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Hydrodynamic modes for granular gases
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The eigenfunctions and eigenvalues of the linearized Boltzmann equation for inelastic hard spheres (
=3) or disks @=2) corresponding ta+2 hydrodynamic modes are calculated in the long wavelength limit
for a granular gas. The transport coefficients are identified and found to agree with those from the Chapman-
Enskog solution. The dominance of hydrodynamic modes at long times and long wavelengths is studied via an
exactly solvable kinetic model. A collisional continuum is bounded away from the hydrodynamic spectrum,
assuring a hydrodynamic description at long times. The bound is closely related to the power law decay of the
velocity distribution in the reference homogeneous cooling state.
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The simplest model for a granular gas at low density iselastic Boltzmann equation, with all possible excitations de-
given by the Boltzmann equation for smooth, inelastic hardscribed by the spectrum of the linearized Boltzmann colli-
spheres or disk§l]. It provides an appropriate context in sion operator. We first show the existence and form of the
which we can address a number of fundamental issues. Pitydrodynamic modes at asymptotically long wavelengths,
mary among these is the existence of a macroscopic fluigorresponding to the summational invariants in the elastic
dynamics analogous to the Navier-Stokes description for retase. Next, the eigenvalues at finite wave vector are con-
gases. The derivation of hydrodynamic equations from thétructed by perturbation theory showing the expected form
inelastic Boltzmann equation and identification of expresfor hydrodynamic modes. These are the primary results of
sions for the transport coefficients has been a problem dhis paper. In addition to the point of principle, existence of
interest for two decadg®2-5]. hydrodynamics, there are many practical applications made

Accurate prediction of the transport coefficients as a funcPossible by identification of the hydrodynamic modes that go
tion of the restitution coefficienf6], and confirmation via beyond the Boltzmann equatide.g., hydrodynamic part of
Monte Carlo simulation[7], has been accomplished only linear response and fluctuations, mode coupling phenomena
within the last few years. However, the method used in thes& particular, hydrodynamic mode coupling for the
derivations (Chapman-Enskdgis formal and does not asymptotic decay of time correlation functions is expepted to
strictly establish either the existence or the context of a hybe more complex for granular systems due to the different
drodynamic description. Thus, there is a further point ofwave vector dependence of the eigenvalues. Controlled
principle that has not been addressed directly for granulagnalysis of this problem using the modes obtained here will
gases. In the case of elastic collisions, this problem of exisbe reported elsewhere.
tence and context has been solved by analysis of the spec- Moreover, some support is provided for the isolation of
trum of the Boltzmann operator using key theorems of Hil-the hydrodynamic spectrum by an exact analysis of a model
bert, Weyl, Carleman, McLennan, and Cergignf@ii The  Boltzmann equatioif9,6]. It exhibits the dominant features
primary results arél) there existd+2 eigenfunctiongthe  Of granular gases, including a nontrivial HCS with algebraic
summational invarianjswith zero eigenvalue, corresponding decay at large velocities, discussed extensively for related
to the local conservation law$2) these eigenfunctions be- Maxwell models[10]. It is shown that the pure point spec-
come the hydrodynamic modes for finite wave vectors, andrum for elastic collisions develops a continuum for any de-
(3) the rest of the spectrum is bounded away from the hygree of inelasticity, extending toward the hydrodynamic
drodynamic spectrum with a larger real part. The conseSPectrum. However, it remains bounded away from the latter
quence of resultél) and(2) is the existence of hydrodynam- By an amount that is controlled by the power law of the
ics. The consequence of resuB) is the dominance of algebraic decay of the velocity distribution.
hydrodynamic modes at large times. These results are the The inelastic nonlinear Boltzmann equation for the den-
necessary complementary studies to justify the more practsity f(r,v,t) of particles of massn at positionr with veloc-
cal results obtained by the Chapman-Enskog procedure. THY V at timet has the form
objective here is to establish the counterparts of regdijts

and(2) for a granular gas described by the Boltzmann equa- (d+v-V)F=J[f,f], (N
tion, and to prove result3) for the special case of a model
Boltzmann collision operator. where J[ f,f] is a bilinear functional off [1]. There is no

The states considered are obtained from small initial spastationary solution to this equation for an isolated system.
tial perturbation of the “universal” homogeneous cooling However, a homogeneous cooling solutiétCS) is assumed
state(HCS). The response is provided by the linearized in-to exist with the scaling property
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L The first step is to show that includes the spectrum of
fres(Vit) =npog “(H)xo(C), €= oo (2)  the balance equations k=0, and to determine the corre-
0 sponding eigenfunctions. For elastic collisions, the stationary

Heren,, is the homogeneous density ang(t)=\2T(t)/m  State is given by[fy,fy]=0, whose solution is the Max-
is the thermal velocity defined in terms of the temperaturéVellian. Differentiating this stationary equation with respect
T(t). The latter obeys the equatidit 19, T= — 7o, where the {0 the hydrodynamic fields leads to the linearized Boltzmann
cooling ratelo={[ xo0.xo] also is a specified bilinear func- OPerator acting on combinations otX;? independently be-

tional. Both y, and ¢, must be determined self-consistently iNd zero. These are thie+ 2 eigenfunctions with zero eigen-

from the Boltzmann equation, value. A similar analysis works for the inelastic case, using
the stationary condition(3). Straightforward calculations
~ o (cfuce =T fucs ] @
5605~ (CTHes) = Il THess THesl-
27" ac LO=0@p®  i=1,... d+2, ®)
The existence of, is supported by approximate polynomial Jin Jin 1
expansiong11] and by Monte Carlo simulatiof.2]. Ol d+1+c. Xo g i X0 ZTXol
To study the relaxation of small spatial perturbations of dJc dJc Jc
the HCS, A is defined byf=f,cd1+A], and terms up (€)

through linear order ik are retained in the Boltzmann equa-
tion. The resulting equation is then written in dimensionless
form with the velocities scaled relative tg(t) and the time

expressed in terms cf=['dt’ vo(t'), where uo(t) is the o 3 \ell-defined technical problem. In general, the eigen-
average collision frequency, proportional¥d (t). Itis suf- 5 es depend on bothand the restitution coefficient. It
ficient to consider a single Fourier componekfk) that  is known from the Navier-Stokes equations that the behavior
obeys for smallk(«) is not uniform with respect te:(k), so that a
_ perturbation expansion in one or the other does not provide
(ds—ik-c+L)A=0, (4)  the entire mode structure. Here, for illustration, only the re-
sults for smallk are reported. The expansion is defined by
(excX) wi(K)=0+iko®M+ko@+...  and  ¢i(k)=¢®
Xo2J |- +ikpM+k2pP+ . ... The leading terms are those of Egs.
(5) (9) and (10). Since L is not self-adjoint, it is necessary to

L , ) , introduce a set of function§y;} that are biorthogonal to
The solution is sought in a Hilbert space defined by the sca{d)i}. The leading terms of a similar expansiorkiare found

0{9—{0,(0/2,— £o/2}. (10)

The evaluation of the hydrodynamic spectrum at firites

Lo d

LA= _Xal[J[Xo:XoZ]+J[X0Z,X0] 5 %

lar product to be
— * 02 1. s
(a,b)= | dcxo(c)a*(c)b(c). (6) $O— g+ E,k.c,e(')-c , (11)
The relevant eigenvalue problem is where {k,e)} are d pairwise orthogonal unit vectors. The
. 1=
(—ik-c+ L) = w;(K) b . (7)  results to second order kare w;’=0,
It is understood that the indéxmay be discrete or continu- o=y k-copM)+ 82Lol X0 x0 Q5] (12)
ous. The hydrodynamic spectrum can be defined precisely as R
follows. The linearized Boltzmann equation provides exact dM=0,(L— ) k-cp(®, (13
balance equations for the momentstdotorresponding to the
density, flow velocity, and temperature. The latter aredhe $P=—0/(L— ) k-cop™, (14)

+2 hydrodynamic fields. The spectrum of these balance

equations can be calculated in the linkie0. For elastic The operatorg);=1—7P; are projections orthogonal p(®)

collisions, there is ad+2)-fold degenerate point at zero with P,a= (%) ,a). The constantsn? are transport

eigenvalue, corresponding to the conservation laws for bieoefficients which are identified from a similar calculation

nary collisions. Their perturbation at finikedefines the hy- using the Navier-Stokes equations. For example, the shear

drodynamic modes more generally. For inelastic collisionsyiscosity 7 is

the spectrum is agaid+2 points, now at @y/2,— /2,

with the latter beingdi-fold degenerate. Again, the hydrody- mo gw'? mug

namic modes more generally are defined as those solutionsto 7= = =7 ~ = 41
. . g g

Eq. (7) that are continuously connected as functionk ¢ (15)

these specidt=0 solutions. For elastic collisions, it is pos-

sible to prove analyticity about=0 [8], and it is assumed This agrees with the result obtained from the Chapman-

that this is the case here as well. Enskog method13]. A more complete connection with the

-1 (9|n)(0

C—
X acy

1
CxCy L+ zgo)
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latter can be established as follows. Assuming that the hyHereu is the flow velocity and\®=1—¢/v. In principle, ¢

drodynamic spectrum dominates for long times and skall is the same functional dfas obtained from the Boltzmann

the solution to the Boltzmann equation for small perturba-equation, although it can be eventually approximated simi-

tions becomes larly to v andg. In any case, Eq.19) must be preserved. In
the following, we will assume that bothand v scale asT*/?

dr2 h in order to mimic hard sphere behavior. With the above class
f—fhedV)| 1+ 21 #i(k) dyi(k,9) |. (16)  of models, it is obtained from Eq3),
Here 8y"'(k,s) are the hydrodynamic fields, Xo(C)= L dxP(x)(Ax) "%g* (c/\x), (20

y[(k,8)= (i ,A(k,9)=e>N(y;,A(k,0).  (17)  where P(x)=px~ P with p=2w/¢. The dimensionless
gain functiong(v;y"(r,t))=ny(Avo)3g* (c/\) has been in-
The connection between these fields and the macroscopifoduced. Further investigation requires specification of
density, temperature, and flow velocity is obtained for smallg* (¢/)\). However, it is easily verified that moments of de-
k by usingg;— ¢{% in Eq. (17). The fieldsdy'(k,s) repre-  gree equal or greater tharare not finite if the corresponding
sent components of the initial distribution that obey the hy-moments ofg* exist. This is consistent with a similar result
drodynamic equations for all times, whereas the density, temfor the Maxwell models where algebraic decayef(c) is
perature, and flow velocity become equal to these only on thebserved for large velocities, also due to a slower decay of
long space and time scalei8]. Use of ¢(k)—¢®  the loss term than the gain term.
+ikg{M) for smallk in Eq. (16) leads to a result that is in Linearization of the kinetic model around this HCS leads
agreement with the Navier-Stokes approximation of theagain to Eq.(4), but with a simpler form forZ. It has a
Chapman-Enskog methgd4]. decomposition into the subspace@(f’) and its complement,
The existence of a hydrodynamic spectrum is relevaniC="PLP+ QLQ, whereP=3>P; and Q=1—P. In the sub-
only if the corresponding modes dominate for long times andspace of¢(”), the spectrum is just theé-+2 points of Eq.
long wavelengths. A sufficient condition is that the magni-(10),
tude of the hydrodynamic eigenvalues be smaller than that of
all other parts of the spectrum. This is the case for elastic ©)
collisions, but the proof does not extend directly-tdk - c PLP= 21 wi P (21
+ L here, and the question remains open in ger@@ll In -
fact, the mode af/2 gives reason for concern since it might |n the complementary subspace the operator is
become comparable to the microscopic excitations at large
inelasticity. To explore this point, it is instructive to consider 180 @
a model for the Boltzmann equation that preserves the essen- QLQ=vQ+ X 2 g (Cx09Q). (22)
tial physics of a nontrivial HCS, exact balance equations, and
hydrodynamic modes, as described above. The Boltzmanmterestingly, there is no explicit dependence on the gain

d+2

collision operator can be written as function g* except throughy,. For elastic collisions, the
second term is missing and the model becomes the linearized
Jf,f]l=—-v(f—-9), (18)  Bhatnager-Gross-Krook mod@GK) [16], with a single de-

generate point in the spectrum representing all the micro-
where vf is the “loss” contribution andvg is the “gain”  scopic excitations of the Boltzmann operator. It is somewhat
contribution. Both the collision frequenayandg are speci- easier to analyze the corresponding adjoint problem,
fied positive functionals of. L

The class of models to be considered here are character- d

ized by the following two simplifications(1) v is indepen- vh—5LoC S p=wd, d= Q'e, (23
dent ofv and(2) » andg are functionals of only through its
moments with respect to\,p2 . The first condition is simi- whereQ T is the adjoint ofQ@. Solutions to this equation exist
lar to that of “Maxwell models” that have been introduced from the class of homogeneous functions
recently[10]. The second condition means thaandg de- d g
pend on the state of the system only through the hydrody d’“iﬂl c?', IZ]_ 4=

namic fields. The forms of these functionals are subjected to (24)
preserve the exact properties of the collision operator re-
quired by the balance equations, The propertyQ "¢ = ¢ can be satisfied with a suitable choice
of the linear combinations. The corresponding eigenvalue is
1 n w=v—(q{/2. Thus the spectrum af includes a continuum
with Rew=wv. Of critical interest for hydrodynamics is
f dvl Vv [g(r,vt)= ,. | - (19  whether the lower bound for this continuum on the real axis
mo?2 an()\2+ m) intersects the hydrodynamic point spectrum. The bound is
Td determined by the maximum degree of such homogeneous
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eigenfunctions admitted in the Hilbert space. The conditiomamic eigenvalues;(k) at finite k, without the restrictions

. 2_ . . . ) . .
is that||c?|*=(c%cf) exists. Using Eq(20), this becomes  of the perturbation theory calculation above. For elastic col-
lisions, such a calculation shows that the hydrodynamic

a2 2Re * Ray— (1+p) modes exist only fok less than some maximum value. It is
= quL ¢ ' 29 expected that a similar condition applies in the granular case
as well.
. In the case of elastic collisions, the kinetic model consid-
Mq:f dcc?Reg* (c). (26) er_ed above reduces_ to 'Fhe fe_lmiliar BGK model that has been
0 widely used for applications in gas dynamjd$|. The math-

- . ematical relevance for granular gases has been discussed re-
For finite My, the value ofq is bounded from above by cenily[17]. Furthermore, comparisons of the model predic-
Reg<qm=p/2=v/{o. The continuous spectrum therefore is iongs for transport show good quantitative agreement with
restricted byv/2<Rew<w. This means that the discrete thoge of the Boltzmann equation in many cases. A qualifica-
spectrum is isolated from the continuum for @il v<<1. But o here is the relationship of the spectrum to the algebraic
{o/v must be smaller than unity because of the third condiyecay of the HCS distribution which is different from that of

tion required by Eq(19). This condition is related with the {he Boltzmann equation. Calculations using a model without
fact that only a fraction of the energy of the particles can bepis algebraic decay are in progress.

lost in collisions. The continuum is singular in the sense that

it is independent of the restitution coefficient but it is present The research of J.W.D. was supported by U.S. Depart-

only for finite inelasticity. ment of Energy Grant Nos. DE-FG03-98DP00218 and DE-
For this class of models, it is seen that the hydrodynamid=GO2ER54677. The research of J.J.B. was partially sup-

spectrum ak=0 is isolated from the rest of the spectrum. ported by the Ministerio de Ciencia y TecnolagiSpain

The model also allows exact calculation of the hydrody-through Grant No. BFM2002-00307.
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