

~A13!

The terms related to the energy exchange at the walls h
the form

Wi5gsrqS 12u

u Dwi ~A14!

with

w25S 322u

u D , w35S 216126u29u2

4u2 D . ~A15!

Using the above expressions for the collision terms, we
tain the explicit solution for coefficientsai for the model of
reactive hard spheres. If only one term is included in exp
sion ~A5!, the solution of Eq.~A7! has the form

a2(1)5
1

4

srq

u
expS 2

«

u D r 21
1

4
gsrqS 12u

u Dw2 .

~A16!

The corresponding correction tonw
(0) following from the con-

dition of vanishing of the mass flux isnw
(1)ATw5

2a2(1)nAT/8. For the expansion~A5! containing two terms,
the solution is given by

a2(2)5a2(1)1
1

120
srqF1

u
expS 2

«

u D ~r 214r 3!

1gS 12u

u D ~w214w3!G , ~A17!
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a3(2)5
1

30
srqF1

u
expS 2

«

u D ~r 214r 3!

1gS 12u

u D ~w214w3!G . ~A18!

The condition for vanishing of the mass flux gives in th
casenw

(1)ATw52(a2(2)1
1
2 a3(2))nAT/8.

Using this solution forc, the correction to the equation o
temperature dynamics can be obtained from the Boltzm
equation by means of Eq.~15!. The needed reactive colli
sions’ integrals have the following form@scaled to
sn2(kT/pm)1/2]:

E f (0)f 1
(0)
„S1/2

( i ) ~c2!1S1/2
( i ) ~c1

2!…~cr
22c2!uv2v1uds* dv1dv

5
1

2

srq

u
expS 2

«

u Df ir , ~A19!

where@21#

f2r52
1

4
2

«

u
1S «

u D 2

,

f3r52
1

16
2

3

8

«

u
1

3

4 S «

u D 2

2
1

6 S «

u D 3

. ~A20!

The terms for the energy exchange are calculated by me
of the integral

sa

S

VEvx.0
f (0)S 22( i 11)

u
1S1/2

( i ) ~c2! D vxc
2dc52

1

2
g

srq

u
f iw

~A21!

with

f2w5
3u11

2
, f3w5

u11

4
. ~A22!

The one-term expansion gives the following correction to
temperature dynamics:

S d

dt

3

2
nku D

1

(1)

5S d

dt

3

2
nku D

r

(0) 1

16

srq

u
r 2@exp~2«/u!f2r2gf2w#

1S d

dt

3

2
nku D

w

(0) 1

16

srq

u
w2@exp~2«/u!f2r2gf2w#.

~A23!

If two terms of the expansion are included, the extend
correction has the form
5-8
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S d

dt

3

2
nku D

2

(1)

5S d

dt

3

2
nku D

1

(1)

1S d

dt

3

2
nku D

r

(0) 1

480

srq

u
~4r 31r 2!@exp~2«/u!~f2r14f3r !2g~f2w14f3w!#

1S d

dt

3

2
nku D

w

(0) 1

480

srq

u
~4w31w2!@exp~2«/u!~f2r14f3r !2g~f2w14f3w!#. ~A24!
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