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Sensitivity of explosion to departure from partial equilibrium
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We study a thermochemical gaseous system in the vicinity of the bifurcation related to the emergence of
bistability. Corrections to the standard deterministic dynamics induced by the perturbation of the particle
velocity distribution are obtained from the solution of the Boltzmann equation. Using these results, analytical
expressions including the nonequilibrium effects are derived for the ignition time in the explosive regime and
mean first passage time in the bistable regime. It is demonstrated that a departure from partial equilibrium can
shift the bifurcation point. The system which was bistable according to the standard deterministic approach,
can become monostable and explosive in the presence of nonequilibrium effects. Even when the system
remains in the bistable regime, the mean first passage time can be changed by several orders of magnitude. In
the monostable domain, the ignition time can be about ten times smaller than the unperturbed value. These
analytical predictions agree well with the results of the microscopic simulations of the dilute gas system.
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[. INTRODUCTION homogeneous isothermal chemical systéff the vicinity
of the bifurcation associated with bistability has been studied
Kinetic theory studies based on the Boltzmann equatiorand the distortion of the particle velocity distribution has

have revealed that a chemical reaction may lead to a depabeen shown to induce a deformation of the bifurcation dia-
ture of the particle velocity distribution from the equilibrium gram. In the case of an exothermal reaction we expect here
shapd 1—6]. This microscopic phenomenon, known as a delarge nonequilibrium effects on ignition time and mean first
parture from partial or incomplete equilibriu], influences ~ passage time due to their extreme sensitivity to the activation
the macroscopic dynamics of the gaseous chemical Systenmrl’ier. We calculate the nonequilibrium corrections to the
In this paper we address the case of an exothermal reactidhacroscopic description using the Boltzmann equation and
taking place in a closed vessel in contact with a thermostatake into account these perturbations in the analysis of the
We consider the model introduced by Semep®lin order ~ stochastic behavior of the system. These analytical predic-
to describe the temperature evolution of such a reactive gd#ns are compared with the results of microscopic simula-
mixture. It is the simplest model reproducing the transitiontions based on the direct simulation Monte Caf@SMC)
between a regime of slow oxidation and a flame, i.e., allow-method[16].
ing for studying the bifurcation between bistable and The paper is organized as follows. We first give in Sec. II
monostable regimes. In the monostable domain, the systefie macroscopic equation governing the evolution of tem-
possesses an explosive character: the temperature evolutiprature in the Semenov model. Section Il is devoted to a
has a typical sigmoidal shape, revealing a long inductiorPerturbative treatment of the Boltzmann equation for particle
period followed by a violent increase and a relaxation toward/elocity distribution. The nonequilibrium corrections to the
the single stationary state. The large fluctuations growingnacroscopic equation for temperature are then derived. The
during the induction stage have been investigated in detalnost technical parts of the calculation are presented in the
[9-11]. In the bistable domain, the deterministic evolution Appendix. The microscopic simulation method is presented
reproduces a slow reaction associated with a small temper#? Sec. IV. The analytical predictions deduced from the Bolt-
ture increase. However, in the presence of fluctuations, trargmann equation and the simulation results are compared in
sitions through the potential barrier are observed and we afSec. V. Nonequilibrium effects on ignition time in the explo-
ready studied the probability distribution of the first passagesive regime and mean first passage time in the bistable do-

time [11]. main are discussed. Section VI contains conclusions.
The effects of the perturbation of velocity distribution on

tf;e te_:mf)erature rr)lroflle I|n a&n |l;1homogelneous bexot{:ermal Il DETERMINISTIC APPROACH

chemical system have already been analyiZet], but the TO THE SEMENOV MODEL

studied deviations from the equilibrium predictions were

small. The propagation velocity and the shape of isothermal We consider a closed reactor of volurecontaining a
chemical waves in inhomogeneous media can also be afeactive dilute gas. The gas is subject to an energy balance
fected by a departure from partial equilibrium. The cases oflue to an exothermal reaction in the bulk and to Newtonian
pulled[13] and pushedl14] fronts have been both character- heat transfer through the walls of the reactor. The tempera-
ized. For these isothermal systems, the departures from thare of the walls is assumed to be fixedTgf by fast energy
equilibrium predictions do not exceed a few percent wherexchanges with an external thermostat. In order to focus on
the activation energy of the reaction is larger thaar4in  thermal properties and to reduce the deterministic dynamics
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to the evolution of a single variable, Semenov mof&l Depending on the parameter values controlling the pro-
introduces the simplest feasible chemical reactibr A duction of reaction heat and Newtonian cooling, different
—products- heatQ and neglects the consumption of reac- dynamical regimes are observed. The lipg—1) and the
tant A. It amounts to considering the following scheme: curve expfe/6) can have either one or three intersection
points[8] which correspond to the stationary solutions of Eq.
A+A—A+A+heatQ (1) (5). Thus, the system has either a unique stable steady state
or two stable states);<6,, separated by an unstable one,
in the presence of an external light source. Hence, the totg) = The bistability arises and vanishes at bifurcation
number of particlesl, in the system is constant. The deter- points, at which the liney(6—1) becomes tangential to
ministic equation of energy balance re48$ exp(—&/6). For a givere, this condition yields the following
critical values ofy:

OIg—k \* k N2k T-T 2
pTo ry Q KayZk(T—Tw), 2 1 1+\/1\4 2 1 1+\/F
. . Ye —ZS s —g ex —58 x —g .
wheret’ is time; k, andk, are, respectively, the rate con- (8

stants of reaction and accommodation at the walls. Their
expressions are deduced from the frequencies of collisionBistability can appear only ife>4, in the range ofy
either in the bulk or with the walls of the reactor. Standardpounded by the critical values, <y<'1y; . For higher val-

results of kinetic theory yield17,16,1Q ues,y>y, , the system evolves at moderate rate towards a
T E* single stationary temperature which lies on the extinction
k=208, /—ex% __)’ 3) (lower) branch of the steady states denotedédyy The op-
mm KT posite, below-bistability domairy< y_ is the explosion re-
gion: after a long induction period, the temperature of the
kT system grows in a characteristic, explosive manner and
ka=Ss 2mm' (4) reaches the stable steady stéjeon the combustioruppe)
branch.
whereo is the total collisional cross section in the butijs
the mass of particl@, E* is the activation energy of reaction lIl. THE BOLTZMANN EQUATION
(1); s, is a steric factor related to an independent geometric AND NONEQUILIBRIUM CORRECTIONS
condition for reactionsSis the surface of the walls, arg] is TO MACROSCOPIC EQUATIONS
a steric factor for thermal accommodation. For the reduced o . )
temperaturef=T/T,,, Eq.(2) leads to Many kinetic theory studies of gaseous chemical systems

[1-3,68 have demonstrated that a reaction may induce a sig-

nificant perturbation of the particle velocity distribution, and
— (60— 1)}, (5)  that such a deformation influences the system dynamics. The

velocity distribution function is obtained from the Boltzmann
gguation which for the Semenov system can be written in the
form

do 1
dt 3

N

F{s
ex 9

where we have used the dimensionless time and heat va

ables
o 1/2 Q of +
’ R ’ Yy _ e _
tmanos || at, emETL amil, @ = | (OO0t vildotdv, |
and we have introduced a reduced coefficient for Newtonian i _+ af +_ af\~ ©)
heat exchange at), at),, \at],

y= S_A i_ (7) f(v,t) is the distribution function for particleé [only ve-
V sq locities are indicated explicitly as argumentsfaf Eq. (9)].
The first term on the right-hand side of this equation is the
Here,\=(y2no) ! denotes the molecular mean free path.integral for elastic collisions ande® is the usual differential
Parametery gives some measure of the efficiency of New- cross section for elastic collisiofid9]. Velocitiesv’ andv;
tonian cooling with respect to heat production by .the €X0correspond to an inverse collision in whigW v} are trans-
thermal reaction. The pref_actq@ of the two terms in EQ.  formed into{v,v,}. The next two terms on the right-hand
(5) appears because the kinetic theory calculation reveals thgqe of £q.(9) describe the effect of inelastic collisions re-

dependence of collision rates on the square root of tempergsie  to reactior(1). The loss part has the usual form
ture[17]. In the standard macroscopic description of the Se-

menov mode[8], this weak dependence of¥ is omitted,
but it has already been included in previous microscopic
treatments of thermochemical systefig,18,10Q.

of . *
E)r _f f(V)f(vy)|v—vy|do* dvy, (10
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whereo™ is the cross section for reactiéh). The gain coun- fO(v,t) = n(m/27kT)*exp — mv2/2kT). (16)
terpart
. ( This function is used to obtain the lowest approximation for
(V" Vi the dynamics of temperature by means of Ed).
| = " ANV * . X
(at)r f Fv)F(VD v —vildo (V,Vy) dv; (1D In order to calculate the contribution to energy balance

due to the reaction we must specify the reaction cross section
involves the rule of inverse collisions” and v; are such o*. We use the molecular model of reactive hard spheres
initial velocities that yieldv andv, after a reactive collision. [21], which attributes a part of the hard sphere cross section
Equation(11) must include the factos(v",v})/a(v,v;)#1 1o reactive collisions. A collision can be reactive if the rela-
which gives the change of a volume element of velocities irfive \{e_locnyg of colliding molecules satisfies the following
an inelastic collisiorf1,20]. Finally, the two last terms of Eq. condition:
(9) account for inelastic collisions of particles with the .
boundary walls, related to the exchange of energy with the &g=9", (17)
thermostat. We omit the elastic collisions with _the walls, be'wheree denotes the unit vector along the line connecting the
cause they do not change the speed of a particle, and conse-

. i centers of hard spheres at the instant of impact,ggnis the
quently do not contribute to the Maxwellization of the speed . . " : 4
distribution. The loss term is simply determined by the fre-threShOId relative velocity. The condition given in Ed.7)

quency of inelastic collisions, which for the cubic Container|mpI|es that the activation energy for reaction in this model is

has the form given by
* 2

oty _ S1 ® i
ot W_Sagv (V)(|Ux|+|vy|+|vz|)- (12 2

(18

re u=m/2 is the reduced mass of two identical mol-
es. Provided the energetic condition is satisfied, the col-
lision is actually reactive with the probability, which fol-

. . : . _ he
The associated gain portion provides the rate of appearing (gcul
particlesA with velocity v after bouncing from the wall of
the reactor. After thermal accommodation at the boundaryows from steric constraints
wall, the bounced particles have tiigased Maxwellian ve- The contribution of reactive collisions to the dynamics of
locity distribution with temperaturg,, of the thermostat, and temperature is obtained by means of Et) from integrals

the influx of particles from the walls is given by (10) and (11) with f©. For the model of reactive hard
of\* S spheres, the result has the following form in the dimension-
— 0 i .
5] sl o, a9 less varables
de\© 1 &
where f(T%v)znW(m/27TkTW)3’2exp(—mu2/2kTW) denotes the at =§\/59X 3 (19
r

Maxwellian distribution at temperaturg, of bounced par-
ticles. Concentratiom,, in f(TCiV) is determined from the con- Equation (14) in the lowest approximation reads)yT,,

dition of vanishing of the mass flux through the walls =n+/T, and the calculation of the energy exchange terms
gives then
f f%v)(v)mdv:f f(v)v, dv, (14) de\© 1
v, <0 v, >0 (a) == 5\/5')/(0—1) (20
w

where v, is the velocity component perpendicular to the

wall. Thus, Eq.(13) involves (implicitly) the distribution  The elastic collisions integral never gives a contribution to
functionf. Sincef andf{ are isotropic in the homogeneous ¢g/dt because energy is conserved in elastic collisions.
system, the orientation af, is irrelevant; we may pub Thus, in the lowest order approximation the sum of the two
=v, and calculate explicitly the integral in the influx term on terms given in Eqs(19) and (20) yields the dynamics of

the left-hand side of Eq14). temperature given by Ed5).
The relation between the kinetic energy of the particles However, the simple Maxwellian distribution is not the
and the gas temperature solution of the Boltzmann equation; the exact distribution
) function f contains the perturbation of the Maxwelli&h6)
f f(v)m—vdv= EnkT (15) induced by the reaction and the thermal exchange process.
2 2 The departure from the Maxwellian distribution results in the

correction to the standard equatidgg. (5)]. The solution for
allows us to obtain the evolution equation for temperaturef can be obtained by means of the Chapman-Enskog method
from the Boltzmann equation, after multiplying Bynv? and  [22], which is valid if the relaxation of the velocity distribu-
integration over velocities. In the lowest approximatidis  tion by elastic collisions is much faster than all the other
the Maxwellian distribution corresponding to the instanta-processes. For chemical systems it means that reactions are
neous system temperaturét), relatively slow[3,6], and for the Semenov model this condi-
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tion includes as well energy transfer through the boundaries. €

The distribution function is assumed in the form of an ex- B(6)= 9N 0 leP( )

pansion in Sonine polynomia[22], and it was show23]

that the few first terms can provide satisfactory approximante thatg contains the scaling factorN/ which indicates
tion. If the perturbation is represented by one term of thehat fluctuations are relatively weaker for large systems. The
expansion, the correction to the deterministic equatn  Fokker-Planck equation gives a simple analytical expression
can be presented in the following form: [24] for the mean first passage tir{e(6)) in a bistable

+v(3—-460+36%)|. (29

do\@ [de\©@ 1 s.q system:
a)l :<a) 1_67r2[exq_8/0)¢2r_7¢2w] 8(6,) 12
r <T>:27T( - ) exdU(6,)—U(61)],
de\@ 1 s |’ (61)]a’(6,)B(61)
+(a) 1_67qW2[exﬂ_8/9)¢2r_7¢2w]- ' ' (25)

whered, is the stable steady state of low temperatégthe
unstable steady statey’(#)=da/d@ is the derivative of
The two-term expansion gives the following extended cor-(6), andU is defined bydU/d 6= —a(6)/3(6).

rection:

(21)

IV. MICROSCOPIC SIMULATION METHOD

do\@M [de\@ [de\©@ 1 sq
-1 =\T5] Tla5] amn s (4rstra) We use the DSMC method developed by B[ith] to
dt dt dt/ 480 6 . . . . . ;
2 1 r simulate particle collisions in a dilute gas. Assuming that the
X[exp( — &/ ) (o + 4ar) — Y bow+ bcban) ] system is homogeneous, we disregard the positions of the
particles and only follow the evolution of their velocities.
do\@ 1 sq Rather than exactly calculating collisions as in molecular
* dt @7(4W3+W2) dynamics, the DSMC method generates collisions stochasti-
W cally with scattering rates and postcollision velocity distribu-
X[exp(—&l 0)(dor +4dz) — Y(PowT 4z 1. tions determined from the kinetic theory of a dilute gas. A
22 standard acceptance-rejection method is used to choose ac-

tual encounters. The collisions between two randomly cho-
In these equations; (i =2,3) are given by EqgA13) inthe ~ S€n particllesk andl are ac_cepted propqrtionally to their rela-
Appendix,w; by Eqgs.(A15), ¢, by Eqs.(A20), and ¢;,, by tive velocity (vk—y|). As in the analytical treatment of the
Egs.(A22); these coefficients are simple polynomialse¢y ~ Boltzmann equation, we choose the molecular model of re-
andq/ 6. active h_ard sph_eres. An accepted c_qII|S|o_n between part|_cles
It is to be noted that the corrections to the macroscopict @nd! is reactive, with the probability given by the steric
evolution induced by a deviation from equilibrium velocity factor s, if their relative velocity along the direction con-
distribution do not vanish for large systems, unlike the pernecting their centers at impact exceeds a certain threshold
turbations due to fluctuations. For systems of mesoscopi¥alue,g*. This threshold is related to the activation energy
size, these two kinds of effects interfere. The perturbations off the reaction by Eq(18). After a reactive collision, the
the deterministic dynamics due to a departure from equ”ibklnetlc energy of t_he particles that reacted is increased by the
rium influence as well the stochastic evolution. In recent pavalue of the reaction he&. _
pers[10,11] we developed the master equation which gov- The collisions of the particles with the walls of t_he reactor
erns the stochastic dynamics of the thermochemicai® treated_ as folloyvs. We assume thgt the container is cubic
Semenov model. The expansion of this master equation fc30 that collisions with the boundariesxny, andz directions
systems with large particle numbét gives the following &€ chosen with equal probability. Particles hitting the walls

Fokker-Planck equatiofil1] for the probability distribution ~are thermally accommodated with the probabibly, other-
of temperatureP(,t): wise they are specularly reflected. We neglect collisions with

elastic reflection, because they do not have any thermal ef-
d d 92 fect nor contribute to Maxwellization of the particle velocity
5 P00 =——Aa(O)P(O.0)]+ 5 —5 [ B(OIP(E,1)]. distribution. Velocities of particles emitted after thermal ac-
(23) commodation are sampled from the following biased Max-
wellian distribution at temperaturg,,:
The coefficiente in the Fokker-Planck equation is related to ) )
the deterministic dynamics; it is equal to the right-hand side F(V)= _(_) v |ex;{ L
of the deterministic equation given in E(p). The simplest w 2w\ kT, "+ 2KkT,,
way to include the nonequilibrium effects in the mesoscopic
description is to introduce the corrections given in El)  wherev, is the component of velocity perpendicular to the
or Eq.(22) in the coefficientr in the Fokker-Planck equation wall chosen for collision. Starting from particles at the wall
(23). The coefficient3 describes the dispersion of the tem- temperatured=1, we follow the evolution of their kinetic
perature distribution due to fluctuations according 1t energy and determine timenecessary for the temperature to

: (26)
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reach the valu@= 3, close to the unstable stationary state in [ T L LY
the bistable domain. Depending on the value of Newtonian
exchange coefficient, the system is either explosive or 6

bistable. In the explosive regime, mean timés called ig-
nition time. In the bistable case and in the presence of fluc-
tuations, it is called mean first passage time and defined as
the time necessary to overcome the potential barrier between
the two stable stationary states. We previously checked using
a master equation approaf®5,11] that the mean first pas- 5
sage time obeys E@25) for sufficiently large particle num-

bersN>5000. At smallelN, specific fluctuation effects alter ) P E N B
the behavior ofr. To remain in the domain of validity of Eq. 0.065 0.07 0.075 0.08
(25), we perform microscopic simulations for a sufficiently 7

large particle number, but nevertheless as small as possible to
reduce computation time. The chosen valNe; 10 000, of-

1
]
]
]
i
1
]
t
]
t
'
]
]
1
'
|
1
[}

log ,<7>

8]
L L L L Y L B

FIG. 1. Logarithm of the ignition time and mean first passage
time (7) vs Newtonian exchange coefficieft Thin lines are pre-

fers a good compromise. dicted by deterministic equations in the explosive regime. Thick
lines are deduced from Fokker-Planck equations in the bistable re-
V. NONEQUILIBRIUM EFFECTS ON IGNITION TIME gime. Dotted lines are obtained without nonequilibrium corrections,
AND MEAN FIRST PASSAGE TIME solid (dashedl lines include nonequilibrium corrections predicted

with one (two) Sonine polynomidk). The solid squares depict the

We now compare the analytical predictions, with or with- results obtained from microscopic DSMC simulations for the fol-
out nonequilibrium corrections, with the results of the micro-lowing parameter values: reduced activation energys, reaction
scopic simulations. The amplitude of the corrections given irsteric factors,=1, reduced heat releasg=8, particle numbeiN
Eq. (21) or Eg. (22) depends in a nontrivial manner on the =10000, ratio of mean free path and length of the sysi€in
perturbations induced by cooling and reaction. For a fixed=0.5.
value of Newtonian exchange coefficieptcontrolling the
distance from the bifurcation, the nonequilibrium correctionsmean first passage time including nonequilibrium effects are
induced by reaction prevail when the activation energyobtained by introducing corrected valueslbfinda’ in Eq.
reaches =5 and they increase with heat releageCorrec-  (25). The nonequilibrium corrections to the diffusion tegn
tions of both origins are comparable for the parameter choicere supposed to be negligible.
e=4.5 andq=5 examined later. In the bistable domain, thanks to the presence of fluctua-

We first study the behavior of the system in the explosivetions in a system o= 10 000 particles, the potential barrier,
regime. Following an analogous procedure as for microseparating the two stationary states, is overcome and explo-
scopic simulations, the ignition time values are obtained bysion is observed. As shown in Fig. 1, the variation witlof
integrating the unperturbed and corrected deterministic equahe results of the microscopic simulations in the bistable do-
tions over a time such that temperature varies fidml to  main agrees very well with the stochastic predictions includ-
60=3. As shown in Fig. 1 foe=5 andq=38, the nonequi- ing nonequilibrium corrections with one Sonine polynomial.
librium perturbations qualitatively affect the behavior of the Due to the shift of the bifurcation to higher valuesafthe
system around the emergence of bistability and stronglyliscrepancy between results taking nonequilibrium effects
change the value of ignition time. When using ofte0) into account and the unperturbed predictions is enormous
Sonine polynomidb) in the calculation of nonequilibrium and can reach several orders of magnitude.
corrections, the critical value of, associated with the diver- Exothermic chemical systems near a bifurcation present
gence of ignition time, is 10% (13%) higher than the unper-an exacerbate sensitivity ta priori small disturbances of
turbed prediction. In a large interval defined by 0.€A4L  microscopic origin. As shown here in the case of a bistable
<0.077, the uncorrected deterministic equation ensures thaystem, the macroscopic consequences of a departure from
the temperature of the system will remain small whereas expartial equilibrium may be dramatic: explosion occurs in an
plosion is predicted when taking into account the nonequiextended domain of parameters where unperturbed mac-
librium corrections. In the explosive regime, the microscopicrosocpic equations predict a soft evolution without explo-
simulations qualitatively confirm the analytical predictions sion.
given in Egs.(21) and (22). Their quantitative agreement  The origin of the discrepancy between microscopic simu-
with the nonequilibrium corrections calculated with one So-lations and standard deterministic approach can be clearly
nine polynomial according to E@21) is excellent. The dis- attributed to nonequilibrium effects as revealed by the varia-
crepancy with the unperturbed deterministic prediction istion of ignition time with steric factor for reactios, , in the
very large: near the bifurcation point, for=0.07, the modi- monostable domain. The results of the different approaches
fied value of the ignition time is about ten times smaller thanare given in Fig. 2. The unperturbed deterministic equation
the unperturbed value. In the bistable domain, we use thé&) does not depend o) . For given values of, g, andy,
expression of mean first passage time given in (2§ and  the ignition time tends to the unperturbed value predicted by
deduced from the Fokker-Planck equation, to compute th&q. (25) when the steric factor tends to zero. For parameter
unperturbed value dfr) depicted in Fig. 1. The variations of values where nonequilibrium effects are dominated by the
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FIG. 2. Ignition time(7) vs reaction steric factos, in the ex- FIG. 4. Same as Fig. 2, but for the following parameter values:

plosive regime for Newtonian exchange coefficigrnt0.0695. The reduced activation energy=4.5, Newtonian exchange coefficient
values of the other parameters are the same as in Fig. 1. Dotted line=0.0942, reduced heat releasg=5, particle numberN

is the prediction of the deterministic equation without nonequilib- =10 000, ratio of mean free path and length of the sysidin
rium corrections. Soliddashedl line is the deterministic prediction =0.5.

including nonequilibrium corrections for or{ewo) Sonine polyno-

mial(_s). The soli_d squares depict the results obtained from microtjgns, and in particular the expression of the nonequilibrium
scopic DSMC simulations. terms induced by the cooling at the walls, we perform a
o ) ) ~ second series of simulations for smaller values of activation

contrlbut[on of reaction, departure from partla! equilibrium energy,e =4.5, and heat releasg=5. For these parameter
monotonically decreases as the perturbations induced by rez,es; the corrections induced by reaction are smaller than
action become weaker. We also study in Fig. 3 the variation the previous series at=5 andq=8. The order of mag-
of ignition time with s, but for a higher value ofy. For  piy,de of the two sources of nonequilibrium, i.e., exothermic
s;=1, the nonequilibrium corrections predict that the systeMgaction and cooling at the walls, become comparable, but
is monostable, but as; decreases, the bifurcation point is the two contributions have an opposite sign as shown in Egs.
crossed. In the bistable domain, the predictions of the meagy1) and (22). Whereas nonequilibrium effects for high val-
first passage time, deduced from Fokker-Planck equation fqliag of¢ andq clearly result in a decrease in ignition time
nonequilibrium corrections including two Sonine polynomi- 54 postpone the emergence of bistability for higher values
als, agree rather well with the microscopic simulation results ¢ y, more intricate results are obtained in Fig. 4 for

In order to check more precisely our analytical predic-_4 5 andq=5. As expected, the simulation results and the
analytical predictions tend to the unperturbed deterministic
ignition time as the reaction steric facter tends to zero.
However, ass, increases, the nonequilibrium corrections
predict a nonmonotonic evolution of confirmed by the
simulation results: the ignition time goes through a minimum
for s,=0.5 and then increases. Fer=1, the simulation
results even lead to an ignition time larger than the unper-
turbed deterministic prediction. Note that the agreement be-
tween simulation and analytical predictions observed in Fig.
4 constitutes a fine discriminating test of theory: we check
variations of ignition time smaller than 5%. Obtaining Fig. 4
e required a higher precision than Fig. 2 for the determination
0.6 0.7 0.8 0.9 1 of the simulation results: the average valuesrofere ob-
s tained from samples of 1500 runs whereas averaging over

_ . _ 200 runs was sufficient for the precision needed in Fig. 2.
FIG. 3. Logarithm of the ignition time and mean first passage

time (7) vs reaction steric factas, for Newtonian exchange coef-
ficient y=0.077. The values of the other parameters are the same as VI. CONCLUSION

in Fig. 1. Equation(25) without nonequilibrium corrections predicts . L
7=1.8x 10?° whatevers, . Thin lines are predicted by deterministic An exothermal reactive system has been studied in the

equations with nonequilibrium corrections in the explosive regime ViCinity of the bifurcation leading to bistability. We obtained
Thick lines are deduced from Fokker-Planck equations in thdhe analytical corrections to the macroscopic dynamics in-
bistable regime. Solidashed lines include nonequilibrium correc- duced by a perturbation of particle velocity distribution. Our
tions predicted with ondtwo) Sonine polynomidk). The solid  theoretical predictions agree well with the results of the mi-
squares depict the results obtained from microscopic DSMC simucroscopic simulations. These nonequilibrium effects have
lations. been shown not only to influence the deterministic evolution
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but also the stochastic behavior. We have demonstrated thatia the dimensionless variablés) and (7), these equations

departure from Maxwellian velocity distribution may induce have the form of Eqs(19) and(20).

qualitative changes of the system properties. Whereas the In the next order approximatiori{®) is used to calculate

system was bistable according to the standard deterministibe perturbation terms in the Boltzmann equation; for ex-

approach, it can become monostable in the presence of noample, the time derivative dfhas the form

equilibrium effects. It means that explosion may occur in a

parameter domain that was considered safe in the standard (5_f (d_T

description. Even when the system remains in the same re- at dt

gime, the quantitative effects can be enormous. In the

bistable domain, the mean first passage time can be dimidn the higher order approximatiohgcontains the perturbation

ished by several orders of magnitude. In the explosive reof the Maxwellian distribution

gime, the ignition time can be, for example, decreased by F= 01+ ) (A4)

nearly a factor of 10. Contrary to the corrections introduced :

in the deterministic dynamics by mesoscopic fluctuationsy, ihe homogeneous systefis an isotropic function which

[9,26,10,11,2% these nonequilibrium effects induce macro- depends only om2. Correctiony is assumed in the form of

scopic perturbations that do not vanish in the limit of large,, expansion in Sonine polynomidl2]. The two first poly-

systems. nomials are excluded due to conservation of particle number

and energy in elastic collisions. It has been shown that suf-
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where the Sonine polynomials of=mv?/2kT used here are
APPENDIX: CHAPMAN-ENSKOG SOLUTION given by

OF THE BOLTZMANN EQUATION (9)

; ; i i i (2)( ~2 5 5, 1,
The basic assumption of the method is that elastic colli- Sip(c)=45—5Cc°+ 5C

sions are the dominant process in the system. Accordingly, 8 2 2

the time derivative and the terms related to inelastic colli- 1

sions in Eq.(9) are treated as perturbations of the elastic SB)(c)=— -2+ —c4— Zcb. (AB)
collision integral. The lowest order solution fbis given by

the Maxwellian distribution in Eq(16). Introducing this i . ) ,
function in the reaction and exchange terms of the Boltz-/ "€ equations for coefficients, andas in expansion(AS)

mann equation and integrating according to Et5), we € obtained by integrating over velocities the Boltzmann
’ i inli H Ll 2

obtain the contributions to the rate equation for temperaturegduation multiplied by the Sonine polynomiag)(c?), for

For the model of reactive hard spheres, the terms connectdd 2,3. Only the terms that are linear with respect to the

to reaction and energy exchange are, respective'y' given b@erturbationd/ are retained in the kinetic equation in this
approximation. The equations for coefficiematsare

d3
dt2

(0) k 1/2 *
nkT) =2Qon? —) S GXF{ - —) (A1)
; m r kT —Ri—Wi=k223ak\]ik, i:2,3, (A7)

d3 (0) S /2 1/2
(d_inkT) = _Sa_n(_) (kT—kT,). (A2) whereR;, W;, andJ;, denote the following collision inte-
t w Voiam grals:

1 : . _ _
R=3 f FOROSIA D) + S el — ST E?) — Sik(eI)lv—vildo* dvidv, (A8)
S(2kT\* 0T ‘
Wi:nV(ﬁ) L>0exp(—02) S&',é(%cz)—s(l')z(cz) c3dc, (A9)

1 . . _ .
Jk==73 f FOHO(SH(c'?) +Si(ci?) — S{ikc?) — Seh) X [Sih(c?) + Sih(ci?) — Sih(c?) — Sik(c5)|v—Vi|dodvidv.
(A10)
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In the R; integral for reactiong, andc,, are the final veloci- 1 1 €

ties obtained from initial ones andc, after a reactive col- a3~ 35| 5 EXF{ 3 (rotdrg)

lision. Specifically for the Chapman-Enskog method, the

term of the time derivative vanishes upon integration over —

velocities. +ty| g | (WatAwg) | (A18)

The integrals;, for elastic collisions can be extended on
the entire, unperturbed cross section for elastic hard The condition for vanishing of the mass flux gives in this
sphere$6]. It is then convenient to represent all the collision casenV\T,= - (az(2)+ %ag(z))n\/f/&
integrals in Eqs(A7) in the dimensionless form, obtained by Using this solution for, the correction to the equation of
scaling byon?(kT/7m)*2 The elastic collision terms are temperature dynamics can be obtained from the Boltzmann
[21] equation by means of Eq15). The needed reactive colli-
sions’ integrals have the following form[scaled to

31 2 1/2.
Jo= =4 Ip=du=1, Jg=— . (Al) O KTImmH:
The reaction terms are given by f f(o)f(lo)(s(li/)z(cz)+Sgi/)z(ci))(crz_Cz)|V_V1|dU'* dv,dv
s q e
R=——expg — =|r; A12 1s &
o exp( 0)“’ 2 =§’7qexp(—5 bir, (A19)
where where[21]
B 1 1q e
=737 2%y _1e (&)
¢2I’ Z 5 6 )
3+3s 1<s)2 3qg 1eq 1(q>2
a=—s=t—-———=|=| t5=-—5=->— 75 - .
16 46 4\6 86 400 126(A13) ~ 1 38+382 1/e\3 20
$5="16 894l 60 (A20)

The terms related to the energy exchange at the walls have
the form The terms for the energy exchange are calculated by means

of the integral

1-0
W= 7%1(7) Wi (A14) S o270 o, , 1 sq
Say f g T S12(CY) [uxctde=— 5y =~ diw

with 0x>0

(A21)

3-20 —16+260— 962 .
Wy = (T) ,  W3= (4—02) . (A15) with

Using the above expressions for the collision terms, we ob- :39+ 1 _ o+1 (A22)
tain the explicit solution for coefficients; for the model of 2w 2 W

reactive hard spheres. If only one term is included in expan-
sion (A5), the solution of Eq(A7) has the form The one-term expansion gives the following correction to the

temperature dynamics:
1sq €
QT g T3

1 1-6
ro+ 275~ | W2

d3 (1)
(A16) (E >Nk )
The corresponding correction té?) following from the con- d 3 ©1 sq
diton of vanishing of the mass flux isn{Y\T,= —(aznka) Er?rz[exq—slﬂ)¢2,—y¢2w]
r

—a)N \JT/8. For the expansiofA5) containing two terms,
the solution is given by 1 sq

d3
+(a§nka)w 1—67W2[8XF(_8/0)¢2r_ Yol

1 1 €
a2(2)2a2(1)+ 1_203rq 5 QX% - 5 (r2+4l’3) (A23)
1-6 If two terms of the expansion are included, the extended
+y| — + ; '
Ny (W 4W3)}’ ALD correction has the form
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d 3 ka(l)— d3 »
dt2" ) “lat2"

(1)
+
1

d 3 ©1 sq
ainka r 4—807(4I’3+rz)[eXK—S/Q)(¢2r+4¢3r)_7(¢2W+4¢3W)]

. d3k)(°)1srq

pricil 0 . @7(4W3+W2)[exﬂ_8/9)(¢2r+4¢3r)_3’(¢2w+4¢3w)]- (A24)
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