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Mean escape time over a fluctuating barrier
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An approximate method for studying activation over a fluctuating barrier of potential is proposed. It involves
considering separately the slow and fast components of barrier fluctuations, and it applies for any value of their
correlation timer. It gives exact results for the limiting values—0 and r—c, and the agreement with
numerics in between is also excellent, both for dichotomic and Gaussian barrier perturbations.
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Ever since Kramers’ seminal papgt] the fluctuational U(x) has a monostable or bistable form and the random part
escape over a potential barrier has been a paradigm for \&(x)z(t) is generated by a stationary Markovian nozgé)
thermal activation process. Recently, activation in the presef zero mean and correlatid®(t) = Q/ rexp(—|t|/7). Follow-
ence of time-varying fields has become a subject of greahg Refs.[16,17 we assume a general form for its intensity
interest due to the discovery of many counterintuitive noiseQ(7) =Qy7* (0=Qy=const, 6<a<1), which gives the
assisted effects, such as stochastic resongjas transport mostly studied cases withindependent intensitya(=0) or
in Brownian motors[3]. The nonequilibrium character of variance ¢=1) as special cases. Two typeszff) are con-
these problems hinders, however, the direct application ofidered: an Ornstein-Uhlenbeck noig®UN) which is
many ideas and methods developed for investigation of th&aussian with varianc® =Q/r and a dichotomic noise
static Kramers probleni4] (e.g., detailed balance or rate (DN) which flips between two values D with the ratey
concept. On the other hand, as the time scale of variation of= 1/(27). Although they essentially differ—the former is
the driving signal is independent of the internal dynamics ofcontinuous, the latter discrete—nevertheless, they influence
the system, standard adiabatic methods are restricted to cgfe activation process very similaf{8] and the main steps
tain ranges of parameters only. Hence, an approach whichf the presented description are the same. The dynamics of

overcomes these difficulties and applies for the_ whole rangghe system is given by the non-Markovian Langevin equation
of time variability of the perturbation is of great importance.

In this Brief Report, we address this problem for an acti- , ,
vation over a randomly fluctuating barrier. The subject is a=—U () =V ()z(t) + £(1). @
interesting not only due to its ubiquity in many branches of
physics, e.g., in relation to ligand binding to heme proteinsntroducing the two-dimensional Markovian stochastic pro-
[5], transport processes in glas4€s, or dye laser with a cess{x(t),z(t)} one can formulate the evolution equation for
fluctuating pump parametgr], but especially because of the the joint probability distributiorP(x,z,t):
phenomenon ofesonant activatiofi8]—the appearance of a
minimum of the mean activation timé&as a function of the
correlation timer of barrier fluctuations. The dependence
7(7) can be calculated exactly merely for simple models
[8-10], for more general cases the approadids-15 pro-  where £(x,z)=(d/dx)[U’ (X) + V' (X)z]+q(d?%/ 9x?) is the
posed till now apply to some rangesobnly. Irrespective of  Fokker-Planck(FP) operator. The free evolution of the bar-
the technical differences, they are all based on the rate comier noise is governed by the operatd(z) = 1/7[(d/9z)z
cept, which assumes a quasistationary equilibrium before the Q4?/9z?] for OUN or by the matrixA =(— vy, v;y,— )
activation happens and applies fo7, and/or kinetic de- for DN. Initially the particle is located at the bottoxy of the
scription forr=In(1/q) (q states for the thermal noise inten- well and the quantity of interest is the mean first passage
sity) when the escape events are uncorrelated with the potettime (MFPT) through a given thresholkl,,, located either at
tial variations. Although for small enoughin an extended the topx, or far from it on the other side of the barrier.
region In(16) <7<7 both approximations coexist and give A typical scenario of an escape event consists of two
similar results 11], nevertheless the proper smooth connecstages. For a long timg,, the particle fluctuates in the vi-
tion between them remains the main theoretical challengesinity of the bottom of the well, being subjected to small
Below we present an approach which is valid for anylt ~ random impacts of(t). If a large enough outburst df(t)
gives exact values df{ 7) in the limits 7—0 andr—, and  occurs, the particle will eventually surmount the barrier al-
a very good approximation in between. most immediately during a short tinte. The time variation
We study an overdamped Brownian particle driven by aof the potential exerts only a negligible effect on the first
(therma) Gaussian white noisé&(t) of zero mean, which stage, but it can essentially modify the dynamics during the
moves in a stochastically varying potential. Its static partsecond one when the particle interacts with the whole slope
of the barrier. Any realization of(t), which has been sup-
posed to bring the particle over the top of a static barrier,
*Electronic address: jiwanisz@phys.uni.torun.pl may turn out to be insufficient if the barrier rises during the

%P(x,z,t)=[£(x,z)+A(z)]P(x,z,t), (2)
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climbing stage. On the contrary, if the barrier decreases thBN case in the same way. The definitigids and(4) involve
particle does cross to the other side, but some smaller outhe asymmetric character of two-state naigg) and its de-
bursts of&(t) would also result in a successful escape. Bependence orzg(t), but for simplicity we assume that both
cause the rate of variation of the barrier shape depends on tlazg(t) and z;(t) are symmetric, independent dichotomic
correlation time ofz(t), the relationship betweety and =  noises of zero mean. Since OUN and DN have the same
appears to be crucial in the analygis]. correlation function, the formula&t)—(6) apply to the DN
This discussion leads us to the central idea of the presemtase as well.
approach—splitting the barrier noise into two independent We should also determine the value of integration interval
components: t;. For an unperturbed potential, it equals the relaxation time
t, from the top to the bottom of the well, but fluctuations of
Z(t) = z4(t) + z¢(1). (3)  the potential lead to far-from-equilibrium conditions, so that
. ) this equality does not holfll9]. However, we do not intend
The slow onez; is defined as the mean value Dbver the  pere 1o consider the relationship between the processes of
fumg interval of climbing {,t +t,) and over its possible real- climbing up and relaxing down the fluctuating barrier.
izations(marked by(- - -)) Rather, we need a tool for calculating the order of the dura-
1 rtet, 1 tion of th_e second stage of the escape event. _It is enough to
Zs(t):<—f dsz(s)> = (1-e Y1), (4)  take for it the value of, for a static barrier, which may be
teJt A calculated as the MFPT from the top to the bottomx,, of
_ ] the well. It is shown in Fig. 1 that our results depend almost
where A=t;/7. It is supposed to be constant during the ynnoticeably on the variation of within the range of tens of
climbing stage, while its random character arises from theyercent. A more careful analysis would require us to take into
randomness of(t). Hencezs is governed by the same sta- account, not only the mean value, but also the statistical

tistics asz but with the variance distribution of relaxation timeg15).
Using the decompositiof8), the escape problem may be
D :<Zz>:9£(l_eﬂ)z_ (5) considered as a three-dimensional Markovian process. Its
STt A joint probability distributionP(x,z;,z5,t) evolves accord-

. _ . ~ingly to the FP equation similar to E) but with two A’s
Next, assuming that the fast pari(t), which gives rapid operators forz; andz (with Q; or Q, instead ofQ, respec-
fluctuations arounds(t), can be treated as uncorrelated, onetively), andz=z;+z, in £(x,z). Such a formulation allows

calculates its intensit@s : for a clear separation of different time scales of the system
dynamics. Since, by definitiozg remains constant while the
Q=0Q|1- i(l_e—A)_ E i(l_e—A)z ‘ 6) particle climbs the barrier, its dynamics may be analyzed by
A 2A the kinetic approach. On the contrary; vanishes forr

slightly greater thart,, but still for 7<7, so rate theory

If z(t) is Gaussian it can always be written as the sum ofapplies. Thus we seek the probability distribution in the form
two independent Gaussian componef®s So, in the OUN  p(x,z,z,t)=p(x,z; ,t;z5) p(zs,t) [20].
case botleg(t) andz(t) are OUN's with correlation timer The fast equilibration process is described by the evolu-
and they differ only in the form of their intensiti€gari-  tion of p(x,z .t:z5), which is governed by the equation
ance$ D;=Q;/7 (i=f,s). If 7—0 one haxR;=Q, while
the leading-order term oQ, readsQ/A? so for any « it d
vanishes at least linearly with. Thus one is left with only P,z 629 =[L(X,Z¢:29) + AZ) Ip(%,2¢,825), (7)
the fast part ofz(t). In the opposite limitr— o, the leading
term of Q; becomeQA?/3, soD; vanishes at least linearly where £(x,z; ;) = (9l x)[U' (X;z5) + V' (X) z¢] + q(5%/ 9x?)
with 1/7, while Dg=D. Only the slow part ok(t) survives.  and the slow component of barrier fluctuations gives rise to
One can check that, ignoring the dependenc® ain 7, the  different forms of potential configuration&(x;zs)=U(X)
intensitiesQ; and Q, are monotonic functions of. While  +V(x)z;. Following a standard method, one looks for the
for 7=0 one has the white-noise limit af(t) with rapid  quasipotentiafb being the dominant exponential term of the
fluctuationsz¢(t), an increase of increases the role @ at  reduced (quasjstationary  probability  distribution
the expense of decrease of the intensitgqf eliminating it (p(x,zs ;Zs)>zf=D(X;ZS)NGXF[—CD(X;ZS)/Q] of Eq. (7). For
completely asr—. Thus the fundamental difference be- (1o pN case, we obtain an equation
tween z¢(t) and z;(t) consists in the different regimes of
values ofr in which they exist:zy(t) occurs forr=t; and D' (x;ze)[U' (X;25) — D' (X;25)]?
hence fluctuates slowly, while(t) persists forr<t, and
varies rapidly. Only forr~t; do they coexist.

A similar summation property to that for Gaussian noise
does not apply to the dichotomic noise — one cannot display
a given dichotomic noise as the sum of two independenwhose middle(of the three always repbkolution gives the
dichotomic noises. However, the great similarity between thejuasipotential. This equation is formally similar to the result
statistical properties of OUN and DN suggests treating thef Reimann and Elstofl2], who consider the case<7,

Aoz -zl ®
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FIG. 1. Relative mean escape tiriEZ; versust for DN case FIG. 2. Relative mean escape tirdEZ versust for OUN case

with a triangle barriet(x)=10(1—|x|) and V(x)=1—1|x| con-  and the system withJ (x) =x*4—x?/2, V(x)=U(x)+ 1/4 for ||
fined to the interval ¢ 1,1) for Qy=1, q=1, X,=0, t,=0.09, <1, and V(x)=0 elsewhere, forq=0.08, Q,=0.8, t;=t,/2
anda=0, 0.25, 0.50, 0.75, and 1.0 from the bottom to the top on=1.26, and three values of. The lines present our approximation
the left-hand side, respectively. Solid lines show the exact resultand markers are from the numerical simulation of Eg.

and the others the approximati¢h3) for few values oft; . . )
anticipated property of quasipotentja3,22. As for DN, we

however. The only difference is the form of diffusion func- May also introduce an effective potenti#). Using Eq.(10),
tion G(x)=1+(Q;/q)V'(x)2. In Ref.[12] the total noise palculgtlon of the MFPTI(z,) for both types of barrier noise
intensity Q is used, which gives an improper limiting value 1S Straightforward. . .
of ®' for r—o for @=1. HereG(x) depends o, which In the slow time scale, the evolution of the system is
vanishes for anyr as7— o, so one obtains the exact expres- governed by the Smoluchowski equation with a sink term,

sion®’(x;zs) —U' (X;zs). In the opposite limit ofr— 0, the

J
solution of Eq.(8) converges to the exact forbh’ (x)/G(x). —p(zs,t)=[A(z5) —k(z5)]p(zs,1). (12
This suggests to deal not with the quasipotential but rather at
with an effective one It describes stochastic switchings between the potential con-

' g Yy (e figurations of differentzg and an escape process from each of
Ueri(X:25) = " (Xi29) G(X). © them[k(zs) = u/ T(zs) with = 1/2 for X, =x;, or u=1 for

Finally, exploiting the well-known form of the exact FP X far from itl. One gets the mean escape time integrating

equation in the white-noise lim[21], one can write the ef- P(Zs,t) overte (0), and summing/integrating ovex for

fective FP operator DN/OUN. For the dichotomic switching, the result is imme-
diate:
J a a
Leti(X;25)= a—ueff(x;zs) +q—=VG(X)—VG(x), (10 27T, 7T +ur(7T,.+7.)
X dX Ix = , (13)
T +7T +2ur

which governs the fast part of the evolution.

A convenient way of finding the quasipotential in the
OUN case formulates the problem by means of path integrat™’ v . .
or Hamiltonian techniquei®2]. In general, the problem can- ution [9,24] of a very simple set of equatiord2), which
not be elaborated analytically, but asymptotic expressions fofonstitutes the long-approximation of the probleii2], the
small and larger, are availabld11,13. To attempt an inter- dependence of. and 7_ on Q(7) involves also the fast

polation between the two limits af we construct a 2-2 Pade P&t of the dynamics in formulél3). _
The problem is much more complicated in the OUN case.

where7. are the MFPT'’s foif. (x)=U(x) = VDV(X), re-
pectively. Although Eq(13) resembles the well-known so-

approximan{ 23] To the best of the author’s knowledge, there is no universal
U'(X;zs) approximation of Eq(12) valid for any 7 [25]. One may
D'(x;25)= G calculate asymptotic expressions for small and large
[11,26 and construct a Padapproximant to interpolate in
1+ 72Q4V/ (X)W(X: 25 G(X) + TOWV(X; Zg) 2 between; however, the complicated exponential dependence
X 5 — , of expansion terms on the amplitude of fluctuations yields a
1+ 7MX;29) 71 G(X) very bad approximatiori27]. Hence, in what follows, we

(11)  solve Eq.(12) numerically.

To test the method, we take the triangular barrier model
with W(x;z5) =[G(x)/V"(X)][U' (X;z) V' (x)/G(x)]". One  [8] with DN. In Fig. 1, we plotZ(7)/Z; (T3 is the MFPT for
can note that as a function efexpressior(11) has no sin- a static barrier for the exact analytical results and for the
gularities and it monotonically increases withwhich is an  present method, in each case for few valuea oThe relax-
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ation time calculated from the exact formula5] for the
MFPT fromx,=0 to x,=1 equalst,=0.09. We show three
sets of curves with,=t, , t;=t,/2, andt,=t,/4, respectively.
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for any value ofr and use both rate and kinetic approaches

in the analysis without any sewing procedure. The noise di-
vision is done through an averaging over a finite interval of

The agreement with the exact plot is very good, but in thetime t, (4), hence we call the approach partial noise-
interval 10"3< 7<<10"* our method gives slightly lower val- averaging methodPNAM). For a dichotomic perturbation,
ues. We have found the smallest deviation figrt,/2, but  formula (13) together with the MFPT obtained for the FP
even whert; is twice as large or small the difference is still operator(10) provides the analytical expression for the de-
not very significant. This validates the way we estimate thependence?( 7) for any re[0), for arbitrary potentials
interval of integratiort; in Eq. (4). For simplicity_in the next U(x) andV(x), and a large class of noises. For the OUN we
example we usé =t,/2, but to be more precise, for each 54 to use a computer at the final step, but the accordance of
system a careful analysis of its best value should be donge present result with the full-numerical ones confirms the
[27]. In Fig. 2, we displayZ(7)/7; for OUN case and three ,oer of PNAM. Although the method is presented in terms
values ofa. The agreement between the theory and numeriys MEPT, it can be expressed by means of any of the stan-
cal simulation of Eq(1) is very good, but also with some qarg approachei!] to the activation process. We hope also
underestimation in the region of the resonant activationnat the presented idea of splitting the noise could be useful
minima. The results for other systems and other values of, other problems where different time scales coexist, mak-

parameters are also excell¢@f]. _ __ing the proposed approach valuable for many applications.
To conclude, we have presented a method of investigation

of thermal activation in the presence of barrier fluctuations The research was partially supported by the Royal Soci-
for arbitrary duration of their correlation. Dividing the bar- ety, London. The author is very indebted to Professor P. V. E.
rier noise into two components—the slow and fast ones—weéMcClintock for his kind hospitality in Lancaster where the

can separate two time scales of the evolution of the systerbasic ideas of the present work were born.
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