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Piecewise linear emulation of propagating fronts as a method for determining their speeds
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We use piecewise linear terms to emulate the polynomial nonlinear terms in a typical reaction-diffusion
equation, replacing it thus with a set of simple linear inhomogeneous differential equations. The resulting
analytic solution constitutes an excellent approximation to the exact propagating front, as is explicitly shown
in the case of cubic and quintic nonlinearities, yielding also the correct value for the physically selected speed
of the observable front. Such a piecewise linear emulation can be used for any nonlinearity, giving therefore a
very reliable and accurate method for determining the selected speed of fronts invading unstable states,
especially pushed fronts.
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In many systems rendered suddenly unstable, propagating b P
fronts appear. The determination of the speed of a front E=—2+f(¢), (1)
ox

propagating into an unstable state has attracted a lot of atten-
tion. The selection principles that have been formulated to _ _ ) . .
determine the observable front, without having to solve di-\;\gfere Iff('?r?e_fge(zlct)j)i_so’otize Ig(ehivpeogtn?oggéggi:?ml;;?)able
rectly the partial differential equation of motion for a range wheré§=x—vt ther? g ’
of initial conditions, have involved concepts of linear and '

nonlinear marginal stability, of structural stability and of cau-

d? d
sality[1,2]. Even though a complete analytical understanding —f +v —¢ +f(4)=0. 2
of the propagation mechanism and relaxation behavior has dé d¢

emerged for those fronts that are “pulled along” by the . . , . .
spreading of linear perturbations about the unstable state, thi€ Shall be solving this “steady state” equation, numerically
so-called “pulled” fronts[3], the case of those fronts where ©F Otherwise, in a largdinite interval [L;,L,], with L,
linear analysis fails, the so-called “pushed” fronts, is still the <=L2: Subject to the boundary condition#(L,)=p and

. : . . (L,)=0. For any given value of, we can find a unique
SUbJ?Ct Of. ongoing research. There is no _unlversal way fo_folution. The selected speed is found by letting, andL,
dealing with pushed fronts, whether analytical or numerical;

. 'go to infinity at the end of the calculatidd].
g;esrees[alr]e, however, some methods applicable to a few spec%? Let us now consider that part 6{¢) in Eq. (2) that is

. strictly nonlinear. We can plot this nonlinearity as a function
In previous paperf4], we have presented a speed selec

. . : X X ‘of ¢ and can then approximate the resulting curve by a set of
tion mechanism that applies to fronts invading both unstablg, o, segments tangent to the original curve. We replace, in
and metastable states, whether they be pulled or pushed, aggher words, the nonlinear function by a piecewise linear

that works even for fields propagating at different speedsgne, consisting of pieces tangent to the original curve. If
Still, the mechanism had to rely mostly on numerical calcuthese pieces are infinite in number, clearly the two curves
lations, since the nonlinearities encountered are almost nev@yi|| coincide. In practice though we shall keep only a few
analytically tractable. These numerical calculations becoménear segments, the positions of which are chosen so as to
quite cumbersome when there are parameters involved. ensure that the area between the polygonal curve and the
In this paper, we find the selected speed of pushed frontsriginal nonlinear curve is minimized. We say then that we
through analytic calculations, having approximated all non-have constructed a piecewise linear emulator of the nonlin-
linearities by piecewise linear terms. The approximation ofearity. As a result, the nonlinear ordinary differential equa-
nonlinearities by linear pieces has been used before in othéion can be replaced by a set of linear inhomogeneous differ-
contexts[5]. More generally, the idea of solving nonlinear ential equations, which can be solved analytically. The
boundary value problems by approximating terms of the dif-various constants involved will be determined by requiring
ferential equation and then patching local solutions at thehat ¢ be continuous and smooth everywhere. The resulting
knots has been used for finding numerical solutions to algebraic equations can be handled through symbolic calcu-
number of boundary value probleni§]. We use this idea lations and will easily yield the value of the speed. All we
here in order to obtain the selected speed from analytic ameed to do is write down the equations that take into account

proximate solutions for the propagating fronts. the boundary conditions and the continuity conditions, let the
Let us consider, for example, Fisher’s dimensionlesends of the interval go to infinity and then solve the corre-
reaction-diffusion equation sponding algebraic equations, symbolically or numerically.

In practice, the speed obtained and the corresponding solu-
tion are very accurate even when only a few segments make
*Electronic address: stavrost@ucy.ac.cy up the polygonal emulator curve.
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We shall demonstrate this piecewise linear emulation by
examining two particular reaction-diffusion equations, for
which the selected speed is known. We shall see that the
emulation yields highly accurate results, obtained in a rather
straightforward manner by using the resulting analytic ex-
pressions.

Let us examine a specific case of the Fisher equation

d’¢  d¢
d—§2+vd—§+¢—g(¢)=0,

)

FIG. 1. The cubic functiorg.(¢), represented by the dashed
line, and its piecewise linear emulater,(¢), represented by the
continuous line, folb=0.1. The line segments are tangent to the
curve at the pointsp=0, ¢=5=0.248882(+Db), ¢=¢y=2(1
—b)/3, p=t, andd=1, wheret is given by Eq.(8).

where the nonlinear polynomigl( ¢) will be assumed to be
cubic or quintic. In this paper, we shall illustrate the main
ideas of our work by focusing on the casgsp)=g.(¢)
=[¢°— (1-b)$*1/b andg(¢) =gq(¢) = $°—d¢°. Hereb
andd are given parameters.

In the cubic caseg(¢)=g.(¢#), the selected speed is 0 _if 0=¢=¢1,
known [7] to be v¥=\2b+(1/y2b) when 0<b<1/2 g'(s)p+g(s)—g'(s)s if  ¢r1sd<d¢y,
(pushed cagewhile the exact corresponding front is w(@){ 9(bo) it <= ds,

11 g'(he+g(t)—g'(Ht it pa<p=dy,
$(£)= 5 — Stanh(£//8b). (@) 9'(P)d+a(P) =g (PP if  p=d=p, o
For the quintic case, wheg{ ¢) =gq(¢), the selected speed where
is known [1] to be v¥=(—d+2d?+4)/\3 when d e )
q ) : $1=s=[9(s)/g'(s)],
=2/\/3 (pushed cagewhile the exact corresponding front is
, do=s+[9(do)—a(9)1/g'(s),
$(£)= (€20 B4 pg?) 712, (5) ,
’ pa=t+[9(do)—g(H)]/g’ (1),
with pg=(d-+ Vd?+4)1%2. _ g()—g'(Ht—g(p)+g'(p)p
The basic idea of the present paper is to replace the non- bs= (7)

linear functiong(¢) with an emulator functiorw(¢) and

g’'(p)—g'(t)

then solve Eq(3). We shall see that in both the cubic and the-l-he values of the functiong(¢) andw(¢) are the same at

quintic cases, the results of the emulation constitute an e
cellent approximation to the exact results.

Let us begin by obtaining the emulator functions in the
two cases. In both cases, functigfip) begins atp=0. As
¢ increaseg(¢) becomes negative, passes through an in-
flection point and then reaches a minimum valuebgt Af-
terwards, it increases monotonically. The fieldsatisfies the
boundary conditionsp(L,)=p and ¢(L,)=0, where the
fixed pointp is equal to 1 in the cubic case and pig=(d
+/d?+4)Y%/2 in the quintic case.

The shape ofy(¢) is such that a polygonal curve will
have to consist of quite a few linear segments if it is going to
look like the g(¢) curve. Indeed, it seems that three seg-
ments will be needed on the left of the minimupg. These
segments will be tangent @(¢) at the points 0s, and ¢y.

On the right of the minimum, three segments will be needed
as well. These segments will be tangeng{@) at the points

)ﬁoints 0,s, &g, t, andp, and so are their slopes at these
points. The poins, located in the intervdle,, ¢,], and the
pointt, located in the intervdlgs, ¢,4], will be chosen so as
to make the emulator as similar as possible to the original.
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FIG. 2. The quintic functiong,(¢#) and its piecewise linear

P, t, and ¢o. Thus, there are five segments in all. The pointSemulatorw,(¢), for d=9. The line segments are tangent to the
sandt will be chosen so as to minimize the area between th@urve at the pointsp=0, ¢=s=1.8774, = ¢,=2.3238, p=t

emulator curve and the original curve.

=2.703 77, andp=p,=3.018. The dashed curve corresponds to

Then the emulator curve that consists of five linear segthe functiong,(¢), while the continuous curve corresponds to its

ments, all of them tangent (), will be
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They are thus determined by requiring that the area between (I)
the emulator curve and thgy ¢) curve be minimized.

In the cubic case, whereg(¢)=g.(¢)=[¢>—(1 !
—b)$?]/b, it turns out thats=0.248882(1b) and ¢, 0\s
=2(1—b)/3, while
0.
b 2+b+b?
t=—5+-————I[cod 013+ \3sn0/3)], (® 0.4
0.2
h =cos [(3b%+3b—0.5)/(2+b+b??3?]. Th It-
where 6= cos [(3b’+3b—0.5)/(2+b+b?)3?] e result > -3 > i F,

ing emulator curve is a very good simulacrum of the original

curvegc(¢), as seen in Fig. 1. 5 5 . FIG. 3. The selected front in the cubic case, ko#0.1. The

In the quintic case, wherg(¢$)=gq(¢)=¢>—d¢", it continuous line shows the result given by the piecewise linear emu-
turns out thats=0.625 792/d and ¢,=+/3d/5, the expres- ation, while the dashed line shows the exact result.
sion for the parametdrbeing more cumbersome. The result-

ing emulator curve is again a very good simulacrum of the QUs(E—£3) _ gZy(E— £3)
original curvegq(¢), as seen in Fig. 2. H(E)=9(do) +[dr—9(bo)]
Having obtained the emulator functions.($) and e
wq(¢) for the cubic and quintic cases, respectively, we may T
now proceed to the solution of the emulated reaction- [#3=9(¢0)]
diffusion problem, U2(é2— £3) + 226~ £3) _ gUal(é—£3) +2a(ép— £3)
X

(&2~ €3) — gZa(é2— €3)

gU2(é2—&3) _ g22(62—¢3)

d?¢  d¢
d_§2+vd_§+¢_W(¢)

0, 9 if  &=éséy,

eU1(é— &) _ gz1(é—¢&2)

subject to the boundary conditions(L,)=p and ¢(L) $(&)=M +(¢1_M)eul(ﬁ*&z)_ezl(fr&z) +(¢2—M)
=0. This problem is easy to solve analytically, since it in-
volves linear inhomogeneous differential equations. eU1(é1— ) +21(6-£2) _ gui(é— &) +21(61- &)
Let us define first the parameters X
eui(é1— &) _ g21(é1- &)
—v+\u*—4+4g'(xi) it &=ésé,
U= ) g (xi (10
eU2(§_L2)—ezz(§_Lz)
= i <Sé<
and ¢(§) ¢l eu2(§l_L2)—eZZ(§l_L2) If gl g L2=
(12)
—v—v*=4+4g’(xi) where A=[g(t)—g'(1)t]/[1—g'(t)] and M=[g(s)
Zi: y (11) o~/ / 1_ !
2 g'(s)sl/[1—g'(9)].
: A"
wherex4=_ P, x3=t, x2= ¢o, andy,=s. Then the solution 12
of Eq.(9) is
10
gua(é—L1) _ g2a(é-Lq)
= — i <é< 8
$(&)=p+(ha—p) qalés LD g7aléa L) if Liséséy,
6
eUs(é—&4) _ gZ3(£—&4) 4
¢(§):A+(¢3_A)eus(§3—§4)_ eZalés—£q) +(a=A) b
0.1 0.2 0.3 0.4 0.5
Xeu3(§37§4)+23(§7§4)_eu3(§7§4)+23(§37§4) FIG. 4. The selected speedin the cubic case for €b=<1/2
eUa(és— &) _ gZa(£3— &) (pushed cage The dashed line shows the exact result, while the
continuous line shows the result given by the piecewise linear emu-

if  &,<¢&<&y, lation.
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FIG. 5. The selected front in the quintic case, tbr9. The FIG. 6. The selected spt_aedin the quintic case de22/\/.§
continuous line shows the result given by the piecewise linear emu(Pus.hed casle The dashed line shpws the quCt regult, .Wh”e the
lation. while the dashed line shows the exact result. continuous line shows the result given by the piecewise linear emu-

lation.

This function is continuous everywhere and it acquires theahat the emulated front coincides absolutely with the exact
values p,d,, ¢3, ¢, ¢q, and 0 at point=L,, £=¢,, front of Eq. (4), as shown in Fig. 3. An advantage of the
E=¢&3, £€=¢&,, E=¢4, andé=L,, respectively. The continu- method presented in this paper is that it can easily take into
ity of the slope of¢(&) at pointsé=¢,, é€=§&,, £€=¢&5, and  account the dependence of the selected speed on various pa-
E=¢, yields the parameter§,, &,, &;, and&,. Thus, the rameters, such as in the cubic case and in the quintic
function ¢(&) is completely determined, for arbitrary given case. In particular, it is quite straightforward to calculate the
values of speed and ofL,, L,. If, however, we want the selected speed in the cubic case as a function of the param-
resulting solution to represent a front, we mustddt, and eterb. As shown in Fig. 4, the selected speed given by the
L, tend to infinity. We can easily verify that in that case the piecewise linear emulation coincides precisely with the exact
four equations that result from the continuity of/d¢ at  speedv? = \2b+ (1/y2b) when 0<b=<1/2 (pushed case
points é=¢,, £€=¢&,, £=¢&;, and&é=¢, will depend on the  Similarly, in the quintic case, we find that the emulated front
parameterst;, &, &3, and &, only through differences of coincides absolutely with the exact front of E§), as shown
the form & —¢;. There are three independent such differ-in Fig. 5. As far as the selected speed in the quintic case is
ences. Three of the four equations will determine these difeoncerned, Fig. 6 shows that the speed given by the piece-
ferences as functions of The fourth one will determine the wise linear emulation coincides almost exactly with the exact
speed selected by the front. speedv} =(—d+2\d>+4)/\/3, where d=2/\/3 (pushed

It is quite straightforward to solve the four slope equa-case. Thus, the analytic expressions given by the piecewise
tions mentioned above for both the cubic and the quintidinear emulation determine the selected speeds correctly and
cases. The results obtained are compared with the exact onesnstitute an excellent approximation to results obtained nor-
in Figs. 3, 4, 5, and 6. In the cubic case, for example, we findnally only through extensive numerical work.
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