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Phase transition in the Ising model on a small-world network with distance-dependent interactions
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We study the collective behavior of an Ising system on a small-world network with the interactionJ(r )
}r 2a, wherer represents the Euclidean distance between two nodes. In the case ofa50 corresponding to the
uniform interaction, the system is known to possess a phase transition of the mean-field nature, while the
system with the short-range interaction (a→`) does not exhibit long-range order at any finite temperature.
The Monte Carlo simulations are performed at various values ofa, and the critical valueac beyond which the
long-range order does not emerge is estimated to be 0. Thus, concluded is the absence of a phase transition in
the system with the algebraically decaying interactionr 2a for any nonzero positive value ofa.

DOI: 10.1103/PhysRevE.68.027101 PACS number~s!: 89.75.Hc, 89.75.Fb, 75.10.Hk
e
av
o

d

b
be

a
e
n
on

u
s
k
h
u
d

rld
ith

in
it

ite

i
Th
ica
s

g

a
tio

n

-

ll-

t

for

r-

re
nal

rld

es
nt
ant
Small-world networks, which are intermediate betwe
the local regular networks and the random networks, h
two interesting features: high clustering, characteristic
regular networks, and short path length, typically observe
random networks@1,2#. The characteristic path lengthl is
defined to be the average of the shortest path lengths
tween any two vertices: In many complex networks, the
havior l; ln N with the network sizeN is observed, while
regular lattices displayl;O(N). When a dynamical system
of many elements is put on a small-world network, inform
tion exchange between two elements involves only relativ
short distance of the order of lnN. It has been observed i
recent studies that the presence of shortcuts induces l
range order below the critical temperature@3,4#. Further-
more, nature of the phase transition has been unambiguo
demonstrated to belong to the mean-field universality cla
In those studies of the spin models on small-world networ
spin interactions have been assumed to be uniform, whic
rather unrealistic in view of usual systems in nature. It is th
desirable to examine the general case of distance-depen
interactions, which has not been addressed.

In this paper we study the Ising model on a small-wo
network, constructed from a one-dimensional lattice, w
the interactionJ decaying algebraically with distancer, i.e.,
J(r )}r 2a. In such a case of the algebraically decreas
interaction, the critical behavior is expected to change w
the exponenta: The limit a→0 corresponds to the uniform
interaction, which yields a mean-field transition at the fin
critical temperature@3#. In the opposite limit ofa→`, the
spins interact with only their nearest neighbors, resulting
the absence of long-range order at finite temperatures.
consideration suggests the existence of nontrivial crit
value ac beyond which the finite-temperature phase tran
tion disappears.

Here we construct a small-world network in the followin
way: First a one-dimensional lattice ofN nodes is con-
structed with each node connected to its 2k nearest neigh-
bors, wherek is the local interaction range. Then each loc
edge is visited once and a random long-range connec
~shortcut! is added with the probabilityP without removing
local edges. Note the difference from the original Watts a
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Strogatz~WS! construction@2#, where local edges are re
moved and reconnected to a randomly chosen node.

The Hamiltonian for an Ising model on such a sma
world network is given by

H52
1

2 (
iÞ j

Ji j s is j , ~1!

wheres i (561) is the Ising spin on nodei of the network.
The distance-dependent interactionJi j reads

Ji j 5Jji 5H Jri j
2a if i and j are connected

0 otherwise,
~2!

wherer i j is the geometrical distance~rather than the shortes
path length! between the two nodesi andj on the underlying
one-dimensional lattice.

From the comparison of the two limitsa→0 and a
→`, a total of three distinct regimes may be expected@5,6#:
~i! mean-field-type critical behavior fora,a1; ~ii ! continu-
ously varying critical exponents fora1,a,a2; ~iii ! the
short-range interaction regime with no phase transition
a.a2. In Ref. @5#, two boundary valuesa1 and a2 were
obtained via renormalization-group calculations for theO(n)
model on ad-dimensional globally coupled system. In pa
ticular, it is well known thata153/2 and a252 for the
one-dimensional globally coupled Ising model. Note he
that the total number of connections in this one-dimensio
globally coupled system, given byN(N21)/2 with N being
the number of spins, is far larger than that in a small-wo
network, which is of the order ofN. Accordingly, smaller
boundary values ofa are anticipated for the small-world
network.

We have performed extensive Monte Carlo~MC! simula-
tions with the heat bath algorithm at various values ofP and
a. The rangek52 was taken for convenience; other valu
of k (.1) are not expected to give qualitatively differe
results. Measured in the simulations are Binder’s cumul
@7#, the susceptibility, and the specific heat:
©2003 The American Physical Society01-1
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FIG. 1. Ising model on the small-world network with interactionJi j }r i j
2a for P50.5, k52, anda50.1. ~a! Binder’s cumulantUN

possesses no unique crossing point.~b! The peak temperature of the susceptibilityx keeps decreasing for large system sizes (N*1600). ~c!
The specific heatCv does not display a unique crossing point; furthermore, peaks appear at lower temperatures as the system size
(N*3200). The temperature in the horizontal axis is measured in units ofJ/kB .
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@^m4&#

3@^m2&#2
, ~3!

x5
1

N (
i j

@^s is j&#, ~4!

Cv5
@^H2&2^H&2#

T2N
, ~5!

with m[u(1/N)( is i u. Here^•••& and@•••# denote the ther-
mal average, taken over 53104 MC steps after discarding
53104 MC steps for equilibration at each temperature, a
the average over different network realizations, taken o
50 to 100 configurations, respectively. WhenP50, the net-
work reduces to a simple one-dimensional lattice, display
no long-range order at any finite temperature. ForPÞ0, on
the other hand, the presence of long-range shortcuts dep
the system of the locally connected one-dimensional cha
ter. In particular, when the interaction is uniform (a50), the
system atPÞ0 undergoes a finite-temperature transition
the mean-field nature@3#.

To find a1 and a2, beyond which mean-field behavio
and long-range order do not emerge, respectively, we h
examined the behavior of the system witha varied at fixed
P. At any nonzero value ofa, the algebraically decaying
interaction is cut off by the finite network size and, cons
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quently, the ground-state energy, in general, decreasesN
grows. For given values ofk, P, anda, we thus normalize
the coupling strengthJ so that the system has the siz
independent ground-state energy per spin. Asa is reduced,
the interaction does not yet decay substantially at the bou
ary; this makes it inevitable to study systems of very lar
sizes for obtaining correct scaling behavior.

FIG. 2. Logarithmic behavior of the susceptibility peak tempe
ture ~in units of J/kB) @see Fig. 1~b!# with the inverse system size
Open circles, triangles, and squares represent data points fP
50.5 anda50.1, 0.2, and 0.3, respectively, shown with the fitt
lines. The larger the value ofa is, the faster the peak temperatu
decreases.
1-2



t
tal axis is

BRIEF REPORTS PHYSICAL REVIEW E68, 027101 ~2003!
FIG. 3. Susceptibilityx and Binder’s cumulantUN in the Ising model on a small-world network with interactionJi j }r i j
2a for P51.0 and

a50.1. ~a! The peak temperature of the susceptibility decreases as the system size grows forN*1600. ~b! A unique crossing point is no
observed in Binder’s cumulant, implying the absence of a phase transition at a finite temperature. The temperature in the horizon
measured in units ofJ/kB .
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Figure 1 presents the MC results for the network withP
50.5 anda50.1. Binder’s cumulantUN , the susceptibility
x, and the specific heatCV as functions of the temperatur
are shown in~a!, ~b!, and~c!, respectively. The absence of
unique crossing point of Binder’s cumulant shown in F
1~a! and the shift of the susceptibility peak in Fig. 1~b! as
well as the peak position of the specific heat in Fig. 1~c!
unanimously suggest the absence of a phase transitio
finite temperatures. At the temperatures wherex andCv dis-
play peaks, fluctuations are large and the correlation volu
becomes comparable with the system size. This gives s
information about the temperature at which critical pheno
ena are observed. Figure 1~b! shows that as the system size
increased, the peak temperature ofx increases first (N
<800), in accord with the observation in Ref.@3#, and be-
gins to decrease eventually beyondN51600. In particular,
the peak temperature does not saturate to a certain valu
decreases continuously, supporting the absence of a fi
temperature transition. The specific heat exhibits similar
havior in Fig. 1~c!, although the system size at which th
peak position starts to shift toward lower temperatures d
not coincide with that for the susceptibility. To clarify th
drift of the peak temperature, we show in Fig. 2 the pe
temperaturesTp of the susceptibility versus the inverse sy
tem size 1/N, together with the fitted lines described by th
logarithmic form:Tp5a2bln N. The peak position thus ap
proaches 0 logarithmically as the system size grows. H
the values of the fitting parameters are given bya51.62 and
b50.016 fora50.1; a51.67 andb50.042 fora50.2; a
51.69 andb50.064 fora50.3. This indicates that the pea
temperature decreases faster as the exponenta is raised.

As mentioned above, simulations here have been
formed in the crossover region, giving rise to logarithm
behavior of the peak position with the system size. When
exponenta is small, the interaction reduces very slowly wi
the distance. Nevertheless it gets weakened substantially
system of very large size. For example, whena50.1, the
interaction between the two connected nodes of the m
mum distance~i.e., half the system size! is only about 40%
of the nearest-neighbor interaction in the system of sizeN
551 200. Consequently, long-range connections do not c
02710
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tribute significantly to the system to be ordered in the th
modynamic limit, and the absence of a finite-temperat
transition is not very surprising. We have also investiga
the case ofa50.05, which requires simulations of eve
larger system size, to obtain similar results. These obse
tions strongly suggest that the system does not underg
phase transition at a finite temperature for any nonzero va
of a, thus leading toa15a250. Figure 3 shows that the
conclusiona15a250 is apparently valid even forP51.0,
which corresponds to the network with the largest numbe
long-range connections. Accordingly, the common belief t
small-world networks are similar to globally coupled ne
works in the transition nature@3,4# is valid only for the
~ideal! uniform interaction. In the more realistic case of th
interaction decaying with distance, the two systems disp
striking difference.

In summary, we have studied the Ising model on sm
world networks with the interaction decaying algebraica
with exponenta. For this, we have performed extensiv
Monte Carlo simulations on the networks with the probab
ity for adding shortcuts given byP50.5 and 1. In both
cases, absence of a finite-temperature transition has bee
served at any nonzero value ofa. In particular, the absenc
in the latter, which is the extreme case of the small-wo
network with the largest number of long-range shortcuts,
plies the validity for any values ofP (,1). This conclusion
should also hold for the original WS network, where sho
cuts are introduced by rewiring of the local edges, since
has less interactions than the network investigated in
present work.
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