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Geometry of escort distributions
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~Received 11 May 2003; published 5 September 2003!

Given an original distribution, its statistical and probabilistic attributes may be scanned using the associated
escort distribution introduced by Beck and Schlo¨gl and employed in the formulation of nonextensive statistical
mechanics. Here, the geometric structure of the one-parameter family of the escort distributions is studied
based on the Kullback-Leibler divergence and the relevant Fisher metric. It is shown that the Fisher metric is
given in terms of the generalized bit variance, which measures fluctuations of the crowding index of a
multifractal. The Crame´r-Rao inequality leads to a fundamental limit for the precision of the statistical estimate
of the order of the escort distribution. We also show quantitatively that it is inappropriate to use the original
distribution instead of the escort distribution for calculating the expectation values of physical quantities in
nonextensive statistical mechanics.
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I. INTRODUCTION

The concept of the escort distribution was introduced
Beck and Schlo¨gl @1# in order to scan the attributes of th
original distribution describing the~multi!fractal features of
nonlinear dynamical systems. Let$pi% be the original distri-
bution. Then the escort distribution associated with it
given by @1#

Pi5
f~pi !

(
j

f~pj !

, ~1!

wheref is a certain positive function. Of particular impo
tance is the casef(s)5sq (0<s<1,q.0), and correspond
ingly

Pi
~q!5

~pi !
q

(
j

~pj !
q

. ~2!

The parameterq is referred to as the order ofPi
(q) . We

mention that the~generalized! expectation value with respec
to Pi

(q) in Eq. ~2!, termed theq-expectation value, plays
crucial role in the formulation of nonextensive statistical m
chanics@2,3#. There exists an intriguing property@1# con-
cerning the composition law and the group-theoretic str
ture behind Eq.~2!. Regardingpi→Pi

(r ) as a transformation
Pi

(q) changes as

Pi
~q!→ ~pi !

qr

(
j

~pj !
qr

5Pi
~qr ! . ~3!

Therefore, this transformation forms a one-parameter A
lian group with the identity transformation corresponding
the order unity. The physical significance of this emerg
symmetry, however, does not seem to have been reve
yet.
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In this article, we study the geometric structure of t
space of escort distributions. We calculate the Fisher me
along the curve defined by the one-parameter family$Pi

(q)%
and show that it is given by the generalized bit varian
which describes fluctuations of the crowding index of a m
tifractal. The Crame´r-Rao bound is then discussed in conne
tion with the statistical estimate of the order of the esc
distribution. We also discuss the Kullback-Leibler dive
gence between the original and associated escort distr
tions in the case of theq-exponential distribution in nonex
tensive statistical mechanics, in which the use of the es
distribution for calculating the expectation values is ess
tial. In this way, it is quantified how wrong it is to emplo
the ordinary definition of the expectation value in nonexte
sive statistical mechanics.

II. FISHER METRIC AND GENERALIZED BIT VARIANCE

Let us start by summarizing the basic issues relevan
our discussion. Consider two distributions$p i% and $p i8%.
The distance between them may be measured by the s
metric Kullback-Leibler divergence

D@p,p8#5K@pip8#1K@p8ip#. ~4!

In this equation,K@pip8# stands for the Kullback-Leibler
relative entropy@4#

K@pip8#5(
i

p i ln
p i

p i8
, ~5!

which is positive semidefinite and vanishes if and only
p i5p i8 (; i ).

Supposep i is dependent on a set of parametersq
5(q1,q2,...,qn): p i5p i(q). q supplies a local coordinate
in the n-dimensional submanifold of the functional space
distributions. Then, the induced metric on this submanif
may be constructed from Eq.~4!. In fact, takingp i8 in the
neighborhood ofp i , that is,p i85p i(q1dq), Eq. ~4! is cal-
culated to yield the first fundamental form
©2003 The American Physical Society01-1
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ds25D@p,p8#5 (
m,n51

n

gmn~q!dqmdqn, ~6!

wheregmn is given by

gmn~q!5(
i

]mp i~q!]np i~q!

p i~q!
~7!

with the notation]m5]/]qm. The quantity in Eq.~7! is
called the Fisher metric, or the Fisher information, in t
literature@5#. It defines the Riemannian geometric structu
of the submanifold.

Now, we regard the order of the escort distributionq as a
parameter. Accordingly, a curve is defined by the o
parameter family$Pi

(q)%. To study the geometry associate
with the escort distributions, we measure the distance
tween Pi

(q) and Pi
(q1dq) along the lines mentioned abov

From Eq.~2!, we obtain

]Pi
~q!

]q
5~^I &q2I i !Pi

~q! , ~8!

where I i and ^I &q are the information content and it
q-expectation value, respectively, given by

I i52 ln pi , ~9!

^I &q5(
i

I i Pi
~q! . ~10!

We notice that in deriving Eq.~8! the original distribution is
assumed to be independent ofq. ~The situation becomes dif
ferent in Sec. III.! Using Eq.~7! in the one-dimensional case
we find

ds25D@P~q!,P~q1dq!#5~DqI !2dq2. ~11!

Here, the Fisher metric (DqI )2 is the generalized variance@6#
of the information content:

~DqI !25^I 2&q2^I &q
2. ~12!

This is a generalization of the so-called bit variance@1#, i.e.,
the second bit cumulant, and is different from the one d
cussed in Refs.@7–10#, in which statistical properties of cha
otic dynamical systems are investigated.~Actually, it turned
out that this quantity was already presented in Ref.@1# in the
differential form. See Sec. 12.4 of Ref.@1#.! The ordinary bit
variance is recovered from Eq.~12! in the limit q→1, analo-
gously to the generalized bit variance of the other type
Refs.@7–10#. Thus, we find that the bit variance possesse
geometric meaning as the Fisher metric associated with
escort distributions with different values of the order.

Now we wish to point out the relevance of the prese
discussion to multifractals@1#. Let l be the size of a smal
box whose collection can cover the multifractal phase spa
The probability attributed to thei th box~centered at a certain
point! reads

pi~ l !; l a i, ~13!
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where a i is the Lipschitz-Ho¨lder exponent, commonly re
ferred to as the crowding index@1#. Equation~13! means that
the crowding index is essentially the information conte
Therefore, we see that the Fisher metric in Eq.~12! provides
generalized fluctuations of the crowding index of a mu
fractal with a natural geometric interpretation.

Finally, we briefly mention parameter estimation theo
for the order of the escort distribution. This problem is ana
gous to estimating temperatures of thermodynamic syst
@11#. It is known that the Fisher information is related to th
problem of statistical parameter estimation. For an unbia
estimator ofq, the size of the error in the estimationdq
obeys the Crame´r-Rao inequality@5,11#

~dq!2~DqI !2>1. ~14!

Therefore, the generalized bit variance as the metric give
fundamental limit for the precision of the estimate of t
order of the escort distribution.

III. KULLBACK-LEIBLER DIVERGENCE FOR
q-EXPONENTIAL DISTRIBUTION

This section is devoted to calling attention to the cruc
importance of employing the escort distribution for calcul
ing the expectation values of physical quantities in nonext
sive statistical mechanics@2,3,12# based on the Tsallis en
tropy @13#. This is because there still seems to be confus
caused by published work that employs the ordinary defi
tion of the expectation values with respect to the origin
distribution.

The stationary distribution in nonextensive statistical m
chanics is the ‘‘q-exponential distribution,’’ which has the
following form:

p̃~x!5
1

Zq~l!
eq~2lx!, ~15!

Zq~l!5E dx eq~2lx!, ~16!

wherel is the factor related to the Lagrange multiplier a
sociated with theq-expectation value ofx calculated by the
use of the escort distribution, as in Eq.~10!. ~In the subse-
quent discussion,l is nothing but a parameter.! Also, here
and hereafter, a continuous random variablex ~>0! is con-
sidered for the sake of simplicity of the discussion. In E
~15! and~16!, eq(s) stands for the ‘‘q-exponential function’’
defined by

eq~s!5„11~12q!s…1
1/~12q! ~17!

with the notation (A)1[max$0,A%. In the limit q→1, Eq.
~15! tends to the familiar Boltzmann-Gibbs-type exponent
distribution. Clearly, the distribution in Eq.~15! is normaliz-
able if and only ifq,2, leading toZq(l)5@(22q)l#21.

In the case when 1,q,2, the original distribution in Eq.
~15! is of the Zipf-Mandelbrot type and decays as a pow
law for large values ofx. In particular, all of its moments are
divergent when 3/2,q,2. This is a feature in common with
1-2
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the Lévy distribution in half space, and in fact the origin
distribution converges to the Le´vy distribution by repeated
convolution operations in conformity with the Le´vy-
Gnedenko generalized central limit theorem@14#. Therefore,
in this case, the use of theq-expectation values is essenti
for calculating finite moments to investigate, e.g., the ma
mum entropy principle. Furthermore, it has been shown@15#
that in nonextensive statistical mechanics the ordinary exp
tation value has to be replaced by theq-expectation value, in
order to be consistent with the nonextensive generaliza
of the method of steepest descents developed by Fowler
Darwin for establishing the statistical foundation for cano
cal ensemble theory.

The situation is different when 0,q,1. In this case, the
original distribution in Eq.~15! is support compact, 0<x
<@(12q)l#21, and therefore all the moments are finit
However, the use of the escort distribution still has to
respected, since Eq.~15! itself is derived by maximization o
the Tsallis entropy under the constraint on theq-expectation
value ofx. ~For the entropic basis of theq-exponential dis-
tribution, see Ref.@16#.! It is theq-expectation value, not the
ordinary expectation value, that should be compared with
average value obtained from the experimental data. To qu
tify the discrepancy between the ordinary expectation va
and theq-expectation value independently of the choice o
physical quantity to be averaged, again we calculate
Kullback-Leibler divergences between the original distrib
tion p̃(x) and its associated escort distributionP̃(q)(x)
5@ p̃(x)#q/*dx8@ p̃(x8)#q. The results are

K@ P̃~q!i p̃#512q2 ln~22q!, ~18!

K@ p̃i P̃~q!#5 ln~22q!2
12q

22q
, ~19!
s:
n-

,
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D@ P̃~q!,p̃#5
~12q!2

22q
, ~20!

which turn out to hold also in the case 1,q,2. In the range
0,q,1, D monotonically decreases from 1/2 to 0 asq var-
ies from 0 to 1. For example,q51/2 gives rise toD51/6,
which is about 33% of the largest value of the discrepan
1/2. This fact quantitatively illustrates how wrong it is t
employ the original distribution to calculate the expectati
values in nonextensive statistical mechanics.

IV. CONCLUSION

We have studied the geometry associated with the es
distributions by making use of the Kullback-Leibler dive
gence and the Fisher metric. We have shown that three
cepts, i.e., the lower bound of the error in the estimation
the order of the escort distribution, the bit variance, and fl
tuations of the crowding index of a multifractal, are all e
dowed with their geometric interpretations. We have a
quantitatively discussed how inappropriate it is to use
original distribution instead of the escort distribution in no
extensive statistical mechanics.

In the present work, we have employed the ordina
Kullback-Leibler divergence. There is the possibility of u
ing the generalized Kullback-Leibler divergence~associated
with the Tsallis entropy@13#! introduced and discussed i
Refs. @17–22#. As shown in Refs.@17,18#, in this case, the
corresponding Fisher metric is globally conformally equiv
lent to the ordinary one in Eq.~7!.
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