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Exchange-driven growth
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We study a class of growth processes in which clusters evolve via exchange of particles. We show that
depending on the rate of exchange there are three possibilitje&rowth—clusters grow indefinitelyll)
gelation—all mass is transformed into an infinite gel in a finite time, @hdinstant gelation. In regimes | and
Il, the cluster size distribution attains a self-similar form. The large size tail of the scaling distribution is
®(x)~exp(—x>""), wherev is a homogeneity degree of the rate of exchange. At the borderlinereadethe
distribution exhibits a generic algebraic tad,(x)~x"°. In regime I, the gel nucleates immediately and
consumes the entire system. For finite systems, the gelation time vanishes logarithficllyN] =2, in
the large system size limMl—o. The theory is applied to coarsening in the infinite range Ising-Kawasaki
model and in electrostatically driven granular layers.
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I. INTRODUCTION We investigate homogeneous exchange kerké¢isi,aj)
=a®K(i,j). In particular, we consider the product kernel
A multitude of growth phenomena in physical processeK(i,j)=(ij)* and its generalizationK(i,j)=i"j*+i#j”
are driven by exchange of particles between clusters. Exwith v+ =2\ andv=u. We obtain a complete description
amples include droplet growth via evaporation and recondersf the problem in the asymptotic scaling regime. The overall
sation [1], island growth in deposition processg], and  range of possible behaviors and the emergence of self-similar
phase ordering3-5]. Exchange processes have been alsaize distributions are as in aggregation and migration pro-
used to model social and economical systems including se¢esses. However, there are quantitative and qualitative differ-
regation of heterogeneous populatigf$ the distribution of  ences. Unlike aggregation, the gelation transition is com-

wealth in a society7], and growth of urban populatio8l.  plete, and unlike migration, the size distributions are
In exchange processes, clusters are composed of “atomsytended rather than compact.
(monomers Monomers detach from one cluster and reattach  \ye show that the behavior falls into three categories.
to another cluster. We shall consider the detachment con- (1) Growth: Whenv<2 and\ <3/2, clusters grow indefi-
trolle_d limit where the time SC"’?'e for transport between CIUS'nitely. The typical cluster size grows algebraically with time,
ters is much faster than the time scale for detachment. E . t4(3-2)) " and the cluster size distribution is given by a
change processes incorporate both reversible and irreversible ;. . * =~ "~ : . Dy
features. Clusters may grow or shrink, yet when a monome?elf's'm'lar ghstnbunon with a stretched expongntlal tall.'
attaches to another cluster, its respective cluster disappears. (I!) Gelation: Wheny<2 and\>3/2, the entire mass in
This irreversible step provides the mechanism for clustef'€ System is suddenly transformed into an infinite gel at
growth. Therefore, exchange-driven processes are fundame@élation timetc. The cluster mass diverges algebraically
tally different from irreversible growth processes, particu-near the gelation poink~ (t.—t)¥*~?", and a scaling be-
larly aggregatiorj9-12]. havior similar to the one underlying the growth phase is
Such mass transfer processes are governed by an gleund. In the borderline case=2 the scaling function has
change kerneK(i,j) that represents the rate of transfer of an algebraic tail with a universal exponahx) ~x°. Scal-
monomers from a cluster of sizeto a cluster of sizg. ing breaks down in the special point=px=2 where the
Generally, the rate of monomer exchange between two cluddistribution is log-normal.
ters depends on their sizes. Moreover, we consider the case (lll) Instant gelation: Whem>2, the gelation time van-
where there isno preferable direction for exchanges, i.e., ishes logarithmically with the system size~[InN]~ 2.
symmetric exchange kernels(i,j)=K(j,i). This is unlike In particular, for an infinite system, gelation is instantaneous.
migration processes where the exchange is preferdfiial This paper is organized as follows. In the following sec-
gets bigger” or “rich gets richer}. Migration underlies cer- tion, we define the exchange process. The governing equa-
tain physical processeg.g., coarsening with conserved or- tions are analyzed using scaling techniques and exact solu-
der parametef3,4]) as well as social and economical pro- tions for the moments. We first analyze the product kernel
cesse$7,8]. (Sec. ll) and then, the generalized kern@ec. 1\). The
gelation time in finite systems is investigated in Sec. V using
heuristic arguments and numerical simulations. Applications
*Electronic address: ebn@lanl.gov to coarsening in the Ising model with infinite range Ka-
"Electronic address: paulk@bu.edu wasaki dynamics and in electrostatically driven granular lay-
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ers are briefly discussed in Sec. VI, and conclusions arenass is conservedd(d7)M,=0, and higher integer mo-
given in Sec. VII. ments satisfy the following hierarchy of equations:

dM [n/2]

Il. EXCHANGE PROCESSES n_o 2
We consider the following elementary exchange process. dr =1

The system consists of an ensemble of clusters and cluste@my for integer values of the homogeneity index is this

evolve via transfer of a single monomer from one cluster tonierarchy closed. We employ different approaches for differ-

n
(2|)Mn—2I+)\- (5)

another. Symbolically, ent\’s. ForA<2, we perform a scaling analysis of the rate
K(ij) equations and fok =2, we analyze the moment equations.
(i,j) — (i£1j+1), (1)  This general analysis is augmented by exact solutions for the

o . _ _ integer values\=0, 1, and 2.
with i andj the number of particles in each cluster and

_K(i ,j) the _exchange I_<erne|. In an excha_nge event, a cluster A. Scaling (A<2)

is equally likely to gain or to lose a particle. Since the ex- ) ] i

change process is unbiased, the matrix of transition rates is WhenA<2, dimensional analysis of E¢4) shows that

symmetric:K(i,j)=K(j,i). Unbiased exchanged processesthe typical cluster size grows as

were studied in Ref[7] and more systematically in Refs.

[13,14. k~7% with a=-——.
Let Ac(t) be the density of clusters containitkgmono- 2—\

mers at timet. It evolves according to the following rate

(6)

Usingd7/dt=M,~ r**~1) the growth of the typical scale

equation: is expressed in terms of the physical time,
dA
dt =2 AAKGD St 81— 28] (@ i \<3/12
! k~1{ exp(constXt), A=3/2 (7)
This equation assumes perfect mixing, or equivalently, ab- (te—1)5, 3/2<\< 2.

sence of spatial correlations. We restrict our attention to

monodisperse initial conditiongy,(0)= &y ;. The exchange The dynamical exponent i8=(3—2\) 1. As long as\
process has a single conservation law. As reflected by the:3/2, clusters grow indefinitely and the characteristic size
evolution equations, the total mass is conserigs=1 with  grows algebraically with time. Fox>3/2, a gelation transi-
M,=Z2,k?(t) the moments of the size distribution. It is tion occurs, i.e., the system develops a giant cluster in a finite
natural to consider homogeneous kernel§(ai,aj) time t..

=a®K(i,j), with 2\ the homogeneity degree, and we We seek a scaling solution of the rate equations

present results for the product kern€{i,j)=(ij)* and the

generalized homogeneous kern€(i,j)=i"j*+i*j* with Al m)=1"2D(k 7). (8)

u+v=2\. The special casp=1 was studied in Ref.13]. . ) _
Mass conservation dictates the normalizatigs=1, where

J,=[dx @ d(x) is theath moment of the scaling distribu-

tion. Technically, the scaling function describes the behavior
For the product kerneK(i,j)=(ij)*, the rate equations in the limitsk—~, 7—o, with the variablex=k7~ ¢ fixed.

(2) read Thus, we consider the continuum limit of the rate equation

(9l a1)A(k, 7) = (9?1 9k?)[k*A(k,7)]. The scaling function

lll. THE PRODUCT KERNEL

O _ M, [(K+ 1) s 1+ (K= 1M — 2KMA], satisfies the second-order linear differential equation
dt ,
d d
with the boundary conditio®,=0. These evolution equa- (2—7\)@[XACD(X)]+X&¢(X)+2¢(X):0- 9

tions demonstrate the diffusive character of the exchange

process. Absorbing the factdf, into the time variable Multiplying this equation byx, employing the identities

; X2’ +2xP = (x2D)’, x¥"=(x¥)"—2¥’, and integrating
’T:f dt’ M, (t), (3)  once yields (2 N)[(x*T1®) —2x*® ]+ x?P(x)=0. Inte-
0 grating a second time gives the scaling function
we recast the governing equations into

XZ*)\

e

dA d(x)=C xl‘xexp{—
k
F=(k+ DM+ (k=1 A — 2K A, (4

with C=(2—\)~?@~M/T[1/(2—\)] found from the condi-
Alternatively, one can study integer moments of the size distion J,=1. The nature of the scaling function differs from

tribution. The total density obeysi(d7)My=—A,, the total  that found for migration, wheré&(I,m)=0 for I<m [8]:
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Exchange is characterized by extended distributions, while B. Multiscaling (A=2)

migration is charapterized by compact distrib.utions. In this special case, the moment equati¢Bisare closed
There are two important casg¢g,13] for which the rate for n=2. For example

equations can be solved exactly. When the exchange kerne

is independent of the cluster size£€0), the rate equation is dMm,
(d/d7n) A=A, 1 +A,;—2A, and the cluster size distribu- d; M2,
tion [7] is
dM;z
A= 2Tl 1(27) = 1ys2(27)], (12) “ar ~oMs,
wherel , is the modified Bessel function of ordar[15]. In dM, —19M .+ 2M 14
agreement with the general scaling analysis, the typical scale dr 4 2 (14

grows diffusively,k~ 72, and the scaling function is given

by @ (x)=(47) Y exp(—x%/4). The solutions to these equations are combinations of
For the pure product kernelx&1), the rate equa- exponentials:M,=e?", M;=e%", M,=2e!¥—1e?", etc.

tions read ¢/dt)A = (k+1)As1+(k—1)A,_;—2kA, (in  The physical time t=3[1—e 2] is found from

this caset=r). Substituting the mass-conserving ansatzt=[jdsM, *(s), so

A=(1-u)?u*"! reduces the infinite set of rate

equations into a single ordinary differential equation Mo=(1-2t)71,
(d/dt)u=(1—u)? subject to the initial conditiom(0)=0. 5
The size distribution in this caga3] is M3=(1-2t)"",
=1 M4:§(1—2t)—6—3(1—2t)—1. (15)
A=——. (12 5 S
(1+)k*t

Therefore, the gelation time ig=1/2. Asymptotically, the
first term in Eq.(5) dominates: ¢/d")M,=n(n—1)M,,
implying M ,~exgn(n—1)7] for n>1. Close to the gelation
time (t—t.), the moments diverge according to

The typical cluster size grows ballisticallik~t, and the
scaling function is purely exponentiab(x) =e*, again in
agreement with the above scaling results.

When 3/2<\<2, an infinite cluster is formed at some M (1)~ (t,—t) ~"( =172 (16)
finite time t,, termed the gelation time. The gelation time " ¢ '
dependson the initial condition and its determination re- Hence moments exhibit mu'tisca"ng asymptotic behavior’
quires the full ime dependent behavior. Even without know- e properly normalized momenksX"/M; diverge.
ing the gelation time exactly, one can describe the behavior T4 getermine the asymptotic form of the size distribution
in the pregel stage since the size distribution still admits theye treatk as a continuous variable. Far=2, Eq. (4) be-
scaling form(10). Thus, for allN<2 we have comes ¢/97)A = (%1 9k?)[k2A.]. This equation is equidi-

mensional ink [15] thereby suggesting use of the variable

2N -1 ¢=Ink instead ok. Making the transformation from,(t) to
A(7)=C K M (BN Mgy — ————1. (13)  A(£,7) defined viaAdk=A(£)d¢, we recast the above
(2=)) equation forAy(t) into the following constant coefficients

diffusion-convection equation:
From this equation we see th&j—0 in the limit 7—o
(t—t;). In other words, the gelation is complete at the gela-
tion point: A (t)=0 for t=t.. This surprising behavior is
akin to a first-order phase transition. By contrast, gelation in
aggregation processgd6,17 is similar to a continuous jith the initial conditionsA(¢£,0)= 5(£), the solution reads
trans_ition—at the gelation point, the gel has an infinitesimala (¢, 7) = (47 7) ~Y2exd — (&+D¥(47)]. The original distri-
fractlgn of the entire mass, then the gel continuously growsytion A, =k~ 1A(£) is log-normal,
and finite clusters disappear only whieaoo.

Complete gelation can be alternatively shown as follows.

Let us assume that the cluster size distribution approaches Adm)=(4mr) %" Tng/zeXF{—
a constantd,— Ay >0 ast—«. From Eq.(4), the quanti-
ties B,=kMA; satisfy the discrete Laplace equation Again, the distribution vanishes at the transition point, i.e.,
By+1+tBk-1—2Bx=0 for k>1 andB,=2B;. Solving re- the gelation transition is complete. Moreover, the mass dis-
cursively yieldsB,=kB;=kA} or A} =k A% . Mass con- tribution is algebraic,A,(t)~M,(t) k3?2 for sufficiently
servation X kA; =1, impliesAT =0, and thencé =0 for  small massek< /In[1/(1—2t)]. The total density vanishes
all k, i.e., complete gelation. quite slowly near the transition point,

J a) B 9
9 9E A(g'T)_a_ng(g'T)' (17)

Ink)?
%. (18)
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1 \"12 homogeneity degreeN2 homogeneous kernels are character-
Mo(t)~ (1~ 2'[)1/8( InT—5; ZI) : (19  ized by an additional exponent defined through the
asymptoticK (1,j)~j” asj>1. Fori<j the exchange kernel
We note that the density follows a different law than the onescales as K(i,j)=i*K(1,j/i)~i#j", with 2\=v+pu.
characterizing higher than first momer(iss). Therefore, we consider a specific generalization of the prod-
The size distribution does not follow a scaling behavioruct kernel that exhibits these homogeneity properties
asymptotically and the log-normal distribution is responsible
for the multiscaling behaviof16) of the moments. This dif-
fers from aggregation processes where the moments diver
asM(t)c(t.—t) “n with the exponenty, linear in n [16].

K(i,j)=1"j#+i#j". (23

Yore precisely, the asymptoticK(i,j)~i#j” occurs for
i<j if v=pu; since the kernel is symmetric, we can assume
. that v= u without loss of generality. We expect that the ho-
C. Instant gelation (A>2) mogeneity indices govern the overall qualitative behavior
Gelation is now instantaneous and complete, that is(growth, gelation, and instant gelatiorwhile the precise
A(t)=0 for all k whent>0. To prove this assertion we form of the kernel controls quantitative characteristics such
assume the opposite and arrive at a contradiction. Our analys the size distribution.
sis follows the ingenious argument devised by van Dongen For this exchange kernel, the rate equati@hbecomes
[17] in the context of aggregation processes. A
The momentdM ,, with integern=2 evolve according to k " " "
Eq. (5). The first term in the sgmmation yields a lower gound at Ml (kD Ay (k= 1) A1 = 2KA ]

for their growth rate,
° MK+ DA+ (K= D)#A 1= 2K A

dM
drn = —aa=n(n=1) (M)A, (20 The following generalization of the modified time variable
t
with A=(A—2)/(n—1). The second inequality follows T:f dt’w/Mv(t’)MM(t’) (24)
from the Jensen’s inequality as shown below. Consider the 0

auxiliary functionsM,,, evolving according to o ) o
handles the two indices symmetrically. In terms of this time,

the evolution equations are

M, .
i =n(n—1)(M,)*"A, (21

Ak 14 14 14
Solving this equation subject to the initial condition dr =RIKFD At (kD) A1 = 2K0A]
M,(0)=1 vyields M,=[1—n(A—2)7]" YA, Therefore,
M,—» ast—1,=[n(A—2)] . SinceM,=M,,, the mo-
mentM, diverges at least at,. The series of times,, sets
an upper bound for the gelation time since all moments
should be finite forr<r.. As 7,—0 whenn—~, we con-
clude that7,=0, and thence, the gelation time vanishes dM [n/2] (

+RTI(K+ 1) A+ (K= 1)#A 1= 2KFA],

with R=+yM ,/M,. Of course, the dynamics conserve mass:
(d/d7)M,=0. Higher integer moments evolve according to

t.=0. 22

The inequalityM,,_,,,=(M;)*™* with A=(x—2)/(n
—1) is derived as follows. Let the parametgrs=0 satisfy
2ip;=1 and let®(x) be a convex function. A convex func-
tion satisfies the Jensen inequality

[RMn 2|+V+R Mn 2|+,u,] (25)

Whenv<2, the scaling analysis follows closely the prod-
uct kernel case. The overall growth la@® and(7) remain
unchanged and the homogeneity degkeeharacterizes the
* scaling behavior. However, we shall see that the individual
2 pj®(xj)><1>( 2 pjxj) . (22 indicesy and u play an important role since they dictate the
- =1 range for which this law holds.

First, we substitute the coefficiens=jA; (from mass con- fun\::\iieorS]?;(kx)aszct?s“f:;gs solution of the for8). The scaling
servationZ;jA;=1) and the convex functlori)(x) xt+A

©

(A>0 for \>2) into the Jensen inequality. Then, choosing 2 d
x;=j""' and using the relation&p;x;==j"A;=M, and — [ UXV+VX#)q>(x)]+x—cI>(x)+2<I>(x) 0 (26
2p;j®(x;)=M;_,., we indeed obtain the above inequality. dx?

with the constantd)=a A and V=a 'A"! determined

IV. GENERALIZED KERNELS . . .
from the ratioA=J,/J,. The scaling function reads

The rateX(i,j) underlying exchange processes are typi- .
cally homogeneous functions ofandj (at least for large q)(x)zc;ex _f dy; )
andj). We restrict ourselves to such kernels. Apart from the Ux"+Vx* 0 " Uy’+Vy*

(27)
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The scaling solution involves three parametdrsV/, and
C. Substitutingl = a A andV=a"*A" 1 into the equality

A=vJ,/J, yields a closed equation for the paramefer L

OnceA is determined, the parametdgsand V follow, and 2
finally, the amplitudeC is found from the normalization v I
J]_:l.

We now illustrate this procedure for the special case 11

(v,u)=(1,0), i.e., for the pure sum kernKl(i,j)=i+j. In
this case, the integral on the right-hand side of &yY) is
readily computed. Usiny = 3A/2 andV = 3/2A we arrive at

d(x)=C x(1+A?x)2 lexd —aA?x], (29 m

with a=2A 3. Substituting Eq(28) into the right-hand side FIG. 1. The three types of behaviors: scaliihy ordinary gela-
of the equalityA=\/J,/J; transforms it into the equation ton (1), and instant gelatiodll).

(e/a)®I'(a,a)+a =1, involving the incompletd™ func- o

tion (see the Appendjx The amplitude is then explicitly index governs the distribution of sme(large clusters. In-
evaluated to giveC=aA®. From the above transcendental deed, from Eq(27), the extremal behaviors are

equation we finda=2.82649, and hencé=0.428 397

andC=0.017 471 3. Interestingly, there is a nontrivial alge- B(x)~
braic correction to the leading exponential behavior,

d(x)~x%exp(—aAX for largex [18].

On the boundaryr=2 separating regime Ill from the Apart from the point ¢,u)=(2,2), the scaling solution
two other regimes, the solution of E@27) significantly  holds for all otheru<2. As in the product kernel case,
simplifies. We find A=1[2(2—u)], U=1/4, and growth occurs when\<3/2 and gelation occurs when
V=1/(2— u)?; consequently, the scaling function is 3/2<\<2.

For v>2, the scaling solutioi27) predicts® ~x*~" for
~i el large x. Such behavior is inconsistent since the mom&nt
(29 diverges, and instead, instantaneous gelation occurs. The mo-
mentsM,, with n>1 satisfy Eq.(25) and the first term in the
summation yields a lower bound for the moment growth
(d/d")M,=Rn(n—1)M,_,,,. Keeping only this term and
}_1 absorbing the factoR into the time variable, the previous

X1+ x<1

exgd —x?""], x>1. (32

NG

d(x)=Cx H 1+

42— p)?
The constant

B(ii proof applies. Thus, gelation is instantaneous.

2=p 2= p Instant gelation arises when>2, so it does not happen

if, for instance, the exchange rate grows no faster than the
mass,v=<1 (this condition is satisfied for the exchange pro-
cesses discussed below in Sec).\ih some situations, how-
ever, the conditiorv=1 may be violated. We merely men-
tion that in aggregation—processes realized via collisions
and thus with rates whose growth is more restricted than in
. o . _ exchange—kernels witlr>1 do appear in several applica-
Hence the size distribution is algebraiby(r)~7**k™®,  ;on¢ ra%ging from the coalescen(e(la3 of rain dr@b&—zﬁpto

. _ _ _l_ _ . . . . _ - ”
with a—(f2f_ .)‘) | _2/(ﬁ #). With thlshalgebrayc (:(Ijlt\)/er d_the coalescence of planetesimals into plaf2®d and stars
gence, sufficiently small moments are characterized by ordizy1o piack holeg23].

nary scaling behavior while higher moments exhibit multi-
scaling behavior:

C=2[2(2—p)] "

is expressed in terms of th@ function. Remarkably, the
scaling function(29) exhibits a universal largg-asymptotic
behavior

d(x)~x"5. (30)

To summarize, there are three types of behaviors, deter-
mined by the homogeneity degregsand v (Fig. 1).

(I) Growth—The cluster size grows indefinitely, and the
size distribution obeys scaling.

(Il) Gelation—The cluster size diverges in a finite time
and the size distribution follows a scaling solution near the
This behavior follows from the leading term in the mo- gelation time. Gelation is complete.
ment equation(25), viz., (d/dr)M,=n(n—1)M,R. With (IN) Instant gelatior—the cluster size distribution van-
Rz\/MM/MZ:AT*1 and A= /4, this equation becomes ishes for allt>0.

(d/d7)M,=[an(n—1)/47] M, leading to the multiscaling The cluster size distribution exhibits a scaling behavior in
behavior(31). regimes | and Il. Scaling behavior underlies the system ev-
The determination ofA in the general situation requires erywhere except for regime Il and the point (2,2). In the
numerical evaluation, yet the form and nature of the sizébulk of regimes | and Il the size distribution is a stretched
distribution is clear. For example, the minimghaxima) exponential, while in the boundary with region l1ll, the clus-

(=1, n<4
My~ Tan(n—l)m, n>4. (31
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ter size distribution has an algebraic tail. Finally, at the point 30
(m,v)=(2,2) scaling breaks down and the distribution is
log-normal.

V. THE GELATION TIME

Instantaneous gelation is certainly counterintuitive: a fi-
nite time singularity that occurs at tinte=0 Instantaneous
gelation was investigated exclusively in the context of aggre-
gation[12,17,24—28 For infinite systems, it is impossible to
quantify the difference between two instant gelling systems. o . .|
Finite systems, on the other hand, naturally quantify how fast 10" 10° 10" 10" 10" 10° 10" 10° 10
a system gels. N

_C‘?”S"?'er a system cons_|st|ng initially meonomers'_ In FIG. 2. The system size dependence of the gelation time. Shown
a finite imety, all mass in the system condenses 'nt(_) 3re the average gelation tinig, and the normalized varianeg, vs
single “runaway” cluster. How does the average gelationye system size. The Monte Carlo simulation results correspond to

time Ty=(ty) depend orN? When growth or ordinary ge- an average over andependent realizations of the exchange pro-
lation occurs, the answer follows from our previous analysiScess withx = 3.

In the scaling regime, the growth la@w) indicates that the
condensation time grows algebraically with the system size, dk
Tn~NY2_ In the case of ordinary gelation, the average ge- a=k”‘1. (35)
lation time saturates at afrindependent valuély—t.. The
interesting case is instant gelation where the gelation tim%tegrating this rate equation from the critical sieej, to
vanishes in the thermodynamic limify—0 asN—oo. the system siz&=N gives the gelation time

For simplicity, we discuss the product kernel. The vanish-
ing gelation time is ultimately related to the short time be-

havior. Early on, loss terms in the rate equatidhare neg- Tn=T,+ )\iz { _}\1_2 — 3_2 . (36)

ligible and to leading orderd/dt)A;=((j +1)*Aj+l, where V% N

we tacitly assumedr=t. For the initial conditionA;(0) ) ) . )

= 5,4, the leading order behavior of the density is Slncej,S =(A—1) “InN, the duration of the Iatter_ growth
phase is much larger than that of the nucleation phase,

Ajﬂz(j!)”—lti_ (33 T\>T, . Therefore, the gelation time vanishes logarithmi-

cally,

In a finite system consisting initially o monomers, g-mer 5

first appears at time;~(j!) ~*~Y/IN", estimated from Ty~ (InN)~ (=2, 37

NA;(tj;)=1. For example, the first dimer and trimer appear. o . .
at timest,=N"! andt;=2-~1D2N~12 respectively. By N the thermodynamic limit. A straightforward extension of

definition, the times increase monotonicalty, ;>t;, yet the above arg”rl‘(?[‘gto the generalized exchange k26l
the above estimates increase monotonically only for suffi9ives Tn~(INN)~"=. . - -
ciently smallj<j, . Fromt; =t; ., we obtain the extre- _The_refore, in a finite system it may be_d|ff|cult to dlstln-_
. 2 LR x guish instantaneous gelation from the ordinary one. We veri-
mum j, = (A —1)"7InN using the Stirling formula. The cor- gqj the ogarithmic law(37) numerically forx =3 (Fig. 2).
responding timer, =t;_ Is To probe fluctuations in the gelation time, we examined the
1\A-1 variance. We observed that the normalized variance
~<}‘_) ' (34) o3 =(t3)/{ty)?>—1 vanishes logarithmically in the thermo-
* INN dynamic limit (Fig. 2). The distribution of normalized gela-
) ) _ tion times becomes trivialP(ty/Ty)— d(z—1), implying
For later times{>T, , the rate equations should be modi- that the gelation time is a self-averaging quantity.
fied to account for the finiteness of the systeee, e.g., Ref. e also examined the gelation time in two other growth
[29,30) since significant statistical fluctuations are 'nducedprocesses, namely, aggregat{®-11] and addition[31,32.
by large runaway clusters that take oveventually only one  The above heuristic picture yields a similar logarithmic law
such cluster remainsThe critical size of such clusters is glpeit with a different exponerf28). Self-averaging is ob-
j«~(A=1)"'InN. As a complete analytical solution seems served numerically as well, and we conclude that the behav-

out of reach, we proceed heuristically by focusing on thejor found for exchange processes is generic.
leading cluster that eventually grows to be the gel. Since it

exchanges monomers back and forth with other clusters, its

. . . . . . - VI. APPLICATIONS TO COARSENING
growth mechanism is diffusive. For an ordinary diffusive

process, @/dt)(k)=0, while (d/dt)(k?)=D. In our case, In exchange processes, a monomer detaches from a clus-
D=k" with the typical sizek’=(k?). Therefore, the typical ter and subsequently reattaches to another cluster. This el-
size of the runaway cluster grows according to ementary mechanism underlies a number of growth and
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coarsening processes. We apply our general theory to two e ' ' ' '
coarsening processes. S — gfg.g;
107 e

A. Infinite range Ising-Kawasaki model

E(t)

Consider the model proposed by Schellifg], which
mimics segregation in initially homogeneous systems. In its 107
simplest version, the segregation model is defined on a lat-
tice completely filled by two species. Any two dissimilar 01
particles can exchange locations if this move does not in- “10°
crease the total number of broken bor{dssimilar nearest N
neighbor$. This model is essentially the Ising model with
Kawasaki zero-temperature spin exchange dynarf8&s-

35]. In contrast with the usual localtypically nearest- FIG. 3. Decay of the energy vs time in the Ising-Kawasaki
neighboj exchanges, exchange in the segregation model isodel with infinite range exchange. The inset shows the local slope
nonlocal. This process is still not a mean-field one as broken-din E(t)/dint vs timet.

bonds are counted locally.

To appreciate the difference between the nearest-neighbgrowth law for the typical domain size. The simulations ex-
and infinite rangezero-temperatur&Kawasaki dynamics re- clude the former circular domain scenarm=1/(d+2)
call that subject to local exchange, the Ising system freezes: 1/4 and give partial support to the latter square domain
This is obvious in one dimension where a string of alternat-scenarioz=1/(3d)=1/6. Additionally, we verified that the
ing domains each of lengtk 2 could not further evolve and shape of the domains is not circular, but rather close to rect-
it remains true in higher dimensio86]. By contrast, the angular with mostly straight edgéBig. 4). Thus, the growth
Ising model with infinite range zero-temperature Kawasakimay not necessarily follow from curvature considerations.
dynamics coarsens. In one dimension, the domain size disde conclude that the growth law is dimension dependent, at
tribution can be obtained analytical[37]. The situation in least in the limit ofvanishingminority concentration.
higher dimensions is an open quest[@3-35.

We considered the limit of @anishingfraction of one of B. Coarsening of thin granular layers
the two phases. While interesting on its own, this case is also
relevant to sociological applications. In this limit, domains of
the minority phase are isolated and the process is essentia
an exchange process with a product kerkél,j)=(ij)™.

10° 10' 10° 10° 10* 10° 10° 10
t

In electrostatically driven granular layers, clusters nucle-
r'f\te around large graif88]. When charged grains oscillate
Dack and forth between the two bounding plates due to the

. oscillating electric field, they may scatter off the plate or
The dependence of the number of exchange candidates collide with other particles. Consequently, individual grains

tsg)lgs dli?fedrzrr?tatl:rlluvgt%lIrsoﬁ\h?r:ecirl]ulsotve\zlrers;[?e?lzji?aetregsy ?’ehﬁggg%ay transfer from one cluster to another. Naively, the rate of
; i . ._hopping into and out of a cluster is proportional to its area.
geneity degree. For spherical clusters, only perimeter SPING crefore. the homogeneity degree is unity: 1, implying

may exchange. Since the island size and the surfacgzl and a dynamical exponent @t 1/d. In two dimen-

S|z~eRdgrlo~vvk(glylg1/d three . rigiﬁ/sel acg(:];dlr;]% g\tf( ( dR— 1)6/13d sions, this prediction is consistent with the experimental ob-
o , p Y, = ‘. servationz=1/2[38].

Hence =d/(d+2) [recall that the exponenf is defined To further test the exchange-driven growth theoretical

i ~tB = _

\é'a K .t | and equacli ft'o,Bd #(3 Zh}&)LtZEq: (Zr)]]' ';he predictions, we examined the experimentally observed clus-
Xn:srr:jlcaz exlpf)or;]en(_ Ie u:je rougl ) 'Sd. EIEIOTe ter size distributions. First, we checked that the size distribu-
z=1/(d+2). If the islands are polygons, a distinct pos- tions at different times are identical once the average cluster

sibility on a lattice, then only corner spins are active, so_._ . - - e -
size is set to unity, thereby verifying the self-similar behav-
A=0, and consequently3=1/3 and z=1/(3d). Both zet untty y verifying m v

estimates agree with the exact result in one dimen3@h

To examine these predictions, we performed large scale
Mote Carlo simulations of the Ising model with infinite range
Kawasaki exchange dynamics in two dimensions. The effi- .
cient simulation method keeps track only of boundary spins.
The simulation data in Fig. 3 correspond to an average over
10 independent realizations in a square lattice of 6000 -
X 6000 sites with minority spin concentrations p#0.01
and 0.02. The density of broken bor{dg., the energ¥(t)] .

provides a convenient measure for the domain growth law. If
n is the density of minority domains, then conservation of the
total number of minority spins givasR®~ const, and using
compactness of the domains we et nRY "1, from which FIG. 4. A snapshot of a small part of the system at the late stage
E~R ™ 1~t"2 Our numerical simulations show a very slow of evolution ¢=10f).
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1 - : : - We also studied the gelation time in finite systems and
« experiment found that it decays rather slowly, following an inverse loga-
0.8 [\, theory : rithmic law. It would be interesting to determine further tem-
10°  mer————— poral characteristics in the instant gelation regifi#s].
06} \ » . While instant gelation may seem unphysical, there is no ob-
* 0 N ; vious restriction on the homogeneity indices, which forbids
04} S 102 | o instant gelation. The finite system size or physical restric-
. It tions on the aggregate sizes may cause a system that techni-
02 | Y EEEREY cally is in the instant gelation regime to gel only in a finite
N time, and therefore characterization of the instant gelation
0 . Ry x . regime may still be practically relevant.
0 1 2 3 4 5 Our description was on a mean-field level where all pairs
X of clusters in the system are equally likely to interact. It will

FIG. 5. The cumulative cluster area distributidh(x) vs the be .int.eresting to incorporate spatjal quctuatipns into this de-
normalized area. The inset magnifies the tail of the distribution SCription. The nature of the spatial fluctuations depends on
(same axis labels as the main figure the mechanism for transporting monomers from one cluster

to the other. For diffusive transport, one can incorporate ef-
ior. Given the relatively small number of available clusters,f€ctive fluxes into clusters, using the standard techniques de-
experimental data from different stages during the coarsen‘€loped for reaction-diffusion processes.
ing process were aggregated into a single dataset by setting
the average cluster siZer area to unity. To further improve ACKNOWLEDGMENTS
the statistics, we examined the cumulative size distribution e thank Igor Aronson and Avner Peleg for useful dis-

W(x)=[;dy®(y). The theory(12) predicts a purely expo- cussions. We are grateful to Igor Aronson for providing the
nential distribution, ¥'(x) =®(x) =exp(-x). The experi- experimental data. This research was supported by the U.S.
mental distribution represents roughly*1€lusters obtained DOE (Grant No. W-7405-ENG-36
from 20 different snapshots during a single realization of the
coarsening process in which the total number of clusters de- APPENDIX: THE CASE (»,u)=(1,0
creased appreciably from 200 to 10. o ) 5 ,
Comparing the theoretical and experimental size distribu- Substituting Eq(28) into A®=J,/J; yields
tions, exchange-driven growth provides a useful approxima-

tion (see Fig. 5. For instance, the normalized variance, de- f dx 32 (1+x)P"le
fined via 02=J2/J§—1, is experimentally found to be 1= 0
=0.80+0.05 compared with the theoretical valae=1. Al- fxdx X(1+x)P~1g=ax ’
though exchange of individual grain does underlie the ex- 0

perimental coarsening process, the exchange usually in-
volves only neighboring clusters. Thus, the mean-fielawith b=a. Evaluation of the ratio of the integrals is per-
exchange-driven growth process where exchange can occffifmed as follows:

between any two clusters is only an approximation. Further,

more extensive experimental data are needed to resolve the 1=_— im fwdx X(1+x)P-Le-ax
relevance of spatial correlations. da"| Jo azb
VIl. CONCLUSIONS __4d | d((~ b—1 5-ax
=" 4a n ~da jo dx(1+x)° e
We have shown that kinetics of exchange processes are ; a=b
classified by the homogeneity indices of the governing rates. T d
There are three possible regimes including indefinite growth, =— ﬁln - El(e""a‘b I'(b,a))
gelation in a finite time, and instant gelation. Scaling behav- : a=b
ior underlies the first two regimes. The size distributions are “9 a—a-1
generally extended, decaying exponentially or algebraically _a tea I'(a,a)
for large sizes, in contrast with migration processes. a?! '
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