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Geometry of escort distributions
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Given an original distribution, its statistical and probabilistic attributes may be scanned using the associated
escort distribution introduced by Beck and Sailand employed in the formulation of nonextensive statistical
mechanics. Here, the geometric structure of the one-parameter family of the escort distributions is studied
based on the Kullback-Leibler divergence and the relevant Fisher metric. It is shown that the Fisher metric is
given in terms of the generalized bit variance, which measures fluctuations of the crowding index of a
multifractal. The CrameRao inequality leads to a fundamental limit for the precision of the statistical estimate
of the order of the escort distribution. We also show quantitatively that it is inappropriate to use the original
distribution instead of the escort distribution for calculating the expectation values of physical quantities in
nonextensive statistical mechanics.
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I. INTRODUCTION In this article, we study the geometric structure of the
space of escort distributions. We calculate the Fisher metric
The concept of the escort distribution was introduced byalong the curve defined by the one-parameter far{ﬂﬁﬂ)}
Beck and Schigl [1] in order to scan the attributes of the and show that it is given by the generalized bit variance,
original distribution describing thémulti)fractal features of which describes fluctuations of the crowding index of a mul-
nonlinear dynamical systems. Lft;} be the original distri- tifractal. The CrameRao bound is then discussed in connec-
bution. Then the escort distribution associated with it istion with the statistical estimate of the order of the escort

given by[1] distribution. We also discuss the Kullback-Leibler diver-
gence between the original and associated escort distribu-
é(pi) tions in the case of thg-exponential distribution in nonex-
Pi= ' (1) tensive statistical mechanics, in which the use of the escort
; (pj) distribution for calculating the expectation values is essen-

tial. In this way, it is quantified how wrong it is to employ
the ordinary definition of the expectation value in nonexten-

where ¢ is a certain positive function. Of particular impor- sive statistical mechanics.

tance is the case(s)=s" (0<s<1,q>0), and correspond-

ingly
Il. FISHER METRIC AND GENERALIZED BIT VARIANCE
) . o
pi(Q):&. ) Let us start by summarizing the basic issues relevant to
D (p;)? our discussion. Consider two distributiofig;} and {}.

The distance between them may be measured by the sym-
metric Kullback-Leibler divergence

The parameteq is referred to as the order d®@. We

mention that thégeneralizeflexpectation value with respect Dlm, 7" |=K[#wllw" |+ K[7'll]. (4)

to P(% in Eq. (2), termed theg-expectation value, plays a

crucial role in the formulation of nonextensive statistical me-In this equationK[7ll7'] stands for the Kullback-Leibler

chanics[2,3]. There exists an intriguing properfyl] con-  relative entropy4]

cerning the composition law and the group-theoretic struc-

ture behind Eq(2). Regardingp,— P{" as a transformation, L T
P{¥ changes as Kl ]_Z min ®)

p@_, (p)% — plan 3) which is positive semidefinite and vanishes if and only if
: 2 (p.)qr : ’7Ti:7Til (Vl)
; ] Suppose; is dependent on a set of parametars
=(9%0%....9": m=m(q). q supplies a local coordinate
Therefore, this transformation forms a one-parameter Abeln the n-dimensional submanifold of the functional space of
lian group with the identity transformation Corresponding todistributions. Then, the induced metric on this submanifold
the order unity. The physical significance of this emergingmay be constructed from Eg4). In fact, taking#; in the
symmetry, however, does not seem to have been revealewighborhood ofr;, that is,w{ = m;(q+dq), Eq.(4) is cal-
yet. culated to yield the first fundamental form
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n where «; is the Lipschitz-Héder exponent, commonly re-
d?=D[#,7']= 2, 9,.,(q)dg“dq”, (6) ferred to as the crowding indés]. Equation(13) means that
pov=1 the crowding index is essentially the information content.
Therefore, we see that the Fisher metric in B®) provides
generalized fluctuations of the crowding index of a multi-
d,mi()d,m(q) fract.al with a nat_ural geometric interpretation_. .
g (7) Finally, we briefly mention parameter estimation theory
itq for the order of the escort distribution. This problem is analo-
with the notationd,=d/dq*. The quantity in Eq.(7) is ~ 9OUS f0 estimating temperatures of thermodynamic systems
called the Fisher metric, or the Fisher information, in the[ll]t')lIt is known thatlthe Fisher information is related t(t)).thed
literature[5]. It defines the Riemannian geometric structureProPlem of statistical parameter estimation. For an unbiase
of the submanifold. estimator ofg, the size of th_e error in the estimatiafg
Now, we regard the order of the escort distributipas a ~ ©P€Ys the CranmeRao inequality(S,11]
parameter. Accordingly, a curve is defined by the one- S2(A1)2=1 14
parameter famin{Pi(Q)}. To study the geometry associated (00)%(Aq1) ' a4
with the escort distributions, we measure the distance befherefore, the generalized bit variance as the metric gives a
tween P{% and P{%799 along the lines mentioned above. fundamental limit for the precision of the estimate of the

whereg,,, is given by

9,,(0)= Z

From Eq.(2), we obtain order of the escort distribution.
p§Q)
| = ((1)g—1))P, ®) Ill. KULLBACK-LEIBLER DIVERGENCE FOR
aq @ g-EXPONENTIAL DISTRIBUTION
where |; and (I), are the information content and its This section is devoted to calling attention to the crucial
g-expectation value, respectively, given by importance of employing the escort distribution for calculat-
ing the expectation values of physical quantities in nonexten-
li=—Inp;, (9)  sive statistical mechanid®,3,17 based on the Tsallis en-
tropy [13]. This is because there still seems to be confusion
0 ZE |.p@ (10) qaused by published_ work that er_nploys the ordinary c_je_fini-
a 4 i tion of the expectation values with respect to the original
distribution.
We notice that in deriving Eq8) the original distribution is The stationary distribution in nonextensive statistical me-

assumed to be independentf(The situation becomes dif- chanics is the t-exponential distribution,” which has the
ferent in Sec. Il Using Eq.(7) in the one-dimensional case, following form:

we find
ds?=D[P@,Pa+d9]= (A 1)%dqg?. (11) b(X)=$eq(—>\X), (15
Here, the Fisher metricy(yl )2 is the generalized varian¢6]
of the information content: Zq("):f dx &(—Ax), (16)
(Agh2=(1%)q—(1)5 (12

where\ is the factor related to the Lagrange multiplier as-
This is a generalization of the so-called bit variaftg i.e.,  sociated with theg-expectation value ok calculated by the
the second bit cumulant, and is different from the one disuse of the escort distribution, as in Ed.0). (In the subse-
cussed in Refd.7—10], in which statistical properties of cha- quent discussion\ is nothing but a parametgrdlso, here
otic dynamical systems are investigaté@lctually, it turned — and hereafter, a continuous random variable=0) is con-
out that this quantity was already presented in REffin the  sidered for the sake of simplicity of the discussion. In Egs.
differential form. See Sec. 12.4 of R¢L].) The ordinary bit  (15) and(16), e4(s) stands for the -exponential function”
variance is recovered from E€L2) in the limitg—1, analo-  defined by

gously to the generalized bit variance of the other type in

Refs.[7-10. Thus, we find that the bit variance possesses a ey(s)=(1+(1—q)9)* ¥ (17)
geometric meaning as the Fisher metric associated with the_ _ o
escort distributions with different values of the order. with the notation A) ,=max0A}. In the limit g—1, Eq.

Now we wish to point out the relevance of the present(15 tends to the familiar Boltzmann-Gibbs-type exponential
discussion to multifractalf1]. Let | be the size of a small ~distribution. Clearly, the distribution in Eq15) is normaliz-
box whose collection can cover the multifractal phase spacéble if and only ifq<<2, leading toZ,(A\) =[(2—q)A] ~.

The probability attributed to thigh box (centered at a certain ~ In the case when<q<2, the original distribution in Eq.
point reads (15) is of the Zipf-Mandelbrot type and decays as a power

law for large values ok. In particular, all of its moments are
pi (1) ~14, (13 divergent when 3/2q<2. This is a feature in common with

031101-2



GEOMETRY OF ESCORT DISTRIBUTIONS PHYSICAL REVIEW B8, 031101 (2003

the Levy distribution in half space, and in fact the original - (1—q)?
distribution converges to the kg distribution by repeated D[P, p]=
convolution operations in conformity with the g
Gnedenko generalized central limit theorgtd]. Therefore,
in this case, the use of thpexpectation values is essential . .
for calculating finite momrg;ts Ft)o investigate, e.g., the maxi-WhICh turn out to ho'd also in the case<hj<2. In the range
mum entropy principle. Furthermore, it has been shpwsj 0 <d<1, D monotonically decreases from 1/2 to Ogsar-
that in nonextensive statistical mechanics the ordinary exped€S from 0 to 1. For exampley=1/2 gives rise td = 1/6,
tation value has to be replaced by tpexpectation value, in which is about 33% 'of f[he Ia.rgest value of the dlscrepancy,
order to be consistent with the nonextensive generalizatiod/2. This fact quantitatively illustrates how wrong it is to
of the method of steepest descents developed by Fowler af@inploy the original distribution to calculate the expectation
Darwin for establishing the statistical foundation for canoni-values in nonextensive statistical mechanics.
cal ensemble theory.

The situation is different when<9q<1. In this case, the
original distribution in Eq.(15) is support compact, €x IV. CONCLUSION
<[(1—-q)A]"%, and therefore all the moments are finite.
However, the use of the escort distribution still has to be We have studied the geometry associated with the escort
respected, since EQLY) itself is derived by maximization of  gjstributions by making use of the Kullback-Leibler diver-
the Tsallis entropy under the constraint on thexpectation  gence and the Fisher metric. We have shown that three con-
value ofx. (For the entropic basis of thgexponential dis-  cents j.e., the lower bound of the error in the estimation of
tribution, see Refl16].) It is the g-expectation value, not the o orger of the escort distribution, the bit variance, and fluc-

ordinary expectation value, that should be compared with thg o5 of the crowding index of a multifractal, are all en-

average value abtained from the experimental data. To ualiswed with their geometric interpretations. We have also

tify the discrepancy between the ordinary expectation value o . . . L
and theg-expectation value independently of the choice of aquantltanvely discussed how inappropriate it is to use the

physical quantity to be averaged, again we calculate thgriginal distribution instead of the escort distribution in non-
Kullback-Leibler divergences between the original distribu-EXtensive statistical mechanics.

L . . = In the present work, we have employed the ordinary
tion P(x) and its associated escort distributid?(?(x) e . . G ’
—[B(x) ]9 [ dx [B(x')]%. The results are Kullback-Leibler divergence. There is the possibility of us

ing the generalized Kullback-Leibler divergen@ssociated

> g 20

K[P@DIpl=1—q—In(2—q), 18 with the Tsallis entropy{13]) introduced and discussed in
[ P] a-in(2—q) (18 Refs.[17—-27. As shown in Refs[17,18, in this case, the
5 1-q corresponding Fisher metric is globally conformally equiva-
K[BIP@]=In(2—q) - 2=q’ (199 lent to the ordinary one in Ed7).
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