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Prisoners’ dilemma in real-world acquaintance networks: Spikes and quasiequilibria
induced by the interplay between structure and dynamics
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We study Nowak and May’s spatial prisoners’ dilemma game driven by mutations~random choices of
suboptimal strategies! on empirical social networks. The time evolution of the cooperation level is highly
complex containing spikes and steps between quasistable levels. A statistical characterization of the quasistable
states and a study of the mechanisms behind the steps are given. We argue that the crucial structural ingredients
causing the observed behavior is an inhomogeneous degree distribution and that the connections within verti-
ces of highest degree are rather sparse. Based on these observations we construct model networks with a
similar complex time evolution of the cooperation level.
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The prisoners’ dilemma~PD! game is a powerful meta
phor for the situation where mutual trust and cooperation
beneficial in a long perspective but egoism and guile
produce big short-term profit. One of the major achieveme
has been to establish the condition for cooperative beha
when two players meet repeatedly@1#. Another direction has
been to investigate the criteria for cooperation to be stabl
social space. In this approach the spatial PD game by No
and May@2# has been the basic model; a model where th
are a numberN of players interacting only with players in it
immediate surrounding. Traditionally, spatial games ha
been studied on regular lattices; but real social networks
very complexly organized@3#—being random to some ex
tent, but also having structure reflecting the social forces
a step in this direction people have studied the spatial PD
more realistic model networks@4,5#. In this paper we pursue
this idea to the end and let the players’ encounters follow
ties of empirical social networks. The outcome is a ve
complex behavior arising from the interplay between the
dynamics and the underlying network structure.

We represent the underlying networks as graphsG
5(V,E), whereV is the set ofN players~or vertices! andE
is the set ofM ties ~or edges—unordered pairs of vertice!
between them. The networks we use are mostly acqu
from online interaction—through contacts within an Intern
community and through email exchange.~A summary of the
used networks can be seen in Table I.! Even if the structure
of online interaction network differs from regular acquai
tance networks, we believe that our results will hold for
quite large class of social networks. As a small test netw
we also use an acquaintance data constructed from a
survey~the ‘‘karate-club’’ network!.

In Nowak and May’s spatial PD game@2# each player, at
each time step, adopts one of two strategies: cooperateC or
defect D. To catch the dilemma one lets an encounter
tween two cooperators result in unity gain for both playe
whereas aD-D encounter gives zero gain for both. Howev
if a cooperator meets a defector the cooperator scores
and the defector scoresbP(1,2) (b is called ‘‘temptation’’!.
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The gaing(v) of a playerv is the sum of the gains from th
encounters with its neighbors. If a neighbor scores hig
than a player, the player follows the high scoring neighb
But, to drive the system~and model occasional irrationa
moves! a player chooses the opposite strategy with a pr
ability pm . We use synchronous updating of the players, i
one time step of the algorithm consists of one sweep~over all
the players! to calculate the individual gains and one swe
to update the strategies.

Our key quantity is the cooperator densityr—the fraction
of players adopting the strategyC. In regular networks the
cooperator level is characterized by random fluctuations
high-frequency oscillations~mostly of period two, so-called
‘‘blinkers’’ @2#!. But, as seen in Fig. 1, when a regular und
lying network is replaced by empirical social networks w
get a complex behavior of both upward and downwa
spikes and steps between a number of quasiequilibrium
els. Other observations of quasistable states in games
been obtained for more complex update rules and lar
strategy space@9–11# or for some special types of directe
networks@5#.

The steps between quasiequilibria in Fig. 1 suggest a
nario of relatively few stable states, where mutations on
portant vertices may cause a shift from one quasistable s
to another. To get a better picture we plot a histogram over
~Fig. 2! that indeed has distinct peaks. For a givenb the
position and relative height of the peaks arepm independent

TABLE I. Statistics of the networks: The number of verticesN,
the number of edgesM, the average degree in the maximal su
graph of the ten vertices of highest degreek10, and the correspond
ing expectation value for random graphs of the same degree

quencek̄10.

Network Reference N M k10 k̄10

pussokram.com @6# 29 341 115 684 1.6 6.0(1)
Emails @7# 40 346 58 224 1.8 4.9(1)
Karate club @8# 34 78
©2003 The American Physical Society01-1



e
k.

o

. T
te

er

h
cia

an
e
n
di

h-

uch
ig.

-

the

rs in
that

fec-

t
m

-
e

tate
of

re

RAPID COMMUNICATIONS

HOLME et al. PHYSICAL REVIEW E 68, 030901~R! ~2003!
~if pm increases, the noise level of the histograms g
higher! and thus forms a kind of fingerprint of the networ
We note that the histograms obtained from one long run
many shorter runs~with different random seeds! are the
same, this indicates that the system is self-averaging.

Now we turn to the structure of the quasistable states
start with a concrete example, in Fig. 3 we study the kara
club network at the intermediater level of Fig. 1~d!. In Fig.
3~a! @12# vA andvB scores highest among the border play
~players with a neighbor of the opposite strategy!. This
makes many players, including the highly connectedvC ,
change strategy toC. In Fig. 3~b!, the defectorvB has
enough cooperators in their neighborhood to score hig
thanvA , and thus complete the cycle. We note that a cru
point in sustaining the stability is thatvA and vB are not
connected. We also note that ifvD is mutated in Fig. 3~a! the
system would loose its periodicity and stay in a const
configuration~until the next mutation!. This suggests that th
quasiequilibria in Fig. 1 does not correspond only to o
state, but a set of states that are all close in Hamming
tance.

How does the high-r states differ from the low-r states?
From the update rule to follow the player with locally hig

FIG. 1. Time evolution of the cooperator densityr for different
networks and values of the temptationb and mutation ratepm pa-
rameters. All these time sequences are typical for the given se
parameter values except the karate-club network that spends
of the time in the all-D stater'0.

FIG. 2. Histograms~over 108 time steps! of the cooperator den
sity. The temptation is 1.35 for both subfigures, the mutation rat
0.001. Lines are guides is the eyes.
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est gain, one expects that defectors gain comparatively m
in low r and vice versa. This is indeed true as shown in F
4 where we plot the average defector gaingD and cooperator
gain gC along withr. One may therefore talk about a high
r ‘‘cooperator controlled’’ and a low-r ‘‘defector controlled’’
state. The average defector gain is directly related to
fraction of boundary (C-D) edgesf—the total defector gain
is the sum of all boundary edges timesb, which gives the
following expression forf:

f5
gD~12r!N

bM
. ~1!

The values ofgD @seen in Fig. 4~c!# means that; 40% of
the edges are border between cooperators and defecto
the defector controlled state. This rather many consider
the biggest cooperator cluster consists of;95% of all coop-
erators~the same figure for defectors is;63%). These ob-
servations suggest numerous situations where many de

of
ost

is

FIG. 3. The configurations of the intermediate quasistable s
of the karate-club network from time steps 779 597 and 779 598
the run in Fig. 1~d!. The key players mentioned in the discussion a
marked as squares.

FIG. 4. ~a! Cooperator densityr. ~b! Average cooperator gain
gC . ~c! Average defector gaingD . All curves are from the same run
for the pussokram.com network and parameter valuespm50.001,
b51.35.
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tors exploit high-degree cooperators, such asvC is being
exploited in Fig. 3~b!. ~This picture is confirmed under gen
eral circumstances@13#.!

To investigate the mechanism behind the steps ofr(t) we
start by again considering the example of Fig. 3. If the m
connected vertexvB ~with degree 17! is mutated fromD to C
in the configuration of Fig. 3~a! then g(vB)54 while
g(vC)55.6. In the next time stepvB would shift to vC’s
strategyD while vC follows the cooperatorvA , so in fact all
vertices except one degree-2 vertex will have the same s
egies as without a mutation onvB . If on the other hand,vB
was mutated in Fig. 3~b!, all players would cooperate in th
succeeding time step. By this example we conclude th
vertex’ importance with respect to mutation is not only d
pendent on its degree but also on the current configurati

For a little more quantitative approach to this problem
study the result of a one-player mutation as follows: Start
at time t we run the system without mutations until one p
riod is completed—this is to start from a specific configu
tion c of the local attractor state@12#. Then we mutate vertex
v and let the system evolve~without mutations! until one
period is completed. Finally, we let the system yet compl
a period and look for the configurationĉ with the minimal
Hamming distance toc over the period~this is to make the
difference zero if the system would relax back to the sa
state as prior to the mutation!, and setr̂v5r( ĉ). In Figs.
5~a!–~d! we plot tenr̂v that differs most fromr(c) at four
different time steps in four different quasistable states.
observe that the system can change quasistable state d
mutations on single vertices, but at the same time not g
anyother quasistable state. Furthermore, there is only a s
number of mutations that actually causes a transition. Jus
in the karate-club example above the configurations comp
ing a state may vary much from one time step to anoth
This fact explains the apparent lack of transitions to ther
'0.35 state—in fact, the transition to this state~around t
58250) occurs from a single-player mutation from a co
figuration in ther'0.65 peak. As expected, all vertices co
tributing to the lines in Figs. 5~a!–~d! have high degree~the
lowest degree is 111). But, as mentioned above, it is not
that a high degree implies a high importance—for examp

FIG. 5. The impact of one-player mutations.~a–d! shows ten

r̂v(t) ~the eventual cooperator level ifv, and no other vertex, is
mutated and the system relaxed! that differs most fromr(t) at the
indicated time steps. The originalr(t) is indicated together with the
r histogram in~e!.
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of the ten most connected vertices, on average 5.5 con

utes to the ten most differentr̂v values plotted in Figs. 5~a!–
~d!. It is thus not only the structure but the interplay betwe
the structure and dynamics that gives rise to the quasist
equilibria. As a last point we note that the quasiequilibria a
stable in the absence of mutations—if the system at the t
steps of Figs. 5~a!–~d! is evolved without mutation, the larg
est shift inr is 0.008.

What features of the network structure are causing
nonstationary evolution of the cooperator density? As
have seen, the vertices have to have a highly skewed de
distribution—so that mutation on one vertex can cause m
vertices, directly or indirectly, change strategy. Furthermo
it should not be the case that the vertices of highest deg
all are interconnected—then these would all follow the sa
strategy and most of the other vertices too, so nothing m
than small fluctuations ofr, or steps involving almost al
vertices, could occur. To test that there is a bias among
most connected vertices not to attach to each other,
sample different networks with the same degree sequenc
randomly rewiring the original network with the restrictio
that the degree of each vertex is preserved@14,15#. The av-
erage degree of the maximal subgraph of the ten vertice
highest degreek10 and the expectation value of the sam
quantity for random graphs with the same degree seque
asG, k̄10, for the three large networks are shown in Table
~The value ten is chosen arbitrarily—any number of the sa
order would do.! We see thatk10 is indeed significantly lower
than k̄10 for all three networks. We also note that if one ru
the PD dynamics on a rewired network one sees spikes
no quasistable states@13#.

Networks with a broad degree distribution can be gen
ated by, for example, Baraba´si and Albert’s~BA! scale-free
network model@16#: Start with m0 disconnected vertices
and grow the network by adding a vertexv with degreem
per time step. An edge from the new vertex are added to
old vertexw with a probability proportional tow’s degree.

We try to model the behavior of the cooperator density
starting from BA model networks withm5m053 and
20 000 vertices. To tune how much mutually connected
vertices of highest degree are, we make the subset of then1

~or n2) vertices of highest degree complete by adding
missing edges~or completely disconnected by removing e
isting edges!. As seen in Fig. 6 the steps and spikes of t
real-world networks can be qualitatively reproduced. The
semblance is closest for removed edges among a small n
ber of hubs Fig. 6~c!. If the edges are removed within
larger set of hubs, the steps are increasing in frequency
number until the structure is completely blurred out. If a
missing edges are added within the topn1 connected verti-
ces, the steps vanishes but the spikes increase in size
width. An explanation is that when the vertices of highe
degree are fully connected, a mutation of one of these wo
momentarily increase the number of cooperators by a la
amount and also decrease the speed of restoration of c
eration. At the same time it is well known that cooperation
promoted in highly connected regions@17# which explains
the highr value of the quasistable state.
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In summary, we have studied Nowak and May’s spa
PD game on empirical social networks. We find a comp
time evolution of the cooperator level characterized by la
spikes and transitions between a number of quasist
states. The quasistable states of lowr are characterized by

FIG. 6. Evolution ofr for model networks. The network param
eters arem5m053, N520 000. The dynamical parameters areb
51.4 andpm50.001.
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comparatively large gain for the defectors and large fract
of boundary edges, in quasistable states with highr this
situation is reversed. We find that mutations on high-deg
players are likely to be responsible for transitions betwe
the quasistable states; but the outcome of a mutation
high-degree vertex is also much dependent on the cur
configuration. These findings are presented for some spe
sets of parameter values, but they are qualitatively the s
for a broad range of values. We argue that the structure c
ing this behavior is a inhomogeneous degree distributi
and that the number of edges within the subset of high
degree vertices is relatively low. Based on this observat
we also construct model networks that reproduces the s
and spikes of the real-world networks. To epitomize, we
lieve that we have illustrated how underlying acquaintan
patterns can give rise to a complex time development
social instability—a picture that could be empirically testab
by carefully arranged social observations.
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