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Phase transition in the Ising model on a small-world network with distance-dependent interactions
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We study the collective behavior of an Ising system on a small-world network with the interd€tipn
o«r~ %, wherer represents the Euclidean distance between two nodes. In the caseloforresponding to the
uniform interaction, the system is known to possess a phase transition of the mean-field nature, while the
system with the short-range interaction-¢ ) does not exhibit long-range order at any finite temperature.
The Monte Carlo simulations are performed at various values, @nd the critical valuer, beyond which the
long-range order does not emerge is estimated to be 0. Thus, concluded is the absence of a phase transition in
the system with the algebraically decaying interactiorf for any nonzero positive value af.
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Small-world networks, which are intermediate betweenStrogatz(WS) construction[2], where local edges are re-
the local regular networks and the random networks, havenoved and reconnected to a randomly chosen node.
two interesting features: high clustering, characteristic of The Hamiltonian for an Ising model on such a small-
regular networks, and short path length, typically observed invorld network is given by
random networkg1,2]. The characteristic path lengthis
defined to be the average of the shortest path lengths be- 1
tween any two vertices: In many complex networks, the be- H=— 5 E Jjjoioj, 1)
havior | ~In N with the network sizeN is observed, while 17
regular lattices displaj/~O(N). When a dynamical system
of many elements is put on a small-world network, informa-whereo; (= = 1) is the Ising spin on nodeof the network.
tion exchange between two elements involves only relativelyrhe distance-dependent interactigjy reads
short distance of the order of h It has been observed in
recent studies that the presence of shortcuts induces long- Jr;“ if i and] are connected
range order below the critical temperati&4]. Further- Jij=J;=
more, nature of the phase transition has been unambiguously
demonstrated to belong to the mean-field universality class.

In those studies of the spin models on small-world networkswherer;; is the geometrical distanceather than the shortest
spin interactions have been assumed to be uniform, which igath length between the two nodésandj on the underlying
rather unrealistic in view of usual systems in nature. It is thuone-dimensional lattice.

desirable to examine the general case of distance-dependentFrom the comparison of the two limite—0 and «
interactions, which has not been addressed. —oo, a total of three distinct regimes may be expedt6):

In this paper we study the Ising model on a small-world(i) mean-field-type critical behavior fae<«ay; (ii) continu-
network, constructed from a one-dimensional lattice, withously varying critical exponents fow;<a<aj; (iii) the
the interaction] decaying algebraically with distancei.e.,  short-range interaction regime with no phase transition for
J(r)«r~%. In such a case of the algebraically decreasingx>a,. In Ref.[5], two boundary valuesr; and «, were
interaction, the critical behavior is expected to change withobtained via renormalization-group calculations for @)
the exponentr: The limit «—0 corresponds to the uniform model on ad-dimensional globally coupled system. In par-
interaction, which yields a mean-field transition at the finiteticular, it is well known thate,;=3/2 and a,=2 for the
critical temperaturg3]. In the opposite limit ofa—, the  one-dimensional globally coupled Ising model. Note here
spins interact with only their nearest neighbors, resulting irthat the total number of connections in this one-dimensional
the absence of long-range order at finite temperatures. Thiglobally coupled system, given By(N—1)/2 with N being
consideration suggests the existence of nontrivial criticathe number of spins, is far larger than that in a small-world
value a; beyond which the finite-temperature phase transinetwork, which is of the order oN. Accordingly, smaller

2
0 otherwise, @

tion disappears. boundary values ofx are anticipated for the small-world
Here we construct a small-world network in the following network.
way: First a one-dimensional lattice & nodes is con- We have performed extensive Monte CafC) simula-

structed with each node connected to its rearest neigh- tions with the heat bath algorithm at various value®a@nd
bors, wherek is the local interaction range. Then each locala. The range&k=2 was taken for convenience; other values
edge is visited once and a random long-range connectioaf k (>1) are not expected to give qualitatively different
(shortcuj is added with the probabilitf? without removing  results. Measured in the simulations are Binder’'s cumulant
local edges. Note the difference from the original Watts and7], the susceptibility, and the specific heat:
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FIG. 1. Ising model on the small-world network with interactidgecr;;“ for P=0.5, k=2, ande=0.1. (a) Binder’'s cumulantUy
possesses no unique crossing paibt.The peak temperature of the susceptibijtkeeps decreasing for large system sid¢s(600). (c)
The specific heaf, does not display a unique crossing point; furthermore, peaks appear at lower temperatures as the system size gets large
(N=3200). The temperature in the horizontal axis is measured in uniiskgf.

[(m*] quently, the ground-state energy, in general, decreasbk as
T (3)  grows. For given values df, P, and @, we thus normalize
3HmI] the coupling strength) so that the system has the size-
1 independent ground-state energy per spin.cAs reduced,
Y=~ Z [(aio)], (4)  theinteraction does not yet decay substantially at the bound-
N ary; this makes it inevitable to study systems of very large
sizes for obtaining correct scaling behavior.

N=

o _LHA)—(HY?

v T2N 1 (5) 1.6
15+ e

with m=|(1/N)Z;0;|. Here(---) and[ - - - ] denote the ther- e
mal average, taken overn&l0* MC steps after discarding 1471 KAA oo
5% 10* MC steps for equilibration at each temperature, and 13t e /r:’/;:
the average over different network realizations, taken over = et A
50 to 100 configurations, respectively. Whes-0, the net- 127 % ) e
work reduces to a simple one-dimensional lattice, displaying 11} e
no long-range order at any finite temperature. Per0, on p:d
the other hand, the presence of long-range shortcuts deprives T et
the system of the locally connected one-dimensional charac- 0.9
ter. In particular, when the interaction is uniform<0), the 10 10°® 10
system atP#0 undergoes a finite-temperature transition of 1N
the mean-field naturgs]. FIG. 2. Logarithmic behavior of the susceptibility peak tempera-

To find a; and a,, beyond which mean-field behavior e (in units of J/kg) [see Fig. 1b)] with the inverse system size.
and long-range order do not emerge, respectively, we hav@pen circles, triangles, and squares represent data point® for
examined the behavior of the system withvaried at fixed =0.5 anda=0.1, 0.2, and 0.3, respectively, shown with the fitted
P. At any nonzero value otr, the algebraically decaying lines. The larger the value af is, the faster the peak temperature
interaction is cut off by the finite network size and, conse-decreases.
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FIG. 3. Susceptibilityy and Binder's cumulanty in the Ising model on a small-world network with interactigyecr;; “ for P=1.0 and
a=0.1. (a) The peak temperature of the susceptibility decreases as the system size grblas1ien0. (b) A unique crossing point is not
observed in Binder’s cumulant, implying the absence of a phase transition at a finite temperature. The temperature in the horizontal axis is
measured in units a/kg .

Figure 1 presents the MC results for the network with  tribute significantly to the system to be ordered in the ther-
=0.5 anda=0.1. Binder’s cumulanty, the susceptibility =~ modynamic limit, and the absence of a finite-temperature
x. and the specific hedl, as functions of the temperature transition is not very surprising. We have also investigated
are shown ina), (b), and(c), respectively. The absence of a the case ofa=0.05, which requires simulations of even
unique crossing point of Binder’'s cumulant shown in Fig.larger system size, to obtain similar results. These observa-
1(a) and the shift of the susceptibility peak in Figlblas  tions strongly suggest that the system does not undergo a
well as the peak position of the specific heat in Fic)1  phase transition at a finite temperature for any nonzero value
qngnimously suggest the absence of a phase tran:;ition 8f @, thus leading toa; = @,=0. Figure 3 shows that the
finite temperatures. At the temperatures wher@ndC, dis- conclusiona; = a,=0 is apparently valid even fdP=1.0,

play peaks, fluctuations are large and the correlation volum@ich corresponds to the network with the largest number of

_becomes comparable with the system SIZE. T_h_|s gIves so ng-range connections. Accordingly, the common belief that
information about the temperature at which critical phenom-

ena are observed. Figuré] shows that as the system size is small-world networks are similar to globally coupled net-

increased, the peak temperature pfincreases first N works in the transition natur§3,4] is valid only for the
<800), in accord with the observation in RE8], and be- (ideal uniform interaction. In the more realistic case of the

gins to decrease eventually beyoNd-1600. In particular, interaction decaying with distance, the two systems display

the peak temperature does not saturate to a certain value bﬂ:f'k'ng difierence. . .

decreases continuously, supporting the absence of a finite- N Summary, we have studied the Ising model on small-

temperature transition. The specific heat exhibits similar be?orld networks with the interaction decaying algebraically

havior in Fig. 1c), although the system size at which the with exponenta. qu this, we have perfor_med extensive

peak position starts to shift toward lower temperatures doelonte Carlo simulations on the networks with the probabil-

not coincide with that for the susceptibility. To clarify the ity for adding shortcuts given by=0.5 and 1. In both

drift of the peak temperature, we show in Fig. 2 the peakcases, absence of a finite-temperature transition has been ob-

temperatured , of the susceptibility versus the inverse sys-served at any nonzero value of In particular, the absence

tem size 1N, together with the fitted lines described by the in the latter, which is the extreme case of the small-world

logarithmic form:T,=a—bInN. The peak position thus ap- network with the largest number of long-range shortcuts, im-

proaches O logarithmically as the system size grows. Herglies the validity for any values d? (<1). This conclusion

the values of the fitting parameters are giverabyl.62 and  should also hold for the original WS network, where short-

b=0.016 fora=0.1; a=1.67 andb=0.042 fora=0.2; @  cuts are introduced by rewiring of the local edges, since it

=1.69 andb=0.064 fora=0.3. This indicates that the peak has less interactions than the network investigated in the

temperature decreases faster as the expoméstraised. present work.
As mentioned above, simulations here have been per-

formed in the crossover region, giving rise to logarithmic

behavior of the peak position with the system size. When the

exponentx is small, the interaction reduces very slowly with

the distance. Nevertheless it gets weakened substantially in a B.J.K. was supported by the Korea Science and Engineer-

system of very large size. For example, wher 0.1, the ing Foundation through Grant No. R14-2002-062-01000-0.

interaction between the two connected nodes of the maxiM.Y.C. acknowledges the partial support from the Ministry

mum distancdi.e., half the system sizés only about 40% of Education through the BK21 Program. Numerical works

of the nearest-neighbor interaction in the system of dize have been performed on the computer cluster Iceberg at Ajou

=51 200. Consequently, long-range connections do not corldniversity.
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