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Exchange-driven growth
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We study a class of growth processes in which clusters evolve via exchange of particles. We show that
depending on the rate of exchange there are three possibilities:~I! Growth—clusters grow indefinitely,~II !
gelation—all mass is transformed into an infinite gel in a finite time, and~III ! instant gelation. In regimes I and
II, the cluster size distribution attains a self-similar form. The large size tail of the scaling distribution is
F(x);exp(2x22n), wheren is a homogeneity degree of the rate of exchange. At the borderline casen52, the
distribution exhibits a generic algebraic tail,F(x);x25. In regime III, the gel nucleates immediately and
consumes the entire system. For finite systems, the gelation time vanishes logarithmically,T;@ lnN#2(n22), in
the large system size limitN→`. The theory is applied to coarsening in the infinite range Ising-Kawasaki
model and in electrostatically driven granular layers.
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I. INTRODUCTION

A multitude of growth phenomena in physical process
are driven by exchange of particles between clusters.
amples include droplet growth via evaporation and recond
sation @1#, island growth in deposition processes@2#, and
phase ordering@3–5#. Exchange processes have been a
used to model social and economical systems including
regation of heterogeneous populations@6#, the distribution of
wealth in a society@7#, and growth of urban populations@8#.

In exchange processes, clusters are composed of ‘‘ato
~monomers!. Monomers detach from one cluster and reatta
to another cluster. We shall consider the detachment c
trolled limit where the time scale for transport between cl
ters is much faster than the time scale for detachment.
change processes incorporate both reversible and irrever
features. Clusters may grow or shrink, yet when a mono
attaches to another cluster, its respective cluster disapp
This irreversible step provides the mechanism for clus
growth. Therefore, exchange-driven processes are fundam
tally different from irreversible growth processes, partic
larly aggregation@9–12#.

Such mass transfer processes are governed by an
change kernelK( i , j ) that represents the rate of transfer
monomers from a cluster of sizei to a cluster of sizej.
Generally, the rate of monomer exchange between two c
ters depends on their sizes. Moreover, we consider the
where there isno preferable direction for exchanges, i.e
symmetric exchange kernels,K( i , j )5K( j ,i ). This is unlike
migration processes where the exchange is preferential~‘‘big
gets bigger’’ or ‘‘rich gets richer’’!. Migration underlies cer-
tain physical processes~e.g., coarsening with conserved o
der parameter@3,4#! as well as social and economical pr
cesses@7,8#.
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We investigate homogeneous exchange kernelsK(ai,a j)
5a2lK( i , j ). In particular, we consider the product kern
K( i , j )5( i j )l and its generalizationK( i , j )5 i n j m1 i m j n

with n1m52l andn>m. We obtain a complete descriptio
of the problem in the asymptotic scaling regime. The ove
range of possible behaviors and the emergence of self-sim
size distributions are as in aggregation and migration p
cesses. However, there are quantitative and qualitative di
ences. Unlike aggregation, the gelation transition is co
plete, and unlike migration, the size distributions a
extended rather than compact.

We show that the behavior falls into three categories.
~I! Growth: Whenn,2 andl,3/2, clusters grow indefi-

nitely. The typical cluster size grows algebraically with tim
k;t1/(322l), and the cluster size distribution is given by
self-similar distribution with a stretched exponential tail.

~II ! Gelation: Whenn,2 andl.3/2, the entire mass in
the system is suddenly transformed into an infinite gel
gelation time tc . The cluster mass diverges algebraica
near the gelation point,k;(tc2t)1/(322l), and a scaling be-
havior similar to the one underlying the growth phase
found. In the borderline casen52 the scaling function has
an algebraic tail with a universal exponentF(x);x25. Scal-
ing breaks down in the special pointn5m52 where the
distribution is log-normal.

~III ! Instant gelation: Whenn.2, the gelation time van-
ishes logarithmically with the system size,tc;@ lnN#2(n22).
In particular, for an infinite system, gelation is instantaneo

This paper is organized as follows. In the following se
tion, we define the exchange process. The governing e
tions are analyzed using scaling techniques and exact s
tions for the moments. We first analyze the product ker
~Sec. III! and then, the generalized kernel~Sec. IV!. The
gelation time in finite systems is investigated in Sec. V us
heuristic arguments and numerical simulations. Applicatio
to coarsening in the Ising model with infinite range K
wasaki dynamics and in electrostatically driven granular l
©2003 The American Physical Society04-1



a

s
st
t

nd
st
x
s
e
.

e

ab
t

t

is

e

-
ng

is

-

is
er-
te
s.
the

ize

nite

-
ior

ion

E. BEN-NAIM AND P. L. KRAPIVSKY PHYSICAL REVIEW E 68, 031104 ~2003!
ers are briefly discussed in Sec. VI, and conclusions
given in Sec. VII.

II. EXCHANGE PROCESSES

We consider the following elementary exchange proce
The system consists of an ensemble of clusters and clu
evolve via transfer of a single monomer from one cluster
another. Symbolically,

~ i , j ! →
K~ i , j !

~ i 61,j 71!, ~1!

with i and j the number of particles in each cluster a
K( i , j ) the exchange kernel. In an exchange event, a clu
is equally likely to gain or to lose a particle. Since the e
change process is unbiased, the matrix of transition rate
symmetric:K( i , j )5K( j ,i ). Unbiased exchanged process
were studied in Ref.@7# and more systematically in Refs
@13,14#.

Let Ak(t) be the density of clusters containingk mono-
mers at timet. It evolves according to the following rat
equation:

dAk

dt
5(

i , j
AiAjK~ i , j !@dk,i 111dk,i 2122dk,i #. ~2!

This equation assumes perfect mixing, or equivalently,
sence of spatial correlations. We restrict our attention
monodisperse initial conditions,Ak(0)5dk,1 . The exchange
process has a single conservation law. As reflected by
evolution equations, the total mass is conserved,M151 with
Ma5(nkaAk(t) the moments of the size distribution. It
natural to consider homogeneous kernelsK(ai,a j)
5a2lK( i , j ), with 2l the homogeneity degree, and w
present results for the product kernelK( i , j )5( i j )l and the
generalized homogeneous kernelK( i , j )5 i n j m1 i m j n with
m1n52l. The special casem51 was studied in Ref.@13#.

III. THE PRODUCT KERNEL

For the product kernel,K( i , j )5( i j )l, the rate equations
~2! read

dAk

dt
5Ml@~k11!lAk111~k21!lAk2122klAk#,

with the boundary conditionA0[0. These evolution equa
tions demonstrate the diffusive character of the excha
process. Absorbing the factorMl into the time variable

t5E
0

t

dt8 Ml~ t8!, ~3!

we recast the governing equations into

dAk

dt
5~k11!lAk111~k21!lAk2122klAk . ~4!

Alternatively, one can study integer moments of the size d
tribution. The total density obeys (d/dt)M052A1, the total
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mass is conserved, (d/dt)M150, and higher integer mo
ments satisfy the following hierarchy of equations:

dMn

dt
52 (

l 51

[n/2] S n
2l D Mn22l 1l . ~5!

Only for integer values of the homogeneity index is th
hierarchy closed. We employ different approaches for diff
ent l ’s. For l,2, we perform a scaling analysis of the ra
equations and forl>2, we analyze the moment equation
This general analysis is augmented by exact solutions for
integer valuesl50, 1, and 2.

A. Scaling „lË2…

When l,2, dimensional analysis of Eq.~4! shows that
the typical cluster size grows as

k;ta, with a5
1

22l
. ~6!

Using dt/dt5Ml;ta(l21), the growth of the typical scale
is expressed in terms of the physical time,

k;H tb, l,3/2

exp~const3t !, l53/2

~ tc2t !b, 3/2,l,2.

~7!

The dynamical exponent isb5(322l)21. As long asl
,3/2, clusters grow indefinitely and the characteristic s
grows algebraically with time. Forl.3/2, a gelation transi-
tion occurs, i.e., the system develops a giant cluster in a fi
time tc .

We seek a scaling solution of the rate equations

Ak~t!.t22aF~k t2a!. ~8!

Mass conservation dictates the normalizationJ151, where
Ja5*dx xa F(x) is theath moment of the scaling distribu
tion. Technically, the scaling function describes the behav
in the limits k→`, t→`, with the variablex5kt2a fixed.
Thus, we consider the continuum limit of the rate equat
(]/]t)A(k,t)5(]2/]k2)@klA(k,t)#. The scaling function
satisfies the second-order linear differential equation

~22l!
d2

dx2
@xlF~x!#1x

d

dx
F~x!12F~x!50. ~9!

Multiplying this equation byx, employing the identities
x2F812xF5(x2F)8, xC95(xC)922C8, and integrating
once yields (22l)@(xl11F)822xlF#1x2F(x)50. Inte-
grating a second time gives the scaling function

F~x!5C x12lexpF2
x22l

~22l!2G , ~10!

with C5(22l)22/(22l)/G@1/(22l)# found from the condi-
tion J151. The nature of the scaling function differs from
that found for migration, whereK( l ,m)50 for l ,m @8#:
4-2
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Exchange is characterized by extended distributions, w
migration is characterized by compact distributions.

There are two important cases@7,13# for which the rate
equations can be solved exactly. When the exchange ke
is independent of the cluster size (l50), the rate equation is
(d/dt)Ak5Ak111Ak2122Ak and the cluster size distribu
tion @7# is

Ak5e22t@ I k21~2t!2I k11~2t!#, ~11!

whereI n is the modified Bessel function of ordern @15#. In
agreement with the general scaling analysis, the typical s
grows diffusively,k;t1/2, and the scaling function is give
by F(x)5(4p)21/2x exp(2x2/4).

For the pure product kernel (l51), the rate equa-
tions read (d/dt)Ak5(k11)Ak111(k21)Ak2122kAk ~in
this case t5t). Substituting the mass-conserving ans
Ak5(12u)2uk21 reduces the infinite set of rat
equations into a single ordinary differential equati
(d/dt)u5(12u)2 subject to the initial conditionu(0)50.
The size distribution in this case@13# is

Ak5
tk21

~11t !k11
. ~12!

The typical cluster size grows ballistically,k;t, and the
scaling function is purely exponential,F(x)5e2x, again in
agreement with the above scaling results.

When 3/2,l,2, an infinite cluster is formed at som
finite time tc , termed the gelation time. The gelation tim
dependson the initial condition and its determination re
quires the full time dependent behavior. Even without kno
ing the gelation time exactly, one can describe the beha
in the pregel stage since the size distribution still admits
scaling form~10!. Thus, for alll,2 we have

Ak~t!.C k12lt2[(32l)/(22l)]expF2
k22l t21

~22l!2 G . ~13!

From this equation we see thatAk→0 in the limit t→`
(t→tc). In other words, the gelation is complete at the ge
tion point: Ak(t)50 for t>tc . This surprising behavior is
akin to a first-order phase transition. By contrast, gelation
aggregation processes@16,17# is similar to a continuous
transition—at the gelation point, the gel has an infinitesim
fraction of the entire mass, then the gel continuously gro
and finite clusters disappear only whent5`.

Complete gelation can be alternatively shown as follow
Let us assume that the cluster size distribution approac
a constantAk→Ak* .0 ast→`. From Eq.~4!, the quanti-
ties Bk[klAk* satisfy the discrete Laplace equatio
Bk111Bk2122Bk50 for k.1 and B252B1. Solving re-
cursively yieldsBk5kB15kA1* or Ak* 5k12lA1* . Mass con-
servation,(kkAk* 51, impliesA1* 50, and thenceAk* 50 for
all k, i.e., complete gelation.
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B. Multiscaling „lÄ2…

In this special case, the moment equations~5! are closed
for n>2. For example,

dM2

dt
52M2 ,

dM3

dt
56M3 ,

dM4

dt
512M412M2 . ~14!

The solutions to these equations are combinations
exponentials:M25e2t, M35e6t, M45 6

5 e12t2 1
5 e2t, etc.

The physical time t5 1
2 @12e22t# is found from

t5*0
tdsM2

21(s), so

M25~122t !21,

M35~122t !23,

M45
6

5
~122t !262

1

5
~122t !21. ~15!

Therefore, the gelation time istc51/2. Asymptotically, the
first term in Eq. ~5! dominates: (d/dt)Mn.n(n21)Mn ,
implying Mn;exp@n(n21)t# for n.1. Close to the gelation
time (t→tc), the moments diverge according to

Mn~ t !;~ tc2t !2n(n21)/2. ~16!

Hence moments exhibit multiscaling asymptotic behav
i.e., properly normalized momentsMn

1/n/M1 diverge.
To determine the asymptotic form of the size distributi

we treatk as a continuous variable. Forl52, Eq. ~4! be-
comes (]/]t)Ak5(]2/]k2)@k2Ak#. This equation is equidi-
mensional ink @15# thereby suggesting use of the variab
j5 lnk instead ofk. Making the transformation fromAk(t) to
A(j,t) defined via Akdk5A(j)dj, we recast the above
equation forAk(t) into the following constant coefficient
diffusion-convection equation:

S ]

]t
2

]

]j DA~j,t!5
]2

]j2
A~j,t!. ~17!

With the initial conditionsA(j,0)5d(j), the solution reads
A(j,t)5(4pt)21/2exp@2(j1t)2/(4t)#. The original distri-
bution Ak5k21A(j) is log-normal,

Ak~t!.~4pt!21/2e2t/4k23/2expF2
~ ln k!2

4t G . ~18!

Again, the distribution vanishes at the transition point, i.
the gelation transition is complete. Moreover, the mass
tribution is algebraic,Ak(t);M0(t) k23/2 for sufficiently
small masses,k!Aln@1/(122t)#. The total density vanishe
quite slowly near the transition point,
4-3
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M0~ t !;~122t !1/8S ln
1

122t D
21/2

. ~19!

We note that the density follows a different law than the o
characterizing higher than first moments~16!.

The size distribution does not follow a scaling behav
asymptotically and the log-normal distribution is responsi
for the multiscaling behavior~16! of the moments. This dif-
fers from aggregation processes where the moments div
asMn(t)}(tc2t)2an with the exponentan linear in n @16#.

C. Instant gelation „lÌ2…

Gelation is now instantaneous and complete, that
Ak(t)50 for all k when t.0. To prove this assertion w
assume the opposite and arrive at a contradiction. Our an
sis follows the ingenious argument devised by van Don
@17# in the context of aggregation processes.

The momentsMn with integern>2 evolve according to
Eq. ~5!. The first term in the summation yields a lower bou
for their growth rate,

dMn

dt
>n~n21!Mn221l>n~n21!~Mn!11L, ~20!

with L5(l22)/(n21). The second inequality follows
from the Jensen’s inequality as shown below. Consider
auxiliary functionsMn , evolving according to

dMn

dt
5n~n21!~Mn!11L. ~21!

Solving this equation subject to the initial conditio
Mn(0)51 yields Mn5@12n(l22)t#21/L. Therefore,
Mn→` ast→tn5@n(l22)#21. SinceMn>Mn , the mo-
mentMn diverges at least attn . The series of timestn sets
an upper bound for the gelation timetc since all moments
should be finite fort,tc . As tn→0 whenn→`, we con-
clude that tc50, and thence, the gelation time vanish
tc50.

The inequalityMn221l>(Mn)11L with L5(l22)/(n
21) is derived as follows. Let the parameterspj>0 satisfy
( j pj51 and letF(x) be a convex function. A convex func
tion satisfies the Jensen inequality

(
j 51

`

pjF~xj !>FS (
j 51

`

pjxj D . ~22!

First, we substitute the coefficientspj5 jA j ~from mass con-
servation( j jA j51) and the convex functionF(x)5x11L

(L.0 for l.2) into the Jensen inequality. Then, choosi
xj5 j n21 and using the relations(pjxj5( j nAj5Mn and
(pjF(xj )5Mn221l we indeed obtain the above inequalit

IV. GENERALIZED KERNELS

The ratesK( i , j ) underlying exchange processes are ty
cally homogeneous functions ofi and j ~at least for largei
and j ). We restrict ourselves to such kernels. Apart from
03110
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homogeneity degree 2l, homogeneous kernels are charact
ized by an additional exponentn defined through the
asymptoticK(1,j ); j n as j @1. Fori ! j the exchange kerne
scales as K( i , j )5 i 2lK(1,j / i ); i m j n, with 2l5n1m.
Therefore, we consider a specific generalization of the pr
uct kernel that exhibits these homogeneity properties

K~ i , j !5 i n j m1 i m j n. ~23!

More precisely, the asymptoticsK( i , j ); i m j n occurs for
i ! j if n>m; since the kernel is symmetric, we can assu
that n>m without loss of generality. We expect that the h
mogeneity indices govern the overall qualitative behav
~growth, gelation, and instant gelation!, while the precise
form of the kernel controls quantitative characteristics su
as the size distribution.

For this exchange kernel, the rate equation~2! becomes

dAk

dt
5Mm@~k11!nAk111~k21!nAk2122knAk#

1M n@~k11!mAk111~k21!mAk2122kmAk#.

The following generalization of the modified time variable

t5E
0

t

dt8AM n~ t8!Mm~ t8! ~24!

handles the two indices symmetrically. In terms of this tim
the evolution equations are

dAk

dt
5R@~k11!nAk111~k21!nAk2122knAk#

1R21@~k11!mAk111~k21!mAk2122kmAk#,

with R5AMm /M n. Of course, the dynamics conserve ma
(d/dt)M150. Higher integer moments evolve according

dMn

dt
52 (

l 51

[n/2] S n
2l D @RMn22l 1n1R21Mn22l 1m#. ~25!

Whenn,2, the scaling analysis follows closely the pro
uct kernel case. The overall growth laws~6! and ~7! remain
unchanged and the homogeneity degreel characterizes the
scaling behavior. However, we shall see that the individ
indicesn andm play an important role since they dictate th
range for which this law holds.

We seek a scaling solution of the form~8!. The scaling
function F(x) satisfies

d2

dx2
@~Uxn1Vxm!F~x!#1x

d

dx
F~x!12F~x!50 ~26!

with the constantsU5a21A and V5a21A21 determined
from the ratioA5AJm /Jn. The scaling function reads

F~x!5C
x

Uxn1Vxm
expF2E

0

x

dy
y

Uyn1VymG . ~27!
4-4
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The scaling solution involves three parametersU, V, and
C. SubstitutingU5a21A andV5a21A21 into the equality
A5AJm /Jn yields a closed equation for the parameterA.
OnceA is determined, the parametersU and V follow, and
finally, the amplitudeC is found from the normalization
J151.

We now illustrate this procedure for the special ca
(n,m)5(1,0), i.e., for the pure sum kernelK( i , j )5 i 1 j . In
this case, the integral on the right-hand side of Eq.~27! is
readily computed. UsingU53A/2 andV53/2A we arrive at

F~x!5C x~11A2x!a21exp@2aA2x#, ~28!

with a5 2
3 A23. Substituting Eq.~28! into the right-hand side

of the equalityA5AJ0 /J1 transforms it into the equation
(e/a)a G(a,a)1a2151, involving the incompleteG func-
tion ~see the Appendix!. The amplitude is then explicitly
evaluated to giveC5aA6. From the above transcendent
equation we finda>2.826 49, and henceA>0.428 397
andC>0.017 471 3. Interestingly, there is a nontrivial alg
braic correction to the leading exponential behavi
F(x);xaexp(2aAx) for largex @18#.

On the boundaryn52 separating regime III from the
two other regimes, the solution of Eq.~27! significantly
simplifies. We find A51/@2(22m)#, U51/4, and
V51/(22m)2; consequently, the scaling function is

F~x!5C x12mF11
x22m

4~22m!2G212[4/(22m)]

. ~29!

The constant

C52@2~22m!#212[2/(22m)] FBS 1

22m
,

3

22m D G21

is expressed in terms of theb function. Remarkably, the
scaling function~29! exhibits a universal large-x asymptotic
behavior

F~x!;x25. ~30!

Hence the size distribution is algebraic,Ak(t);t3a k25,
with a5(22l)2152/(22m). With this algebraic diver-
gence, sufficiently small moments are characterized by o
nary scaling behavior while higher moments exhibit mu
scaling behavior:

Mn;H ta(n21), n,4

tan(n21)/4, n.4.
~31!

This behavior follows from the leading term in the m
ment equation~25!, viz., (d/dt)Mn5n(n21)MnR. With
R5AMm /M2.At21 and A5a/4, this equation become
(d/dt)Mn5@an(n21)/4t# Mn , leading to the multiscaling
behavior~31!.

The determination ofA in the general situation require
numerical evaluation, yet the form and nature of the s
distribution is clear. For example, the minimal~maximal!
03110
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index governs the distribution of small~large! clusters. In-
deed, from Eq.~27!, the extremal behaviors are

F~x!;H x12m, x!1

exp@2x22n#, x@1.
~32!

Apart from the point (n,m)5(2,2), the scaling solution
holds for all otherm,2. As in the product kernel case
growth occurs whenl,3/2 and gelation occurs whe
3/2,l,2.

For n.2, the scaling solution~27! predictsF;x12n for
large x. Such behavior is inconsistent since the momentJn

diverges, and instead, instantaneous gelation occurs. The
mentsMn with n.1 satisfy Eq.~25! and the first term in the
summation yields a lower bound for the moment grow
(d/dt)Mn>Rn(n21)Mn221n . Keeping only this term and
absorbing the factorR into the time variable, the previou
proof applies. Thus, gelation is instantaneous.

Instant gelation arises whenn.2, so it does not happen
if, for instance, the exchange rate grows no faster than
mass,n<1 ~this condition is satisfied for the exchange pr
cesses discussed below in Sec. VI!. In some situations, how
ever, the conditionn<1 may be violated. We merely men
tion that in aggregation—processes realized via collisio
and thus with rates whose growth is more restricted than
exchange—kernels withn.1 do appear in several applica
tions ranging from the coalescence of rain drops@19–21# to
the coalescence of planetesimals into planets@22# and stars
into black holes@23#.

To summarize, there are three types of behaviors, de
mined by the homogeneity degreesm andn ~Fig. 1!.

~I! Growth—The cluster size grows indefinitely, and th
size distribution obeys scaling.

~II ! Gelation—The cluster size diverges in a finite tim
and the size distribution follows a scaling solution near
gelation time. Gelation is complete.

~III ! Instant gelation—the cluster size distribution van
ishes for allt.0.

The cluster size distribution exhibits a scaling behavior
regimes I and II. Scaling behavior underlies the system
erywhere except for regime III and the point (2,2). In t
bulk of regimes I and II the size distribution is a stretch
exponential, while in the boundary with region III, the clu

FIG. 1. The three types of behaviors: scaling~I!, ordinary gela-
tion ~II !, and instant gelation~III !.
4-5
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ter size distribution has an algebraic tail. Finally, at the po
(m,n)5(2,2) scaling breaks down and the distribution
log-normal.

V. THE GELATION TIME

Instantaneous gelation is certainly counterintuitive: a
nite time singularity that occurs at timet50 Instantaneous
gelation was investigated exclusively in the context of agg
gation@12,17,24–28#. For infinite systems, it is impossible t
quantify the difference between two instant gelling system
Finite systems, on the other hand, naturally quantify how
a system gels.

Consider a system consisting initially ofN monomers. In
a finite time tN , all mass in the system condenses into
single ‘‘runaway’’ cluster. How does the average gelati
time TN5^tN& depend onN? When growth or ordinary ge
lation occurs, the answer follows from our previous analy
In the scaling regime, the growth law~7! indicates that the
condensation time grows algebraically with the system s
TN;N1/b. In the case of ordinary gelation, the average
lation time saturates at anN-independent value:TN→tc . The
interesting case is instant gelation where the gelation t
vanishes in the thermodynamic limit,TN→0 asN→`.

For simplicity, we discuss the product kernel. The vani
ing gelation time is ultimately related to the short time b
havior. Early on, loss terms in the rate equation~4! are neg-
ligible and to leading order (d/dt)Aj>( j 11)lAj 11, where
we tacitly assumedt[t. For the initial conditionAj (0)
5d j ,1 , the leading order behavior of the density is

Aj 11>~ j ! !l21 t j . ~33!

In a finite system consisting initially ofN monomers, aj-mer
first appears at timet j'( j !) 2(l21)/ jN21/j , estimated from
NAj (t j )51. For example, the first dimer and trimer appe
at timest25N21 and t3522(l21)/2N21/2, respectively. By
definition, the times increase monotonically,t j 11.t j , yet
the above estimates increase monotonically only for su
ciently small j , j * . From t j

*
5t j

*
11, we obtain the extre-

mum j * 5(l21)21lnN using the Stirling formula. The cor
responding timeT* [t j

*
is

T* ;S l21

ln N D l21

. ~34!

For later times,t@T* , the rate equations should be mod
fied to account for the finiteness of the system~see, e.g., Ref.
@29,30#! since significant statistical fluctuations are induc
by large runaway clusters that take over~eventually only one
such cluster remains!. The critical size of such clusters i
j * ;(l21)21ln N. As a complete analytical solution seem
out of reach, we proceed heuristically by focusing on
leading cluster that eventually grows to be the gel. Sinc
exchanges monomers back and forth with other clusters
growth mechanism is diffusive. For an ordinary diffusiv
process, (d/dt)^k&50, while (d/dt)^k2&5D. In our case,
D5kl with the typical sizek2[^k2&. Therefore, the typica
size of the runaway cluster grows according to
03110
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dk

dt
5kl21. ~35!

Integrating this rate equation from the critical sizek5 j * to
the system sizek5N gives the gelation time

TN5T* 1
1

l22 F 1

j
*
l22

2
1

Nl22G . ~36!

Since j * 5(l21)21ln N, the duration of the latter growth
phase is much larger than that of the nucleation pha
TN@T* . Therefore, the gelation time vanishes logarithm
cally,

TN;~ ln N!2(l22), ~37!

in the thermodynamic limit. A straightforward extension
the above argument to the generalized exchange kernel~23!
givesTN;(ln N)2(n22).

Therefore, in a finite system it may be difficult to distin
guish instantaneous gelation from the ordinary one. We v
fied the logarithmic law~37! numerically forl53 ~Fig. 2!.
To probe fluctuations in the gelation time, we examined
variance. We observed that the normalized varian
sN

2 5^tN
2 &/^tN&221 vanishes logarithmically in the thermo

dynamic limit ~Fig. 2!. The distribution of normalized gela
tion times becomes trivial,P(tN /TN)→d(z21), implying
that the gelation time is a self-averaging quantity.

We also examined the gelation time in two other grow
processes, namely, aggregation@9–11# and addition@31,32#.
The above heuristic picture yields a similar logarithmic la
albeit with a different exponent@28#. Self-averaging is ob-
served numerically as well, and we conclude that the beh
ior found for exchange processes is generic.

VI. APPLICATIONS TO COARSENING

In exchange processes, a monomer detaches from a
ter and subsequently reattaches to another cluster. Thi
ementary mechanism underlies a number of growth

FIG. 2. The system size dependence of the gelation time. Sh
are the average gelation timeTN and the normalized variancesN vs
the system size. The Monte Carlo simulation results correspon
an average over 103 independent realizations of the exchange p
cess withl53.
4-6
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coarsening processes. We apply our general theory to
coarsening processes.

A. Infinite range Ising-Kawasaki model

Consider the model proposed by Schelling@6#, which
mimics segregation in initially homogeneous systems. In
simplest version, the segregation model is defined on a
tice completely filled by two species. Any two dissimila
particles can exchange locations if this move does not
crease the total number of broken bonds~dissimilar nearest
neighbors!. This model is essentially the Ising model wi
Kawasaki zero-temperature spin exchange dynamics@33–
35#. In contrast with the usual local~typically nearest-
neighbor! exchanges, exchange in the segregation mode
nonlocal. This process is still not a mean-field one as bro
bonds are counted locally.

To appreciate the difference between the nearest-neig
and infinite rangezero-temperatureKawasaki dynamics re
call that subject to local exchange, the Ising system free
This is obvious in one dimension where a string of altern
ing domains each of length>2 could not further evolve and
it remains true in higher dimensions@36#. By contrast, the
Ising model with infinite range zero-temperature Kawas
dynamics coarsens. In one dimension, the domain size
tribution can be obtained analytically@37#. The situation in
higher dimensions is an open question@33–35#.

We considered the limit of avanishingfraction of one of
the two phases. While interesting on its own, this case is
relevant to sociological applications. In this limit, domains
the minority phase are isolated and the process is essen
an exchange process with a product kernelK( i , j )5( i j )l.
The dependence of the number of exchange candidates~i.e.,
spins in domain walls that can lower their energy by hopp
to a different cluster! on the cluster size dictates the hom
geneity degree. For spherical clusters, only perimeter s
may exchange. Since the island size and the sur
size grow with the radius according tok;Rd and
s;Rd21;k(d21)/d, respectively, one hasl5(d21)/d.
Henceb5d/(d12) @recall that the exponentb is defined
via k;tb and equal to b51/(322l), Eq. ~7!#. The
dynamical exponent~defined throughR;tz) is therefore
z51/(d12). If the islands are polygons, a distinct po
sibility on a lattice, then only corner spins are active,
l50, and consequentlyb51/3 and z51/(3d). Both
estimates agree with the exact result in one dimension@37#.

To examine these predictions, we performed large sc
Mote Carlo simulations of the Ising model with infinite rang
Kawasaki exchange dynamics in two dimensions. The e
cient simulation method keeps track only of boundary sp
The simulation data in Fig. 3 correspond to an average o
102 independent realizations in a square lattice of 60
36000 sites with minority spin concentrations ofr50.01
and 0.02. The density of broken bonds@i.e., the energyE(t)]
provides a convenient measure for the domain growth law
n is the density of minority domains, then conservation of
total number of minority spins givesnRd;const, and using
compactness of the domains we getE;nRd21, from which
E;R21;t2z. Our numerical simulations show a very slo
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growth law for the typical domain size. The simulations e
clude the former circular domain scenarioz51/(d12)
51/4 and give partial support to the latter square dom
scenarioz51/(3d)51/6. Additionally, we verified that the
shape of the domains is not circular, but rather close to r
angular with mostly straight edges~Fig. 4!. Thus, the growth
may not necessarily follow from curvature consideratio
We conclude that the growth law is dimension dependen
least in the limit ofvanishingminority concentration.

B. Coarsening of thin granular layers

In electrostatically driven granular layers, clusters nuc
ate around large grains@38#. When charged grains oscillat
back and forth between the two bounding plates due to
oscillating electric field, they may scatter off the plate
collide with other particles. Consequently, individual grai
may transfer from one cluster to another. Naively, the rate
hopping into and out of a cluster is proportional to its are
Therefore, the homogeneity degree is unity,l51, implying
b51 and a dynamical exponent ofz51/d. In two dimen-
sions, this prediction is consistent with the experimental
servationz51/2 @38#.

To further test the exchange-driven growth theoreti
predictions, we examined the experimentally observed c
ter size distributions. First, we checked that the size distri
tions at different times are identical once the average clu
size is set to unity, thereby verifying the self-similar beha

FIG. 3. Decay of the energy vs time in the Ising-Kawasa
model with infinite range exchange. The inset shows the local sl
2dln E(t)/dln t vs time t.

FIG. 4. A snapshot of a small part of the system at the late st
of evolution (t5106).
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ior. Given the relatively small number of available cluste
experimental data from different stages during the coars
ing process were aggregated into a single dataset by se
the average cluster size~or area! to unity. To further improve
the statistics, we examined the cumulative size distribut
C(x)5*x

`dy F(y). The theory~12! predicts a purely expo
nential distribution, C(x)5F(x)5exp(2x). The experi-
mental distribution represents roughly 103 clusters obtained
from 20 different snapshots during a single realization of
coarsening process in which the total number of clusters
creased appreciably from 200 to 10.

Comparing the theoretical and experimental size distri
tions, exchange-driven growth provides a useful approxim
tion ~see Fig. 5!. For instance, the normalized variance, d
fined via s25J2 /J1

221, is experimentally found to bes
50.8060.05 compared with the theoretical values51. Al-
though exchange of individual grain does underlie the
perimental coarsening process, the exchange usually
volves only neighboring clusters. Thus, the mean-fi
exchange-driven growth process where exchange can o
between any two clusters is only an approximation. Furth
more extensive experimental data are needed to resolve
relevance of spatial correlations.

VII. CONCLUSIONS

We have shown that kinetics of exchange processes
classified by the homogeneity indices of the governing ra
There are three possible regimes including indefinite grow
gelation in a finite time, and instant gelation. Scaling beh
ior underlies the first two regimes. The size distributions
generally extended, decaying exponentially or algebraic
for large sizes, in contrast with migration processes.

FIG. 5. The cumulative cluster area distributionC(x) vs the
normalized areax. The inset magnifies the tail of the distributio
~same axis labels as the main figure!.
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We also studied the gelation time in finite systems a
found that it decays rather slowly, following an inverse log
rithmic law. It would be interesting to determine further tem
poral characteristics in the instant gelation regime@28#.
While instant gelation may seem unphysical, there is no
vious restriction on the homogeneity indices, which forbi
instant gelation. The finite system size or physical rest
tions on the aggregate sizes may cause a system that te
cally is in the instant gelation regime to gel only in a fini
time, and therefore characterization of the instant gelat
regime may still be practically relevant.

Our description was on a mean-field level where all pa
of clusters in the system are equally likely to interact. It w
be interesting to incorporate spatial fluctuations into this
scription. The nature of the spatial fluctuations depends
the mechanism for transporting monomers from one clu
to the other. For diffusive transport, one can incorporate
fective fluxes into clusters, using the standard techniques
veloped for reaction-diffusion processes.
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APPENDIX: THE CASE „n,µ…Ä„1,0…

Substituting Eq.~28! into A25J0 /J1 yields

15

E
0

`

dx x2 ~11x!b21 e2ax

E
0

`

dx x~11x!b21 e2ax

,

with b5a. Evaluation of the ratio of the integrals is pe
formed as follows:

152
d

da
lnF E

0

`

dx x~11x!b21 e2axGU
a5b

52
d

da
lnF2

d

da S E
0

`

dx ~11x!b21 e2axD GU
a5b

52
d

da
lnF2

d

da
~eaa2b G~b,a!!G

a5b

5
a221eaa2a21 G~a,a!

a21
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