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Exact solution of a generalized model for surface deposition
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We consider a model for surface deposition in one dimension, in the presence of both precursor-layer
diffusion and desorption. The model is a generalization that includes random sequential ad$&$#on
accelerated RSA, and growth-and-coalescence models as special cases. Exact solutions are obtained for the
model for both its lattice and continuum versions. Expressions are obtained for physically important quantities
such as the surface coverage, average island size, mass-adsorption efficiency, and the process efficiency. The
connection between a limiting case of the model and epidemic models is discussed.
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Random sequential adsorptigRSA) [1-3] is a model for inserting items into a table. The cost function of the al-
process by which particles are irreversibly deposited, withougorithm is related to the number of sites that a precursor-
overlap and without positional correlation, onto a surfacediffusing particle visits before being deposited.
from a gad4], or solution[5]. Once deposited, the particles  In this Brief Report, we extend our previous results to
cannot move on the surface, nor desorb back into the fluiéhclude the possibility of desorption from the precursor state.
phase. The model describes a physical situation in whictin order to do so, we consider a generalized model for depo-
impenetrable particles interact weakly with one another, angition, which comprises RSA, ARSA, and other processes as
where diffusion and desorption are negligible. Many exten{articular cases. This extension is motivated by the fact that
sions of the RSA model have been proposed in order téhe energy bond in the physisorbed state is weaker than that
include, for example, diffusion on or desorption from thein the chemisorbed state, so particles can more easily desorb
substrate[3,6] and local rolling and rearrangement of par- from the precursor staf&,8,11. This situation corresponds,
ticles[7]. in the computer table-filling algorithm, to a probability of

Motivated by theoretical8] and experimenta]9] work,  failure when the duration of the search operation is too long.
in Ref.[10] we introduced a model in which it is possible for ~ We consider the ARSA dfmers(i.e., particles of sizé)
the particles to diffuse on top of previously deposited par-onto a linear latticd10]. The rate of successful depositions
ticles. More precisely, in this model, the deposition of a par-following precursor diffusion i and, as usual, the rate of
ticle is attempted at a randomly selected position on the susuccessful direct depositions on empty sites is set to 1. Cases
face. If the position is full or partly occupied, then the D=0 and D=1 correspond to standard RSA and ARSA
incident particle diffuses along the top of the deposited parf10,12], respectively. The introduction of this parameter was
ticles until it finds a space large enough to accommodate iffirst discussed in Ref.10], although only cas®=1 was
then, the particle is deposited instantly and irreversibly. Instudied there. Allowind to vary between 1 and 0 accounts
the language of surface chemistig,11], this model de- for additional possibilities: an incoming molecule might be
scribes systems in which particles can becgrhgsisorbed more likely to be scattered from an occupied region than
and diffuse in aprecursor state until they becomechemi-  from an empty region, or once in the precursor state, it might
sorbed at some later time. In Ref.12] this process was desorb before reaching an empty site where it can be depos-
called accelerated random sequential adsorptighRSA).  ited. The complementary cae>1 also has physical mean-
Exact results were obtained for the gap distribution functioning. For example, it represents situations where molecules
and for physically relevant quantities, such as the surfacare more likely to stick to the substrate, at the edge of grow-
coverage, the average island size, and the probabilities difg clusters of identical molecules. The liniit—« corre-
island nucleation, growth, and aggregation, in one dimensiosponds to a special case of ARSA, with growth and coales-
(1D). The continuum version of the model was also studiedcence(from an initial distribution of “seeds” or impurities
Later, these results were extenddd] to study the acceler- but without subsquent nucleation. The intervakD<1 is
ated random sequential adsorption of particles on to a surfageerhaps the most relevant to surface adsorption systems.
with random impurities. Let C,(t) denote the average density gdépsof lengthr

More recently, a new application has been proposed fobetween occupied regions at tinte(distribution of gap
the ARSA model. In Ref[14], the model was used to study sizes. By average densitywe mean the total number of
a computer science algorithm called linear probing withoccurrences of a gap of sizedivided by the system size and
hashing[15]. This is an efficient and widely used algorithm averaged over the distribution of stochastic realizations from

an empty substrate up to tinte As usual,t measuregin
arbitrary time unity the number of deposition attempts di-
*Corresponding author. Email address: jf263@cam.ac.uk vided by the system size.

1063-651X/2003/6€)/0271024)/$20.00 68 027102-1 ©2003 The American Physical Society



BRIEF REPORTS PHYSICAL REVIEW B8, 027102 (2003

The evolution equations which the set 6f(t) obeys
were derived in Ref[12], for the caseD=1. Extension to
general rateD is obtained by multiplying byD the terms
representing precursor-mediated deposition; this gives

4.5

dCi(t) <
gt =22 CrrsrdD=[r=(k=1)]C(1)+Dq(t) 35 |
- ]
£
X[Cr+k(t)_cr(t)] (1) g
for r=Kk, where the four terms represent the creation and é 25 ¢
(]

destruction of a gap of size by direct and by precursor-
mediated deposition. Fork there are no destructiqgnega-
tive) terms, andC,(t) is easily expressed as an integral in-

volving the solution of Eq(1). The quantity 1.5

q(t)= 1—r2k[r—<k—1>]cr<t)]/[r2k cm} (2)
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is the average number of positiofper gap withr =k) where

a particle can physisorb before diffusing towards an edge site
where chemisorption takes place. Corresponding equations
for the average density afccupiedregions of lengthr (is- . . ] o
land9 were derived in Ref[10]. These equations do not This solution holds fot<t., wheret. is thesaturation time

have closed form, as a consequence of the process of isladdfer which no more particles can be depositeds a mea-

FIG. 1. Rescaled saturation tinke, .

coalescence, so they were solved in R&0] using trunca-
tion approximations.

Despite their nonlinearity, Eq$l) can be solved for gen-
eral k using a similar method as in Refsl2,13,16,18 As
argued and verified by simulation in Ref42,13, we expect

the size of the gaps with=k to be independent of the evolv-

ing island structure. This is because new gaps fdre,

islands nucleajeby direct, random deposition. This leads to

the assumption that gaps of sizek have the Poisson dis-
tribution C, (t) = A(t)exd — (r—K)t], whereA(t) is to be de-
termined. For initial conditions C,(0)=0 and

sure of the number of deposition attempts made until satura-
tion (in multiples ofk lattice site$. The saturation timé. is
determined byC,(t.)=0 for all r=k, and obeys equation
G(t.)=D, or

F(t)+ fotcduF(u)=2/D. @

Figure 1 plotskt., the total massof particles that have
collided with the substrate until saturation, agaistfor
various particle sizeg, from D=0 (RSA), throughD=1

lim,_,={_1rC,(t)=1 corresponding to an empty substrate,(ARSA), to D=« (on the right. There is a point D*

the solution is

_[1-e'G()-D]

C/(t) -5 e~ (r-ht 3)
for r=k and
t
C,(t)zf du[1—e "]G(u)e "™ (4)
0
for r <k, with
2— thduF(u)
0
G(t)= 5

F(t)

and

k-1

F(t)=exp{(l—D)t+(2—D)Zl

—rt

} . (6)

r

~0.125) at which all curves approximately meet; for
>D* there is a small decrease ki, with k (which is maxi-
mum aroundD =0.5) and forD<D* there is a large in-
crease withk. This behavior originates from different trade
offs between the direct and precursor-mediated deposition
mechanisms, each of which yields distinct forms of deposi-
tion failure. In the RSA limit D—0), the saturation time
has a logarithmic divergendg=In(1/D), as revealed by in-
spection of Eq(7).

The central quantity in this system is the fraction of sur-
face occupied, or surfaceoveraged(t). The coverage is
directly related to the distribution of island sizes, which is
not known exactly. Fortunately, thanks to the binary nature
of the problem(sites are either empty or occupjed(t) also
relates to the distribution of gap sizesg(t)=1
—37_,rC,(t). Direct substitution of Eqs(3) and (4) into
this definition is cumbersome; it is much simpler to use the
relation

de
5t = <PUO+DIL-PO)]} ®
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1.0 1—exd —(1—D)t]

o= ———p5——

11)

for t<t., an expression first derived in Rdfl0]. At the
finite time t.=In(1/D)/(1-D), the lattice becomes full
[6(t;)=1]. Linear growth =t [10,12, typical of some
domain-growth model$19], occurs only forD=1. When

>

g D<1 (>1), the sticking probabilityd#/dt decreasesin-
& creasepwith 6. The average island size far=1 is

S 0.5 |

ﬁ 0 1

(3]

(<] = —_—

g (LO)=—5 T (12

This result yields(L)=t/[(1—t)(1—e "] for D=1 and
(Ly=¢' for D=0, and implies thatL)~1/(1—6) as @
—1 for all D. For dimer depositionk=2), Egs.(1)—(9)
simplify, but not sufficiently to allow the coverage to be
‘ ‘ , expressed in a simple closed form for arbitr&ry
0.0 0.5 1.0 15 2.0 We now return to discuss the general propertiekroer
2D/(1+D) deposition. ForD>1, when the growth of islands is pre-
ferred to their nucleation, coveragegrows exponentially. In
particular, in the scaling regime whee—«~ andt—0 with
=Dt fixed, we find that

FIG. 2. Process efficiency.

between the sticking probability ané,(t)==,_,[r—(k

—1)]C,(1), the probability that &mer lands directly on an 1[2k—1
empty interval of size&k. This gives o(t)~ Dl & (e'“— H—(k=1)7|, (13
t
0(t)= L Dt+(1— D)f duG(u) |, (99 with 6(r)=1-0(1/D) and 7.=(1/K)In[DkK/(2k—-1)]
2-D 0 +O(1/D). In the limit D—oo, there is full coverage because
there is no nucleation and therefore, no gaps smaller khan
which behaves asymptotically as are created. However, if the initial conditigwhich needs to
contain at least one partiglaas a finite fraction of occupied
6(t)=0(ts) —kD(t,—t)+O(t,—1)? (100  sites, then the latter result may need modification. The diver-

gence of the saturation time,~In(D), is a consequence of
in the approach to saturation. Also of interest is éiverage ~ unsuccessful direct deposition attemfiise rate of success
island size(L(t)) (and the average number of particles perof these events is, after rescalingD}.

island (L(t))/k). This is given by(L(t))=6/=7_,C.(t), In the continuum version of this model, particles of length
where 1 are deposited on a 1D continuum. This version can be

obtained from the lattice model in the same way as the ran-
% [1-e Y[G(1)-D] . dom carparking model is obtained from the lattice RSA
> C,(t)= +f due U—e KG(u) model [17], or the continuum ARSA is obtained from its
r=1 2-D 0 lattice counterparf12]. This is done by takingk— andt
—0, whilst keepingr=Kkt fixed. Carrying out this procedure
is the average number of islands. E»=0 andD =1, these gives the following quantities for continuum ARSA with de-
results reduce to the standard REIA] and ARSA[12] ex-  sorption:
pressions, respectively. Note that despite the appearance of

factor 1/(O—2) in some of the expressions above, it can be T l-e "
shown, by expandingF(t) in powers ofD—2 that all the F(T)=exp{(2—D)fodu u }
results are well defined and continuous b+ 2; in particu-

lar, F(t) —e ' andG(t)—2 in the limitD—2. G(r) =2/F(7),

We define thanass-adsorption efficienay, as the ratio
of the mass adsorbed to the mass that has collided with the .
substrate until saturation. We also define fivecess effi- Dr+ 2(1—D)f du/F(u)
ciencye as the product of the mass efficiency with the satu- 0

ration coverage, i.e.e=6(t.)%/[kr.], which is plotted in 0(r)= 2-D ' (14
Fig. 2.

In the special case of monomer depositidn=(1), we and the saturation time. is the solution ofF(7;)=2/D.
have Note thatd has the expected forms wh&=0 andD=1.
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To summarize, we have derived exact results for 1D depotcorresponding to recovery of infectiv€20]), then it would
sition with both diffusion and desorption in the precursorexhibit long-term quasiequilibrium states witlfe) <1. If,
state. Since the random sequential adsorption and acceleratgdaddition, we took the limiD — o, then we would expect
random sequential adsorption are special cases of the currefiere to be a threshold value of above whichd(«)=0 and
model, previous exact solutiorjd2,16,17 can be derived pejow which 0< 6()<1, i.e., the system would exhibit a
from the solution presented here. By changing the rate ofgntinuous phase transition. This model is analogous to the
percursor-mediated depositidn (corresponding to desorp- conact procesg22], except for the rate of secondary infec-
tion rate 1-D, for D<1), we can change between a systemyiq, a5 discussed above. Our model, in the absence of any
in which islands can only nucleate, through a system i, of gesorption, also has some similarity with models of
which islands can both nucleate and grow, to a system iR, ,herative sequential adsorptit®SA) [3], except that the
which islands grow but there is no nucleation. The systémyne seajes are different and the relative rates of nucleation

saturates for all values of the parameters and the rescal%q]d growth are fixed in CSA, whereas here they depend on
saturation timekt, exhibits a miniumum aD=1 and di- 4 size of the cluster ’

verges asD—0 andD—e. Conversely, the process effi- —, hractice, two-dimensional models are usually more rel-

ciencye has a maximum &b =1 and goesto 0 d8—0 and  gyant 1o physical applications. The 1D system is, neverthe-

D—eo. ) less, useful for obtaining analytic solutions and gaining in-
The monomer version of the modé{< 1) can be related  gight There are two possible approaches for studying this

to standard epidemic modef20,23. Direct deposition of  gystem in two dimensions. One approach is stochastic and

particles on empty sites corresponds to what is known agpsia|ly-explicit simulation. The other approach is to extend
primary infectionof susceptible siterom external sources  he ahove equations and to solve them using truncation meth-
and precursor-mediated deposition correspondtondary  ,4s such as cluster approximatidi29,21].

infection of susceptiblesfrom internal infectives A differ- A number of further extensions are possible to this model.

ence relative to many epidemic models is that the rate oppe of these would be to consider the deposition of mixtures
secondary infection of a site is proportional to the area of theyt haricles of different sizes, in order to model the situation
neighboring infected clusters rather than to the number of ere the gaseous phase contains a mixture of gases. One
nearest-neighbor infected sites. In the limit of infinite rate of .5 ,,14 also allow the chemisorbed particles to diffuse in the
precur_s.or—mediated de.positlio,—w?o, thg relati\{e rate of empty spaces, as was done in e8], where a 1D random
deposition on empty sitegprimary infection vanishes and  gequential adsorption model with diffusing chemisorbed par-

only deposition through particles already depositegtond-  icles was solved exactly. Such extensions will be examined
ary infection) takes place. Since no deposition can occur onp future work.

an empty substratéor fully susceptible populationwhen
D=, we say, using terminology from probabilif22], that
0=0 is an absorbing state. If, for finite raf®, the model
included desorption from the chemisorbed sites at dde
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