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Prisoners’ dilemma in real-world acquaintance networks: Spikes and quasiequilibria
induced by the interplay between structure and dynamics
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We study Nowak and May’s spatial prisoners’ dilemma game driven by mutafranslom choices of
suboptimal strategi¢son empirical social networks. The time evolution of the cooperation level is highly
complex containing spikes and steps between quasistable levels. A statistical characterization of the quasistable
states and a study of the mechanisms behind the steps are given. We argue that the crucial structural ingredients
causing the observed behavior is an inhomogeneous degree distribution and that the connections within verti-
ces of highest degree are rather sparse. Based on these observations we construct model networks with a
similar complex time evolution of the cooperation level.
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The prisoners’ dilemmd#PD) game is a powerful meta- The gaing(v) of a playerv is the sum of the gains from the
phor for the situation where mutual trust and cooperation incounters with its neighbors. If a neighbor scores higher
beneficial in a long perspective but egoism and guile carihan a player, the player follows the high scoring neighbor.
produce big short-term profit. One of the major achievement8ut, to drive the systemiand model occasional irrational
has been to establish the condition for cooperative behavidhoves a player chooses the opposite strategy with a prob-
when two players meet repeatedlyl. Another direction has ~ ability p,,. We use synchronous updating of the players, i.e.,
been to investigate the criteria for cooperation to be stable iRn€ time step of the algorithm consists of one swesfer all
social space. In this approach the spatial PD game by Nowall® players to calculate the individual gains and one sweep
and May[2] has been the basic model; a model where therd® Update the strategies. . .
are a numbeN of players interacting only with players inits  OUr key quantity is the cooperator densgey-the fraction
immediate surrounding. Traditionally, spatial games have®f Players adopting the stratedy. In regular networks the
been studied on regular lattices; but real social networks ar: ooperator level is _cha_racterlzed by ran_dom fluctuations and
very complexly organized3}—being random to some ex- igh-frequency oscillationgmostly of period two, so-called

tent, but also having structure reflecting the social forces A“blinkers" [2]). But, as seen in Fig. 1, when a regular under-
DTS . . : ing network is replaced by empirical social networks we
a step in this direction people have studied the spatial PD o g b y emp

listi del In thi et a complex behavior of both upward and downward
more realistic model networkg,5]. In this paper we pursue spikes and steps between a number of quasiequilibrium lev-

this idea to the end and let the players’ encounters follow the,s  other observations of quasistable states in games have
ties of empirical social networks. The outcome is a VerYpaen obtained for more complex update rules and larger
complex behavior arising from the interplay between the PDstrategy spac9—11] or for some special types of directed
dynamics and the underlying network structure. networks[5].

We represent the underlying networks as gragbs The steps between quasiequilibria in Fig. 1 suggest a sce-
=(V,E), whereV is the set ol players(or verticeg andE  nario of relatively few stable states, where mutations on im-
is the set ofM ties (or edges—unordered pairs of vertites portant vertices may cause a shift from one quasistable state
between them. The networks we use are mostly acquireth another. To get a better picture we plot a histogram pver
from online interaction—through contacts within an Internet(Fig. 2) that indeed has distinct peaks. For a giverhe
community and through email exchangd.summary of the  position and relative height of the peaks @rgindependent
used networks can be seen in TableBven if the structure

toz;n?:g“rr}l(;t\llcct)(:lgct\l/\cl)en Sglti\(lav\?éktr?;_f;reczarf:’g?ulrtzgvljlliﬁrh%(lzgl;g:’né TABLE |. Statistics of the networks: The number of vertidés
' the number of edgeM, the average degree in the maximal sub-

quite large class of soc_lal networks. As a small test netwqriF aph of the ten vertices of highest degkeg, and the correspond-
we also use an acquaintance data constructed from a fie 4 expectation value for random graphs of the same degree se-
survey(the “karate-club” network. uencek.

In Nowak and May’s spatial PD ganfé] each player, at 10
each time step, adopts one of two strategies: coop&ate  \atwork Reference N M ko K
defectD. To catch the dilemma one lets an encounter be- 10

tween two cooperators result in unity gain for both players pussokram.com (6] 29341 115684 1.6 6.0(1)
whereas @©-D encounter gives zero gain for both. However, Emails [7] 40346 58224 1.8 4.9(1)
if a cooperator meets a defector the cooperator scores zef@yrate club (8] 34 78

and the defector scords= (1,2) (b is called “temptation’).
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FIG. 1. Time evolution of the cooperator densityfor different o . o
networks and values of the temptatibrand mutation rate,, pa- (b) 30

rameters. All these time sequences are typical for the given set of
parameter values except the karate-club network that spends most r|G. 3. The configurations of the intermediate quasistable state

of the time in the alb statep~0. of the karate-club network from time steps 779 597 and 779 598 of

) ) ) . the run in Fig. 1d). The key players mentioned in the discussion are
(if py increases, the noise level of the histograms get$arked as squares.

highen and thus forms a kind of fingerprint of the network.
We note that the histograms obtained from one long run o

Bst gain, one expects that defectors gain comparatively much
many shorter rungwith different random seeglsare the gain, P g P y

o . ; in low p and vice versa. This is indeed true as shown in Fig.
same, this indicates that the system is self-averaging.

) 4 where we plot the average defector gginand cooperator
Now we turn to the structure of the quasistable states. T P g gy P

. L %ain gc along withp. One may therefore talk about a high-
start with a concrete example, in Fig. 3 we study the karate= . ” P »
club network at the intermepdiaﬁelevgl of Fig ](d)y In Fig p “cooperator controlled” and a lovy- “defector controlled

. state. The average defector gain is directly related to the
3(a) [12] v andvg scores highest among the border playersfraction of boundary C-D) edges¢p—the total defector gain
(players with a neighbor of the opposite strateg¥his is the sum of all boundary edges timbswhich gives the
makes many players, including the highly connected following expression for:
change strategy tdC. In Fig. 3b), the defectorvg has '
enough cooperators in their neighborhood to score higher
thanv,, and thus complete the cycle. We note that a crucial b go(1-p)N 0
point in sustaining the stability is that, andvg are not bM -
connected. We also note thatif, is mutated in Fig. @) the
system would loose its periodicity and stay in a constantrhe values ofgy [seen in Fig. 4)] means that- 40% of
configuration(until the next mutatiop This suggests that the the edges are border between cooperators and defectors in
quasiequilibria in Fig. 1 does not correspond only to onethe defector controlled state. This rather many consider that
state, but a set of states that are all close in Hamming dl&he b|ggest Cooperator cluster consists~d@5% of all coop-
tance. erators(the same figure for defectors is63%). These ob-

How does the highp states differ from the lovy states?  servations suggest numerous situations where many defec-
From the update rule to follow the player with locally high-
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FIG. 4. (a) Cooperator density. (b) Average cooperator gain
FIG. 2. Histogramgover 16 time step} of the cooperator den- gc . (c) Average defector gaigp . All curves are from the same run
sity. The temptation is 1.35 for both subfigures, the mutation rate idor the pussokram.com network and parameter vajygs 0.001,
0.001. Lines are guides is the eyes. b=1.35.
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P, of the ten most connected vertices, on average 5.5 contrib-
(@) =500 I] utes to the ten most differept, values plotted in Figs.(&)—
(b) t=1400 ‘ (d). It is thus not only the structure but the interplay between
(c) t=8250 ‘ the structure and dynamics that gives rise to the quasistable
@) = 19000 equilibria. As a last point we note that the quasiequilibria are
: stable in the absence of mutations—if the system at the time
_0.02 (€) steps of Figs. &)—(d) is evolved without mutation, the larg-
5?‘0.01 L est shift inp is 0.008.
What features of the network structure are causing the
% 0.2 0.4 0.6 0.8 1 nonstationary evolution of the cooperator density? As we

have seen, the vertices have to have a highly skewed degree
FIG. 5. The impact of one-player mutation@—d shows ten  distribution—so that mutation on one vertex can cause many

p,(t) (the eventual cooperator level i, and no other vertex, is vertices, directly or indirectly, change strategy. Furthermore,

mutated and the system relayatat differs most fronp(t) at the it shou!d not be the case that the vertices of highest degree
indicated time steps. The origina(t) is indicated together with the ~ all are interconnected—then these would all follow the same

p histogram in(e). strategy and most of the other vertices too, so nothing more
than small fluctuations op, or steps involving almost all
tors exploit high-degree cooperators, suchvgsis being vertices, could occur. To test that there is a bias among the
exploited in Fig. 8b). (This picture is confirmed under gen- most connected vertices not to attach to each other, we
eral circumstancegl 3].) sample different networks with the same degree sequence by
To investigate the mechanism behind the steps(6f we  randomly rewiring the original network with the restriction
start by again considering the example of Fig. 3. If the mosthat the degree of each vertex is preserfeti15. The av-
connected vertexg (with degree 17is mutated frorDtoC  erage degree of the maximal subgraph of the ten vertices of
in the configuration of Fig. @ then g(vg)=4 while  highest degreé,, and the expectation value of the same
g(vc)=5.6. In the next time stepg would shift tovc's  quantity for random graphs with the same degree sequence

strategyD while v follows the cooperatos,, so infactall 556 ., for the three large networks are shown in Table I.
vertices except one degree-2 vertex will have the same strgfre yalue ten is chosen arbitrarily—any number of the same

egies as; \/tvit(;u_)uth "E;;[atiﬁ” IQrB If on tlhde other h?no_b 8o Orderwould do. We see thak is indeed significantly lower
was muratec In Fig. (), ail players wou'd cooperate In the ank,, for all three networks. We also note that if one runs

succeeding time step. By this example we conclude that PD dvnami n a rewired network on ikes but
vertex’ importance with respect to mutation is not only de- N dynamics on a rewired network one sees Spikes bu
no quasistable stat¢43].

pendent on its degree but also on the current configuration. Networks with a broad degree distribution can be gener-

For a little more quantitative approach to this problem we P s
study the result of a? one-player nF:Etation as follof/)vs: Startin ted by, for examp!e, Baraﬂgand AIperts(BA) scale-f.ree
at timet we run the system without mutations until one pe- etwork model[16]: Start W'th Mo dlsconngcted vertices,
riod is completed—this is to start from a specific configura—and grow the network by adding a vertexwith degreem
tion c of the local attractor stafe 2]. Then we mutate vertex per time step._An edge fro_r_n the new_vertex are added to an
old vertexw with a probability proportional tav’s degree.

v and let the system evolvevithout mutationg until one . :
period is completed. Finally, we let the system yet complete We try to model the behaviar of the cooperator density by

. . S~ . starting from BA model networks withm=my=3 and
a period and look for the configuratianwith the minimal 20000 vertices. To tune how much mutually connected the
Hamming distance ta over the periodthis is to make the

. X vertices of highest degree are, we make the subset of the
difference ;ero if the system would reAlaX baACk to th_e Samefor n_) vertices of highest degree complete by adding the
state as prior to the mutatipnand setp,=p(c). In Figs.  missing edgegor completely disconnected by removing ex-
5(a)—(d) we plot tenp, that differs most fronp(c) at four  isting edges As seen in Fig. 6 the steps and spikes of the
different time steps in four different quasistable states. Weeal-world networks can be qualitatively reproduced. The re-
observe that the system can change quasistable state duestmblance is closest for removed edges among a small num-
mutations on single vertices, but at the same time not go tber of hubs Fig. &). If the edges are removed within a
anyother quasistable state. Furthermore, there is only a smakrger set of hubs, the steps are increasing in frequency and
number of mutations that actually causes a transition. Just asimber until the structure is completely blurred out. If all

in the karate-club example above the configurations comprismissing edges are added within the top connected verti-

ing a state may vary much from one time step to anotherces, the steps vanishes but the spikes increase in size and
This fact explains the apparent lack of transitions to ghe width. An explanation is that when the vertices of highest
~0.35 state—in fact, the transition to this stdsoundt degree are fully connected, a mutation of one of these would
=8250) occurs from a single-player mutation from a con- momentarily increase the number of cooperators by a large
figuration in thep~0.65 peak. As expected, all vertices con-amount and also decrease the speed of restoration of coop-
tributing to the lines in Figs. ®—(d) have high degreé&he  eration. At the same time it is well known that cooperation is
lowest degree is 111). But, as mentioned above, it is not trupromoted in highly connected regiofi$7] which explains

that a high degree implies a high importance—for examplethe highp value of the quasistable state.
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1 = - e comparatively large gain for the defectors and large fraction

0.8 @ | of boundary edges, in quasistable states with higkhis
n =10 situation is reversed. We find that mutations on high-degree
O ———7T— e players are likely to be responsible for transitions between
osl M | | ‘ | the quasistable states; but the outcome of a mutation of a
i P ; [ | high-degree vertex is also much dependent on the current

a o —+ — |

| : configuration. These findings are presented for some specific
s M% sets of parameter values, but they are qualitatively the same
Br© | for a broad range of values. We argue that the structure caus-
n_=10 . . : . . L .
0.5 —= : | ing this behavior is a inhomogeneous degree distribution,
075 W and that the number of edges within the subset of highest-
n =100 degree vertices is relatively low. Based on this observation
0 e T8 e we also construct model networks that reproduces the steps
! and spikes of the real-world networks. To epitomize, we be-
FIG. 6. Evolution ofp for model networks. The network param- lieve that we have illustrated how underlying acquaintance
eters aran=m,=3, N=20000. The dynamical parameters are Patterns can give rise to a complex time development of
=1.4 andp,,=0.001. social instability—a picture that could be empirically testable
by carefully arranged social observations.

In summary, we have studied Nowak and May’s spatial The authors are grateful for comments from C. Edling, F.
PD game on empirical social networks. We find a complexLiljeros, and K. Sneppen; and acknowledges support from
time evolution of the cooperator level characterized by largeSwedish Research Council through Contract No. 2002-4135
spikes and transitions between a number of quasistablend (B.J.K) the Korea Science and Engineering Foundation
states. The quasistable states of Ipvare characterized by through Grant No. R14-2002-062-01000-0.
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