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Hydrodynamic modes for granular gases
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The eigenfunctions and eigenvalues of the linearized Boltzmann equation for inelastic hard spheres (d
53) or disks (d52) corresponding tod12 hydrodynamic modes are calculated in the long wavelength limit
for a granular gas. The transport coefficients are identified and found to agree with those from the Chapman-
Enskog solution. The dominance of hydrodynamic modes at long times and long wavelengths is studied via an
exactly solvable kinetic model. A collisional continuum is bounded away from the hydrodynamic spectrum,
assuring a hydrodynamic description at long times. The bound is closely related to the power law decay of the
velocity distribution in the reference homogeneous cooling state.
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The simplest model for a granular gas at low density
given by the Boltzmann equation for smooth, inelastic h
spheres or disks@1#. It provides an appropriate context i
which we can address a number of fundamental issues.
mary among these is the existence of a macroscopic fl
dynamics analogous to the Navier-Stokes description for
gases. The derivation of hydrodynamic equations from
inelastic Boltzmann equation and identification of expr
sions for the transport coefficients has been a problem
interest for two decades@2–5#.

Accurate prediction of the transport coefficients as a fu
tion of the restitution coefficient@6#, and confirmation via
Monte Carlo simulation@7#, has been accomplished on
within the last few years. However, the method used in th
derivations ~Chapman-Enskog! is formal and does no
strictly establish either the existence or the context of a
drodynamic description. Thus, there is a further point
principle that has not been addressed directly for gran
gases. In the case of elastic collisions, this problem of e
tence and context has been solved by analysis of the s
trum of the Boltzmann operator using key theorems of H
bert, Weyl, Carleman, McLennan, and Cergignani@8#. The
primary results are~1! there existd12 eigenfunctions~the
summational invariants! with zero eigenvalue, correspondin
to the local conservation laws,~2! these eigenfunctions be
come the hydrodynamic modes for finite wave vectors, a
~3! the rest of the spectrum is bounded away from the
drodynamic spectrum with a larger real part. The con
quence of results~1! and~2! is the existence of hydrodynam
ics. The consequence of result~3! is the dominance of
hydrodynamic modes at large times. These results are
necessary complementary studies to justify the more pra
cal results obtained by the Chapman-Enskog procedure.
objective here is to establish the counterparts of results~1!
and~2! for a granular gas described by the Boltzmann eq
tion, and to prove result~3! for the special case of a mode
Boltzmann collision operator.

The states considered are obtained from small initial s
tial perturbation of the ‘‘universal’’ homogeneous coolin
state~HCS!. The response is provided by the linearized
1063-651X/2003/68~3!/030302~4!/$20.00 68 0303
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elastic Boltzmann equation, with all possible excitations d
scribed by the spectrum of the linearized Boltzmann co
sion operator. We first show the existence and form of
hydrodynamic modes at asymptotically long wavelengt
corresponding to the summational invariants in the ela
case. Next, the eigenvalues at finite wave vector are c
structed by perturbation theory showing the expected fo
for hydrodynamic modes. These are the primary results
this paper. In addition to the point of principle, existence
hydrodynamics, there are many practical applications m
possible by identification of the hydrodynamic modes that
beyond the Boltzmann equation~e.g., hydrodynamic part o
linear response and fluctuations, mode coupling phenome!.
In particular, hydrodynamic mode coupling for th
asymptotic decay of time correlation functions is expected
be more complex for granular systems due to the differ
wave vector dependence of the eigenvalues. Contro
analysis of this problem using the modes obtained here
be reported elsewhere.

Moreover, some support is provided for the isolation
the hydrodynamic spectrum by an exact analysis of a mo
Boltzmann equation@9,6#. It exhibits the dominant feature
of granular gases, including a nontrivial HCS with algebra
decay at large velocities, discussed extensively for rela
Maxwell models@10#. It is shown that the pure point spec
trum for elastic collisions develops a continuum for any d
gree of inelasticity, extending toward the hydrodynam
spectrum. However, it remains bounded away from the la
by an amount that is controlled by the power law of t
algebraic decay of the velocity distribution.

The inelastic nonlinear Boltzmann equation for the de
sity f (r ,v,t) of particles of massm at positionr with veloc-
ity v at time t has the form

~] t1v•“ ! f 5J@ f , f #, ~1!

where J@ f , f # is a bilinear functional off @1#. There is no
stationary solution to this equation for an isolated syste
However, a homogeneous cooling solution~HCS! is assumed
to exist with the scaling property
©2003 The American Physical Society02-1
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f HCS~v,t !5nHv0
2d~ t !x0~c!, c5

v

v0~ t !
. ~2!

HerenH is the homogeneous density andv0(t)5A2T(t)/m
is the thermal velocity defined in terms of the temperat
T(t). The latter obeys the equationT21] tT52z0, where the
cooling ratez05z@x0 ,x0# also is a specified bilinear func
tional. Bothx0 andz0 must be determined self-consistent
from the Boltzmann equation,

1

2
z0

]

]c
•~cf HCS!5J@ f HCS, f HCS#. ~3!

The existence off H is supported by approximate polynomi
expansions@11# and by Monte Carlo simulation@12#.

To study the relaxation of small spatial perturbations
the HCS,D is defined by f 5 f HCS@11D#, and terms up
through linear order inD are retained in the Boltzmann equ
tion. The resulting equation is then written in dimensionle
form with the velocities scaled relative tov0(t) and the time
expressed in terms ofs5* tdt8n0(t8), where n0(t) is the
average collision frequency, proportional toAT(t). It is suf-
ficient to consider a single Fourier componentD̃(k) that
obeys

~]s2 ik•c1L!D̃50, ~4!

LD̃52x0
21H J@x0 ,x0D̃#1J@x0D̃,x0#2

z0

2

]

]c
•~cx0D̃ !J .

~5!

The solution is sought in a Hilbert space defined by the s
lar product

~a,b!5E dcx0~c!a* ~c!b~c!. ~6!

The relevant eigenvalue problem is

~2 ik•c1L!f i5v i~k!f i . ~7!

It is understood that the indexi may be discrete or continu
ous. The hydrodynamic spectrum can be defined precise
follows. The linearized Boltzmann equation provides ex
balance equations for the moments ofD corresponding to the
density, flow velocity, and temperature. The latter are thd
12 hydrodynamic fields. The spectrum of these bala
equations can be calculated in the limitk50. For elastic
collisions, there is a (d12)-fold degenerate point at zer
eigenvalue, corresponding to the conservation laws for
nary collisions. Their perturbation at finitek defines the hy-
drodynamic modes more generally. For inelastic collisio
the spectrum is againd12 points, now at 0,z0/2,2z0/2,
with the latter beingd-fold degenerate. Again, the hydrody
namic modes more generally are defined as those solutio
Eq. ~7! that are continuously connected as functions ofk to
these specialk50 solutions. For elastic collisions, it is pos
sible to prove analyticity aboutk50 @8#, and it is assumed
that this is the case here as well.
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The first step is to show thatL includes the spectrum o
the balance equations atk50, and to determine the corre
sponding eigenfunctions. For elastic collisions, the station
state is given byJ@ f M , f M#50, whose solution is the Max
wellian. Differentiating this stationary equation with respe
to the hydrodynamic fields leads to the linearized Boltzma
operator acting on combinations of 1,c,c2 independently be-
ing zero. These are thed12 eigenfunctions with zero eigen
value. A similar analysis works for the inelastic case, us
the stationary condition~3!. Straightforward calculations
give

Lf i
(0)5v i

(0)f i
(0) , i 51, . . . ,d12, ~8!

f (0)→H d111c•
] ln x0

]c
,2d2c•

] ln x0

]c
,2

] ln x0

]c J ,

~9!

v i
(0)→$0,z0/2,2z0/2%. ~10!

The evaluation of the hydrodynamic spectrum at finitek is
now a well-defined technical problem. In general, the eig
values depend on bothk and the restitution coefficienta. It
is known from the Navier-Stokes equations that the beha
for smallk(a) is not uniform with respect toa(k), so that a
perturbation expansion in one or the other does not prov
the entire mode structure. Here, for illustration, only the
sults for smallk are reported. The expansion is defined
v i(k)5v i

(0)1 ikv i
(1)1k2v i

(2)1••• and f i(k)5f i
(0)

1 ikf i
(1)1k2f i

(2)1•••. The leading terms are those of Eq
~9! and ~10!. SinceL is not self-adjoint, it is necessary t
introduce a set of functions$c i% that are biorthogonal to
$f i%. The leading terms of a similar expansion ink are found
to be

c i
(0)→H 1,

c2

d
1

1

2
,k̂•c,ê( i )

•cJ , ~11!

where $k̂,ê( i )% are d pairwise orthogonal unit vectors. Th
results to second order ink arev i

(1)50,

v i
(2)5~c i

(0) ,k̂•cf i
(1)!1d i2z0@x0 ,x0Q1f2

(2)#, ~12!

f i
(1)5Qi~L2v i

(0)!21k̂•cf i
(0) , ~13!

f i
(2)52Qi~L2v i

(0)!21k̂•cf i
(1) . ~14!

The operatorsQi512Pi are projections orthogonal tof i
(0)

with Pia5f i
(0)(c i

(0) ,a). The constantsv i
(2) are transport

coefficients which are identified from a similar calculatio
using the Navier-Stokes equations. For example, the s
viscosityh is

h5
mv0v4

(2)

sd21
52

mv0

sd21 Fcxcy ,S L1
1

2
z0D 21

cx

] ln x0

]cy
G .
~15!

This agrees with the result obtained from the Chapm
Enskog method@13#. A more complete connection with th
2-2



h
ll
a

op
a

y
em
th

th

an
n

ni
t
st

ht
rg
er
se
an
a

ct

d

d
d
re

n
mi-

ass

of
e-

lt

of

ds

ain

ized

ro-
hat

t

e
e is

xis
is

ous

RAPID COMMUNICATIONS

HYDRODYNAMIC MODES FOR GRANULAR GASES PHYSICAL REVIEW E68, 030302~R! ~2003!
latter can be established as follows. Assuming that the
drodynamic spectrum dominates for long times and smak,
the solution to the Boltzmann equation for small perturb
tions becomes

f→ f hcs~v!F11 (
i 51

d12

f i~k!dyi
h~k,s!G . ~16!

Heredyi
h(k,s) are the hydrodynamic fields,

dyi
h~k,s!5„c i ,D̃~k,s!…5esv i (k)

„c i ,D̃~k,0!…. ~17!

The connection between these fields and the macrosc
density, temperature, and flow velocity is obtained for sm
k by usingc i→c i

(0) in Eq. ~17!. The fieldsdyi
h(k,s) repre-

sent components of the initial distribution that obey the h
drodynamic equations for all times, whereas the density, t
perature, and flow velocity become equal to these only on
long space and time scales@8#. Use of f i(k)→f i

(0)

1 ikf i
(1) for small k in Eq. ~16! leads to a result that is in

agreement with the Navier-Stokes approximation of
Chapman-Enskog method@14#.

The existence of a hydrodynamic spectrum is relev
only if the corresponding modes dominate for long times a
long wavelengths. A sufficient condition is that the mag
tude of the hydrodynamic eigenvalues be smaller than tha
all other parts of the spectrum. This is the case for ela
collisions, but the proof does not extend directly to2 ik•c
1L here, and the question remains open in general@15#. In
fact, the mode atz0/2 gives reason for concern since it mig
become comparable to the microscopic excitations at la
inelasticity. To explore this point, it is instructive to consid
a model for the Boltzmann equation that preserves the es
tial physics of a nontrivial HCS, exact balance equations,
hydrodynamic modes, as described above. The Boltzm
collision operator can be written as

J@ f , f #52n~ f 2g!, ~18!

where n f is the ‘‘loss’’ contribution andng is the ‘‘gain’’
contribution. Both the collision frequencyn andg are speci-
fied positive functionals off.

The class of models to be considered here are chara
ized by the following two simplifications:~1! n is indepen-
dent ofv and~2! n andg are functionals off only through its
moments with respect to 1,v,v2 . The first condition is simi-
lar to that of ‘‘Maxwell models’’ that have been introduce
recently@10#. The second condition means thatn andg de-
pend on the state of the system only through the hydro
namic fields. The forms of these functionals are subjecte
preserve the exact properties of the collision operator
quired by the balance equations,

E dvS 1

v

mv2
D g~r ,v,t !5S n

nu

nTdS l21
mu2

Td D D . ~19!
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Hereu is the flow velocity andl2[12z/n. In principle,z
is the same functional off as obtained from the Boltzman
equation, although it can be eventually approximated si
larly to n andg. In any case, Eq.~19! must be preserved. In
the following, we will assume that bothz andn scale asT1/2

in order to mimic hard sphere behavior. With the above cl
of models, it is obtained from Eq.~3!,

x0~c!5E
1

`

dxP~x!~lx!2dg* ~c/lx!, ~20!

where P(x)[px2(11p) with p52n/z. The dimensionless
gain functiong„v;yh(r ,t)…5nH(lv0)3g* (c/l) has been in-
troduced. Further investigation requires specification
g* (c/l). However, it is easily verified that moments of d
gree equal or greater thanp are not finite if the corresponding
moments ofg* exist. This is consistent with a similar resu
for the Maxwell models where algebraic decay ofx0(c) is
observed for large velocities, also due to a slower decay
the loss term than the gain term.

Linearization of the kinetic model around this HCS lea
again to Eq.~4!, but with a simpler form forL. It has a
decomposition into the subspace off i

(0) and its complement,
L5PLP1QLQ, whereP5(Pi andQ512P. In the sub-
space off i

(0) , the spectrum is just thed12 points of Eq.
~10!,

PLP5 (
i 51

d12

v i
(0)Pi . ~21!

In the complementary subspace the operator is

QLQ5nQ1x0
21 z0

2

]

]c
•~cx0Q!. ~22!

Interestingly, there is no explicit dependence on the g
function g* except throughx0. For elastic collisions, the
second term is missing and the model becomes the linear
Bhatnager-Gross-Krook model~BGK! @16#, with a single de-
generate point in the spectrum representing all the mic
scopic excitations of the Boltzmann operator. It is somew
easier to analyze the corresponding adjoint problem,

nf2
1

2
z0c•

]

]c
f5vf, f5Q †f, ~23!

whereQ † is the adjoint ofQ. Solutions to this equation exis
from the class of homogeneous functions

f})
i 51

d

ci
qi , (

i 51

d

q15q. ~24!

The propertyQ †f5f can be satisfied with a suitable choic
of the linear combinations. The corresponding eigenvalu
v5n2qz0/2. Thus the spectrum ofL includes a continuum
with Rev<n. Of critical interest for hydrodynamics is
whether the lower bound for this continuum on the real a
intersects the hydrodynamic point spectrum. The bound
determined by the maximum degree of such homogene
2-3
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eigenfunctions admitted in the Hilbert space. The condit
is that icqi25(cq,cq) exists. Using Eq.~20!, this becomes

icqi25l2ReqpMqE
1

`

dxx2Req2(11p), ~25!

Mq5E
0

`

dcc2Reqg* ~c!. ~26!

For finite Mq , the value ofq is bounded from above by
Req,qm5p/25n/z0. The continuous spectrum therefore
restricted byn/2,Rev<n. This means that the discret
spectrum is isolated from the continuum for allz0 /n,1. But
z0 /n must be smaller than unity because of the third con
tion required by Eq.~19!. This condition is related with the
fact that only a fraction of the energy of the particles can
lost in collisions. The continuum is singular in the sense t
it is independent of the restitution coefficient but it is pres
only for finite inelasticity.

For this class of models, it is seen that the hydrodyna
spectrum atk50 is isolated from the rest of the spectrum
The model also allows exact calculation of the hydrod
64
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namic eigenvaluesv i(k) at finite k, without the restrictions
of the perturbation theory calculation above. For elastic c
lisions, such a calculation shows that the hydrodynam
modes exist only fork less than some maximum value. It
expected that a similar condition applies in the granular c
as well.

In the case of elastic collisions, the kinetic model cons
ered above reduces to the familiar BGK model that has b
widely used for applications in gas dynamics@16#. The math-
ematical relevance for granular gases has been discusse
cently @17#. Furthermore, comparisons of the model pred
tions for transport show good quantitative agreement w
those of the Boltzmann equation in many cases. A qualifi
tion here is the relationship of the spectrum to the algeb
decay of the HCS distribution which is different from that
the Boltzmann equation. Calculations using a model with
this algebraic decay are in progress.
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