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Numerical method for integrodifferential generalized Langevin and master equations
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We show that the integrodifferential generalized Langevin and non-Markovian master equations can be
transformed into larger sets of ordinary-differential equations. On the basis of this transformation we develop
a numerical method for solving such integrodifferential equations. Physically motivated example calculations
are performed to demonstrate the accuracy and convergence of the method.
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Generalized Langevin equatiof] and non-Markovian Here, we have introduced a differentiable damping function
master equationg2—4], which arise in the treatment of sys- f(u) [with f(0)= 1] which plays a useful role in the numeri-
tems interacting with environmental degrees of freedom, ofeal scheme we will introduce to solve the ordinary-
ten have an integrodifferential form. Unlike ordinary- differential equations(1), (4), and (5). [Note that f’(u)
differential equations that can be readily solved using Runge=df(u)/du.]

Kutta, predictor-corrector, and other well known numerical Neglecting inhomogeneous terms, non-Markovian master
schemeg5], there are no general methods for solving equa-equationg2-4] can be written in the form

tions of integrodifferential type. Here, we show that these t

integrodifferential equations can be converted to ordinary- . , N g
diffegrential equations at the expense of introducing a new dp(t)/dt__'[H(t)’p(t)]_f_wK(t’t Jp(t')dt', (6)
time variable which is treated as if it is of spatial typ8imi-

lar schemes are employed to numerically solve the Schrowvhere p(t) is the time-evolving reduced density matrix of
dinger equation for time-dependent Hamiltonigf$and as the subsystenti(t) is an effective Hamiltonian, ani(t,t")
analytical tools[7]. There is also some resemblance to theis a memory operatoWe employ units such that=1.)
schemes for solving the integrodifferential equations of vis-Defining an operator

coelasticity[8].) We then develop a numerical method based
on this exact transformation and show that it can be used to
accurately solve a variety of physically motivated examples.

Neglecting inhomogeneous terms resulting from noise,
for simplicity, the generalized Langevin equatiofl§ for it can be verified by direct substitution thaft) and y(t,u)
positionq(t) and momentunp(t) of a damped oscillator in  satisfy ordinary-differential equations
one dimension can be expressed in the form

dp(t)/dt=—i[H(t),p(t)] - x(1,0), ®

X(t,u)=f(u)jiocK(tvLu,t')p(t’)dt’, (7)

dq(t)/dt=p(t)/m, (1)

dx(t,u)
dy(t,u)/dt=f(u)K(t+u,t)p(t)+ P

dp(t)/dt= —mw?q(t)— f yttpdr, @

- f'(u)
BT, x(t,u). C)
wherem and w are the mass and frequency of the oscillator
a_md 7(t'.t ) is the memory function. Defining a spacelike Here f(u) is again a differentiable damping function such
time variableu and a function that f(0)=1

) Thus, the integrodifferential Langevin equatiofi3 and
X(t,u):f(u)f y(t+u,t")p(t)dt’, (3)  (2) can be expressed in the ordinary-differential for(hy
—o (4), and (5), and the integrodifferential master equatid
can be expressed as the ordinary-differential equati8ns
it can be verified by direct substitution thaft) and x(t,u)  and(9). To exploit these transformed equations as a practical

satisfy the following ordinary-differential equations: numerical scheme, we must discretize theariable on a
grid of points so that the number of ordinary-differential
dp(t)/dt=—maw?q(t) - x(t,0), (4)  equations is finite. Once this is achieved, the ordinary-
differential equations can be solved using standard tech-

ax(t,u) niques[5]. We use an eighth-order Runge-Kutta routite]

dy(t,u)/dt=f(u)y(t+u,t)p(t)+ —— in our calculations.

To minimize the number of grid points, we choose a

f'(u) damping functionf(u) that decreases rapidly with In the

~ f(u) x(tu). ® calculations reported here, we usgd) —e 9% In practice,
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fewer grid points are needed for positiughan for negative
u, and we found that the points;=(—n+I+j)Au for j
=1,...n worked well when we chosé=int(0.33&). 08
Here,u,=1Au is the largest positive value. While accurate 1
solutions can be obtained for almost any nonzero valug of .|
we found the most rapid convergence when values were of |
timized for the type of equation. Henogjs specified differ- wal
ently below for each type of equation. To complete the nu-
merical method, we need a representation of the partic
derivative with respect ta on the grid. This could be per- °*[
formed via fast Fourier transform techniqyéd. We chose

instead to employ a matrix representation 0
J (-1))7k T . . .
% —m, (10) 0 1 2 f 4 5 6

ik
which is known as the sinc-DVRliscrete variable represen- FIG. 1. Memory functiond\(t) plotted against time.
tation) [9]. A DVR is a complete set of basis functions, as-
sociated with a specific grid of points, in which functions of
the variable are diagonal and derivatives have simple matri X ; o
representation$9]. DVRs are often used in multidimen- hese exact solutions were qbtamed by exploiting the f‘.'"Ct
sional quantum mechanical scattering theory calcula{i®hs that the abovs merrlck))rt)/ funct|ons- are sums of exponentials
In the sinc-DVR[9], which is associated with an equidis- (-6 W(D)=2j,a;e" ") from which it follows that one
tantly spaced grid on<,), partial derivatives can thus May write

be evaluated with a sum

with At=0.04. Solutions for the other memory functions
nd the same initial conditionsre similar in appearance.

=— 2 — a—bity,.
IX(t.U) dp(t)/dt=—maw3q(t) ]2:‘,1 aje bity;(t), (16)

ou

n _1 i—k
=2 ((j_ﬁxa,uo (1)
J

=] dy;(t)/dt=e""p(t) (17

for any function or operato)(('t,u).. In our calculations, we o, j=1,2,..., andsolve these ordinary-differential equa-
choseAu to be equal to the time intervalt between output  tjons using standard methods. This approach only works for

from the Runge-Kutta routine. ~ memory functions of this type. Approximate solutions were
We now discuss the applications of the above numericafptained usingg=7/[(n—1)Au]2 For negativeu, we set

method to specific models. For the generalized La”geViWN(u)=W(|u|).

equation, we chose an initial value probldire., y(t,t")

The negative logarithm of the absolute erromjift),
=0 fort<t’ and y(t,t")=W(t—t") for t=t'], whereW(t)

has one of the following forms e(t)= _|0910|Q(t)_qapprox.(t)|a (18
w(t)=e (12 is shown in Fig. 3 plotted against time for the valuesnof
indicated in the inset{The error inp(t) is similar] As n
W=t S e s o 13
= — = — e y 3 T T T
9 1-et 9= i
2F 4
W(t)=2e %—e !, (14
1
W(t)=3e ?'—2.8"'+0.8e "2, (15)

which are displayed graphically in Fig. 1. The solid curve is  \|
given by (12), the dashed curve is given by E@L3), the -} !
short-dashed curve is given by E44) and the dotted curve '. A Y y
is given by Eq(15). These memory functions were chosen to?[; 1
roughly represent the various functional forms that can occu l. Py
physically[1] and for ease in obtaining exact solutions. The*[* 7
constants appearing in Eqd), (4), and (5) are chosen as

m=1 andw?= 10. Figure 2 shows the functional form of the ¢ s 0 15 20
exact solutiongy(t) (solid curve and p(t) (dashed curve '
which evolve from initial conditionsq(0)=1 and p(0) FIG. 2. Position(solid curvé and momentuntdashed cunjeof

=0.1, for memory functioril2) over a time scale of 20 units a damped oscillator.
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FIG. 3. e(t) for memory function(12). FIG. 5. €(t) for memory function(14).

increasesg increaseqon averaggand hence the error de- the spin Hamiltonian i$i = (w/2)o,+ Bo, and the coupling
creases. The oscillations éare caused by periodic intersec- to the environment is proportional @, , then the equation
tions of the two solutions. In practice, it is impossible to for the density matrix(t) is of the form[3,4]
visually distinguish the two solutions whet=2. Note that
after a short transient the errgon averagg does not in- dp() =
crease. This is probably a consequence of the linearity of dt
these equations. Some decline in accuracy with time should 2 ) ,
be expected when the Langevin equations are nonligegr, tp(t)ox—20yp(t") oy} dt, (19
a particle in a double well
Figure 4 compares the exact solutions fpit) (solid
curve and p(t) (short-dashed curyewith those obtained
using our method fon= 150 (dashed and dotted curves, re-
spectively over a time of 40 units. No disagreement is vis-
ible. Convergence for memory functig3) is similar.
Memory functions(14) and(15) that take negative values dp(t)
and have long time tails require many grid points for conver- =—i
gence. Figure 5 shows the negative logarittimase 10 of dt

w

t
EUZ+BUX’p(t):| —CfOW(t—t'){O')Z(p(t’)

where theo’s denote Pauli matrices. Parameters were set as
w=1=p and C=0.2. We chose to defing(t,u)=[5W(t
—t")p(t")dt’, which differs somewhat from the general
definition employed in Eq(7). The transformed equations
are then

(O]

EO-Z+ Boy ’P(t)} - ZC{X(I,O) - O'XX(t:O)O'x}!

the absolute error im(t) for this case. While many grid (20

points are rgquwed, high accuracy solutions can clearly be dy(tbu) ax(t,u)

obtained using our method. =e 9"W(u)p(t)+ +2gu x(t,u).
For the master equation, we chose an initial value prob- dt ou 21)

lem consisting of a dissipative two-level system representing

a spin interacting with environmental degrees of freedom. 'fTheory predicts that the memory functigv(t) for this prob-

lem is approximately Gaussian in forfd]. However, we
were unable to obtain an exact solution of the master equa-
A tion for this casd11]. Instead we approximate the Gaussian
via the similar functionW(t)=14e~"*—13e 8" Exact so-

3 T T T T T T

|
[I', il
H i i lutions for
M (o) () =Tr{o,p(1)} = p1a(t) ~ poolt) (solid curve,
it (22)
() (O=Top(D}=pul)+pox(§) - (dashed curve

] (o) () =Tr{oyp(t)}
=i(p1o(t)—por(t)) (short-dashed curye
o 5 10 15 210 25 30 35 40 (2 4)

FIG. 4. Comparison of exact and approximate position and moand initial conditions (o,)(0)=1 and (oy)(0)=0
mentum of a damped oscillator. =(0y)(0) were obtained in the same way as for the gener-
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FIG. 6. Spinx (solid curve, y (dashed curve and z (short-
dashed curvecomponents.

alized Langevin equations and are plotted versus time in Fig{l{/

6. For the approximate method we useg=11[(n
—1)Au]?, and for negatives, we setW(u)=W(|u|). From
Fig. 7, where we plot

e(t)= _Ioglo|<0'z>(t)_<0'z>approx.(t)| (25)

against time, we see that convergence of the numeric
method is very rapid for these equatiofSimilar accuracies

are achieved fofo,) and(oy).)
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FIG. 7. €(t) for (o).

larger set of ordinary-differential equations. Because this
ansformation is exact, we expect that the method will also
ork for equations not considered in this paper. It should be
possible to obtain accurate solutions for such equations via
the following steps. First, find an approximation of the
memory function or operator that will allow exact solutions
to be obtained. Second, optimize the numerical method by
finding the besy for the model equations. Finally, apply the
£umerical method to the original equations and look for con-
vergence of the solutions with increasing
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