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Piecewise linear emulation of propagating fronts as a method for determining their speeds
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We use piecewise linear terms to emulate the polynomial nonlinear terms in a typical reaction-diffusion
equation, replacing it thus with a set of simple linear inhomogeneous differential equations. The resulting
analytic solution constitutes an excellent approximation to the exact propagating front, as is explicitly shown
in the case of cubic and quintic nonlinearities, yielding also the correct value for the physically selected speed
of the observable front. Such a piecewise linear emulation can be used for any nonlinearity, giving therefore a
very reliable and accurate method for determining the selected speed of fronts invading unstable states,
especially pushed fronts.

DOI: 10.1103/PhysRevE.68.027201 PACS number~s!: 05.45.2a, 64.60.Qb, 64.60.Ht, 82.40.Fp
ti
on
tte

t
d
ge
nd
u
in
h
e

, t
e
e
fo
a

ec

ec
b
, a
d
u

ev
m

n
n
o
th

ar
dif
th
o

a

s

le

lly

on
t of
, in
ar

. If
ves
w
s to
the
e

lin-
a-
fer-
he
ng
ing
lcu-
e
unt
the
re-
lly.
olu-
ake
In many systems rendered suddenly unstable, propaga
fronts appear. The determination of the speed of a fr
propagating into an unstable state has attracted a lot of a
tion. The selection principles that have been formulated
determine the observable front, without having to solve
rectly the partial differential equation of motion for a ran
of initial conditions, have involved concepts of linear a
nonlinear marginal stability, of structural stability and of ca
sality @1,2#. Even though a complete analytical understand
of the propagation mechanism and relaxation behavior
emerged for those fronts that are ‘‘pulled along’’ by th
spreading of linear perturbations about the unstable state
so-called ‘‘pulled’’ fronts@3#, the case of those fronts wher
linear analysis fails, the so-called ‘‘pushed’’ fronts, is still th
subject of ongoing research. There is no universal way
dealing with pushed fronts, whether analytical or numeric
there are, however, some methods applicable to a few sp
cases@1#.

In previous papers@4#, we have presented a speed sel
tion mechanism that applies to fronts invading both unsta
and metastable states, whether they be pulled or pushed
that works even for fields propagating at different spee
Still, the mechanism had to rely mostly on numerical calc
lations, since the nonlinearities encountered are almost n
analytically tractable. These numerical calculations beco
quite cumbersome when there are parameters involved.

In this paper, we find the selected speed of pushed fro
through analytic calculations, having approximated all no
linearities by piecewise linear terms. The approximation
nonlinearities by linear pieces has been used before in o
contexts@5#. More generally, the idea of solving nonline
boundary value problems by approximating terms of the
ferential equation and then patching local solutions at
knots has been used for finding numerical solutions t
number of boundary value problems@6#. We use this idea
here in order to obtain the selected speed from analytic
proximate solutions for the propagating fronts.

Let us consider, for example, Fisher’s dimensionle
reaction-diffusion equation
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1 f ~f!, ~1!

where f (p)5 f (0)50, the fixed point 0 being an unstab
state. If the field is going to have a monotonic frontf(j),
wherej5x2vt, then

d2f

dj2
1v

df

dj
1 f ~f!50. ~2!

We shall be solving this ‘‘steady state’’ equation, numerica
or otherwise, in a largefinite interval @L1 ,L2#, with L1
!L2, subject to the boundary conditionsf(L1)5p and
f(L2)50. For any given value ofv, we can find a unique
solution. The selected speed is found by letting2L1 andL2
go to infinity at the end of the calculation@4#.

Let us now consider that part off (f) in Eq. ~2! that is
strictly nonlinear. We can plot this nonlinearity as a functi
of f and can then approximate the resulting curve by a se
linear segments tangent to the original curve. We replace
other words, the nonlinear function by a piecewise line
one, consisting of pieces tangent to the original curve
these pieces are infinite in number, clearly the two cur
will coincide. In practice though we shall keep only a fe
linear segments, the positions of which are chosen so a
ensure that the area between the polygonal curve and
original nonlinear curve is minimized. We say then that w
have constructed a piecewise linear emulator of the non
earity. As a result, the nonlinear ordinary differential equ
tion can be replaced by a set of linear inhomogeneous dif
ential equations, which can be solved analytically. T
various constants involved will be determined by requiri
that f be continuous and smooth everywhere. The result
algebraic equations can be handled through symbolic ca
lations and will easily yield the value of the speed. All w
need to do is write down the equations that take into acco
the boundary conditions and the continuity conditions, let
ends of the interval go to infinity and then solve the cor
sponding algebraic equations, symbolically or numerica
In practice, the speed obtained and the corresponding s
tion are very accurate even when only a few segments m
up the polygonal emulator curve.
©2003 The American Physical Society01-1
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We shall demonstrate this piecewise linear emulation
examining two particular reaction-diffusion equations, f
which the selected speed is known. We shall see that
emulation yields highly accurate results, obtained in a rat
straightforward manner by using the resulting analytic
pressions.

Let us examine a specific case of the Fisher equation

d2f

dj2
1v

df

dj
1f2g~f!50, ~3!

where the nonlinear polynomialg(f) will be assumed to be
cubic or quintic. In this paper, we shall illustrate the ma
ideas of our work by focusing on the casesg(f)5gc(f)
5@f32(12b)f2#/b andg(f)5gq(f)5f52df3. Hereb
andd are given parameters.

In the cubic case,g(f)5gc(f), the selected speed i
known @7# to be vc* 5A2b1(1/A2b) when 0<b<1/2
~pushed case!, while the exact corresponding front is

f~j!5
1

2
2

1

2
tanh~j/A8b!. ~4!

For the quintic case, whereg(f)5gq(f), the selected spee
is known @1# to be vq* 5(2d12Ad214)/A3 when d
>2/A3 ~pushed case!, while the exact corresponding front

f~j!5~e2jpq
2/A31pq

22!21/2, ~5!

with pq5(d1Ad214)1/2/A2.
The basic idea of the present paper is to replace the n

linear functiong(f) with an emulator functionw(f) and
then solve Eq.~3!. We shall see that in both the cubic and t
quintic cases, the results of the emulation constitute an
cellent approximation to the exact results.

Let us begin by obtaining the emulator functions in t
two cases. In both cases, functiong(f) begins atf50. As
f increasesg(f) becomes negative, passes through an
flection point and then reaches a minimum value atf0. Af-
terwards, it increases monotonically. The fieldf satisfies the
boundary conditionsf(L1)5p and f(L2)50, where the
fixed point p is equal to 1 in the cubic case and topq5(d
1Ad214)1/2/A2 in the quintic case.

The shape ofg(f) is such that a polygonal curve wi
have to consist of quite a few linear segments if it is going
look like the g(f) curve. Indeed, it seems that three se
ments will be needed on the left of the minimumf0. These
segments will be tangent tog(f) at the points 0,s, andf0.
On the right of the minimum, three segments will be need
as well. These segments will be tangent tog(f) at the points
p, t, andf0. Thus, there are five segments in all. The poi
s andt will be chosen so as to minimize the area between
emulator curve and the original curve.

Then the emulator curve that consists of five linear s
ments, all of them tangent tog(f), will be
02720
y
r
he
er
-

n-

x-

-

o
-

d

s
e

-

w~f!5
0 if 0<f<f1,

g8~s!f1g~s!2g8~s!s if f1<f<f2,

g~f0! if f2<f<f3,

g8~ t !f1g~ t !2g8~ t !t if f3<f<f4,

g8~p!f1g~p!2g8~p!p if f4<f<p,
~6!

where

f15s2@g~s!/g8~s!#,

f25s1@g~f0!2g~s!#/g8~s!,

f35t1@g~f0!2g~ t !#/g8~ t !,

f45
g~ t !2g8~ t !t2g~p!1g8~p!p

g8~p!2g8~ t !
. ~7!

The values of the functionsg(f) andw(f) are the same a
points 0,s, f0 , t, and p, and so are their slopes at the
points. The points, located in the interval@f1 , f2], and the
point t, located in the interval@f3 , f4], will be chosen so as
to make the emulator as similar as possible to the origin

FIG. 1. The cubic functiongc(f), represented by the dashe
line, and its piecewise linear emulatorwc(f), represented by the
continuous line, forb50.1. The line segments are tangent to t
curve at the pointsf50, f5s50.248 882(12b), f5f052(1
2b)/3, f5t, andf51, wheret is given by Eq.~8!.

FIG. 2. The quintic functiongq(f) and its piecewise linear
emulatorwq(f), for d59. The line segments are tangent to t
curve at the pointsf50, f5s51.8774, f5f052.3238, f5t
52.703 77, andf5pq53.018. The dashed curve corresponds
the functiongq(f), while the continuous curve corresponds to
piecewise linear emulator.
1-2
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They are thus determined by requiring that the area betw
the emulator curve and theg(f) curve be minimized.

In the cubic case, whereg(f)5gc(f)5@f32(1
2b)f2#/b, it turns out thats50.248 882(12b) and f0
52(12b)/3, while

t52
b

3
1

A21b1b2

3
@cos~u/3!1A3 sin~u/3!#, ~8!

whereu5cos21@(3b213b20.5)/(21b1b2)3/2#. The result-
ing emulator curve is a very good simulacrum of the origin
curvegc(f), as seen in Fig. 1.

In the quintic case, whereg(f)5gq(f)5f52df3, it
turns out thats50.625 792Ad and f05A3d/5, the expres-
sion for the parametert being more cumbersome. The resu
ing emulator curve is again a very good simulacrum of
original curvegq(f), as seen in Fig. 2.

Having obtained the emulator functionswc(f) and
wq(f) for the cubic and quintic cases, respectively, we m
now proceed to the solution of the emulated reacti
diffusion problem,

d2f

dj2
1v

df

dj
1f2w~f!50, ~9!

subject to the boundary conditionsf(L1)5p and f(L2)
50. This problem is easy to solve analytically, since it
volves linear inhomogeneous differential equations.

Let us define first the parameters

ui5
2v1Av22414g8~x i !

2
~10!

and

zi5
2v2Av22414g8~x i !

2
, ~11!

wherex45p, x35t, x25f0, andx15s. Then the solution
of Eq. ~9! is

f~j!5p1~f42p!
eu4(j2L1)2ez4(j2L1)

eu4(j42L1)2ez4(j42L1)
if L1<j<j4 ,

f~j!5L1~f32L!
eu3(j2j4)2ez3(j2j4)

eu3(j32j4)2ez3(j32j4)
1~f42L!

3
eu3(j32j4)1z3(j2j4)2eu3(j2j4)1z3(j32j4)

eu3(j32j4)2ez3(j32j4)

if j4<j<j3 ,
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f~j!5g~f0!1@f22g~f0!#
eu2(j2j3)2ez2(j2j3)

eu2(j22j3)2ez2(j22j3)

1@f32g~f0!#

3
eu2(j22j3)1z2(j2j3)2eu2(j2j3)1z2(j22j3)

eu2(j22j3)2ez2(j22j3)

if j3<j<j2 ,

f~j!5M1~f12M !
eu1(j2j2)2ez1(j2j2)

eu1(j12j2)2ez1(j12j2)
1~f22M !

3
eu1(j12j2)1z1(j2j2)2eu1(j2j2)1z1(j12j2)

eu1(j12j2)2ez1(j12j2)

if j2<j<j1 ,

f~j!5f1

eu2(j2L2)2ez2(j2L2)

eu2(j12L2)2ez2(j12L2)
if j1<j<L2 ,

~12!

where L5@g(t)2g8(t)t#/@12g8(t)# and M5@g(s)
2g8(s)s#/@12g8(s)#.

FIG. 3. The selected front in the cubic case, forb50.1. The
continuous line shows the result given by the piecewise linear e
lation, while the dashed line shows the exact result.

FIG. 4. The selected speedv in the cubic case for 0<b<1/2
~pushed case!. The dashed line shows the exact result, while
continuous line shows the result given by the piecewise linear e
lation.
1-3
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This function is continuous everywhere and it acquires
values p,f4 , f3 , f2 , f1, and 0 at pointsj5L1 , j5j4 ,
j5j3 , j5j2 , j5j1, andj5L2, respectively. The continu
ity of the slope off(j) at pointsj5j1 , j5j2 , j5j3, and
j5j4 yields the parametersj1 , j2 , j3, and j4. Thus, the
function f(j) is completely determined, for arbitrary give
values of speedv and ofL1 , L2. If, however, we want the
resulting solution to represent a front, we must let2L1 and
L2 tend to infinity. We can easily verify that in that case t
four equations that result from the continuity ofdf/dj at
points j5j1 , j5j2 , j5j3, andj5j4 will depend on the
parametersj1 , j2 , j3, and j4 only through differences o
the form j i2j j . There are three independent such diff
ences. Three of the four equations will determine these
ferences as functions ofv. The fourth one will determine the
speed selected by the front.

It is quite straightforward to solve the four slope equ
tions mentioned above for both the cubic and the quin
cases. The results obtained are compared with the exact
in Figs. 3, 4, 5, and 6. In the cubic case, for example, we fi

FIG. 5. The selected front in the quintic case, ford59. The
continuous line shows the result given by the piecewise linear e
lation, while the dashed line shows the exact result.
ys
s.
s.
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that the emulated front coincides absolutely with the ex
front of Eq. ~4!, as shown in Fig. 3. An advantage of th
method presented in this paper is that it can easily take
account the dependence of the selected speed on variou
rameters, such asb in the cubic case andd in the quintic
case. In particular, it is quite straightforward to calculate
selected speed in the cubic case as a function of the pa
eter b. As shown in Fig. 4, the selected speed given by
piecewise linear emulation coincides precisely with the ex
speedvc* 5A2b1(1/A2b) when 0<b<1/2 ~pushed case!.
Similarly, in the quintic case, we find that the emulated fro
coincides absolutely with the exact front of Eq.~5!, as shown
in Fig. 5. As far as the selected speed in the quintic cas
concerned, Fig. 6 shows that the speed given by the pi
wise linear emulation coincides almost exactly with the ex
speedvq* 5(2d12Ad214)/A3, where d>2/A3 ~pushed
case!. Thus, the analytic expressions given by the piecew
linear emulation determine the selected speeds correctly
constitute an excellent approximation to results obtained n
mally only through extensive numerical work.

u-

FIG. 6. The selected speedv in the quintic case ford>2/A3
~pushed case!. The dashed line shows the exact result, while
continuous line shows the result given by the piecewise linear e
lation.
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