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Large full band gaps for photonic crystals in two dimensions computed by an inverse method
with multigrid acceleration
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In this study, two fast and accurate methods of inverse iteration with multigrid acceleration are developed to
compute band structures of photonic crystals of general shape. In particular, we report two-dimensional pho-
tonic crystals of silicon air with an optimal full band gap of gap-midgap ratioDv/vmid50.2421, which is 30%
larger than ever reported in the literature. The crystals consist of a hexagonal array of circular columns, each
connected to its nearest neighbors by slender rectangular rods. A systematic study with respect to the geometric
parameters of the photonic crystals was made possible with the present method in drawing a three-dimensional
band-gap diagram with reasonable computing time.
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I. INTRODUCTION

Photonic crystals with large full band gaps are of a
demic and practical interest@1,2#. Large full band gaps allow
strong photon localization with the gap@3,4#, and a detailed
manipulation of photonic defect states@5,6#. They have im-
portant applications such as defect cavities@7#, optical
waveguides@8#, defect-mode photonic crystal lasers@9#, and
feedback mirror in laser diodes@10#.

Because of the diversity of photonic crystals, there i
great demand for a general method for fast and accurate
diction of their band-gap structures. The most widely us
method for this purpose is plane wave expansion@11–13#,
which has indeed provided useful information to band-g
structures. But there are several known disadvantages
this method: slow convergence@14,15#, the need to interpo-
late the dielectric property@16,17#, and sophisticated skills to
diagonalize a dense matrix@18#. The purpose of this study i
therefore twofold: one is to develop fast algorithms for co
puting band structures of photonic crystals, the other is
propose possible large full band-gap structures, the ana
of which requires major computational efforts.

Among various other possible techniques—transfer m
trix method @19,20#, multiple scattering method@21,22#, fi-
nite difference time domain method@23,24#, and finite ele-
ment method@25,26#—finite difference multigrid method
@27,28# has the potential to meet the above standards. On
other hand, the studies@29,30# provided an interesting algo
rithm toward optimization of band structures, but only inE
polarization orH polarization. In the present study, a high
fast and accurate inverse method with multigrid accelera
is developed to be applicable to photonic crystals compris
of general-shape dielectric-dielectric materials. The ope
tion count is a good orderN ~the matrix size!, where the
proportional constant is dependent upon the shape and p
erty of the materials used. Moreover, the developed a
rithm is capable of resolving multieigenvalue band stru
tures, and applicable to photonic crystals with interfaces
strong contrast. These salient features of the present me
make it a highly efficient computational technique to analy
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photonic crystals with two or more geometric parameters
In this study, we further propose to consider a hexago

lattice shown in Fig. 1. The reason of choosing this geome
is: previous studies indicate that band gaps forE polarization
are favored in a lattice of isolated high-« region, and band
gaps forH polarization are favored in a connected latti
@31#. A compromise must therefore be reached between
sizes of the dielectric column and the connecting rod in or
to have a large full band gap for a given column radius. T
is a problem with two geometrical parameters, i.e., the rad
of the circular columns and the width of the connecting ro
Searching for their optimal values is often computationa
demanding, but with the presently developed methods,
can be done with great efficiency. The rest of the paper p
vides a detailed description of the numerical algorithms a
results of the computed band structures.

II. BASIC EQUATIONS AND NUMERICAL METHODS

For linear isotropic and frequency-independent dielec
materials with permeability close to one, the time-harmo
modes in two dimensions forE polarization ~TM! can be
written as

2
1

« S ]2

]x2
1

]2

]y2D E5S v

c D 2

E ~1!

FIG. 1. Hexagonal array of circular columns and rods.
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andH polarization~TE! as

2F ]

]x S 1

«

]

]xD1
]

]y S 1

«

]

]yD GH5S v

c D 2

H, ~2!

whereE andH are the electric and magnetic field intensitie
respectively, and«5«(r ) is the dielectric function. To dis-
cretize Eqs.~1! and ~2!, a second-order central differenc
scheme is used. At the grid point near the interface, the
electric function forE polarization is interpolated as@16,18#

«5 f a«a1 f b«b ~3!

and forH polarization as

1

«
5 f a

1

«a
1 f b

1

«b
, ~4!

where«a and«b are dielectric constants of materialsa andb,
respectively, andf a and f b are fractions of the grid cel
which contain«a and«b , respectively. The domain of com
putation is chosen as a rectangle with the same area of
primitive cell of the hexagonal lattice as shown in Fig.
Bloch’s theorem is applied at the domain boundary:

Ek~r1ai !5eik•aiEk~r !, ~5!

Hk~r1ai !5eik•aiHk~r !, ~6!

where Ek and Hk are the Bloch functions for electric an
magnetic fields, respectively, associated with the wave ve
k in the first Brillouin zone, andai( i 51,2) is lattice transla-
tion vector.

From a practical point of view, the first few branches
eigenvalues are of primary interest. As a first step, it is na
ral for us to propose the method of inverse iteration to co
pute the eigenvalues as well as eigenvectors.

Let A be the discretization matrix of the differential op
erator in Eqs.~1! and ~2!. The basic idea is to solve (A
2mI )x5b by inverse iteration@32,33#, wherem is chosen to
be close to the eigenvalue one wishes to compute. The
verse algorithm is as follows:

InverseEigenˆ
for n51 to S

Initial guessb
do

Solve (A2mI )x5b by LUD or PCG
Deflatex by q1 to qn21
Setb5x/ixi
Rayleigh Quotientln5^b,Ab&

FIG. 2. Domain of computation for the hexagonal lattice.
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until i(A2lnI )bi2,e
Setqn5b

end ‰

wherel1<l2<•••<lS is the sequence of smallest eige
values, andq1 , . . . ,qS are the corresponding eigenvector
The inner product̂ •,•& is defined as

^x,y&5(
i

wi x̄iyi ,wi5H «~r i ! for E polarization

1 for H polarization

in view of the different orthogonal properties ofE field and
H field:

1

VEV
Em* ~r !«~r !En~r !dr5dmn , ~7!

1

VEV
Hm* ~r !Hn~r !dr5dmn , ~8!

whereEn andHn are thenth eigenmodes of the electric an
magnetic fields, respectively.V denotes the volume of the
primitive cell anddmn is the Kronecker delta. LUD denote
the lower-upper decomposition solver for matrix inversi
and PCG the preconditioned conjugate gradient method.

TABLE I. Computing times in CPU seconds for six bands.

Ngrid /Nwave FMGI PWE

32332 0.03 5.80
48348 57.06
64364 0.17 339.53
1283128 0.74 12836~est.!
2563256 2.74
5123512 9.39
102431024 33.59

FIG. 3. Comparison of PWE, a plain idea and a good idea. T
plain idea embeds the multigrid solver in the inverse iteration lo
while the good idea embeds the inverse iteration in the multig
acceleration structure.
4-2
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Next, we proposetwo ideasto accelerate the convergenc
of matrix inversion in the algorithm. Aplain ideais to embed
a multigrid solver in the inverse iteration loop, namely, m
tigrid takes place of the expensive LUD. Agood ideais to
embed inverse iteration in the multigrid acceleration str
ture. In this idea, the Rayleigh quotient is updated at e
grid level, which results in a more efficient algorithm. Th
basic idea of multigrid method@34,35# is to solve the matrix
problem by approximating the solution on a fine grid, so
ing the residue on a coarse grid, and then improving
solution on the fine grid. Successively applying this idea
each level of grids causes relaxation of errors on differ
resolution, and hence accelerates the convergence.

Let there beL levels of grids. On each grid levelm, the
differential operator is discretized to form the matrixA(m).
The multilevel algorithm based on the good idea is as
lows:

FMGInverse ˆ

Call InverseEigenat m51
for m52 to L
for n51 to S

Interpolateqn
(m21) to b(m)

do
Solve (A(m)2mI )x(m)5b(m) by MGV
Deflatex(m) by q1

(m) to qn21
(m)

Setb(m)5x(m)/ix(m)i
Rayleigh Quot.ln

(m)5^b(m),A(m)b(m)&
until i(A(m)2ln

(m)I )b(m)i2,e
Setqn

(m)5b(m)

end
end ‰

FIG. 4. Band structures by 2563256 grid for the hexagona
lattice in Fig. 1 («/«0513, r /a50.155, andd/a50.035).

TABLE II. Convergence test for maximum band gap against
grid size.

Ngrid 642 1282 2562 5122 10242

avup/2pc 0.4917 0.4940 0.4940 0.4941 0.4940
av low/2pc 0.3946 0.3876 0.3873 0.3873 0.3873
avmid/2pc 0.4431 0.4408 0.4407 0.4407 0.4407
aDv/2pc 0.0971 0.1064 0.1067 0.1068 0.1067
Dv/vmid 0.2191 0.2413 0.2421 0.2423 0.2421
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where MGV denotes the well-known multigridV-cycle
solver in numerical linear algebra@34,35#.

The whole idea of proposing an inverse method with m
tigrid acceleration for computing photonic band structu
has now become clear. First of all, the interface interpo
tions ~3! and ~4! are used to take care of strong dielect
contrasts. Second, the deflation in the algorithm of inve
iteration enables singling out the eigenvalues one by
from the smallest even when they may be degenera
Third, interlacing the inverse iteration and multigrid acce
eration makes the whole method an amazingly fast algori
for computing photonic band structures, as demonstrated
low.

III. RESULTS AND DISCUSSION

As an example of test, we compute the first six frequen
bands at the pointX of a square array of dielectric column
with radius r /a50.45 and dielectric contrast«/«0513.
Table I shows a comparison of computing times in cen
processing unit~CPU! seconds between the present meth
~FMGI! and plain plane wave expansion~PWE!. The com-
parison is made by averaging the computing times over
wave numbers. Both computations are performed on a

e

TABLE III. Comparison of the gap-midgap ratios for two
dimensional photonic crystals.

«/«0 avmid/2pc aDv/2pc Dv/vmid

Present 13 0.4407 0.1067 0.2421
11.4 0.4503 0.0888 0.1972

@31# 13 0.186
@36# 11.4 ~0.71! 0.1158 ~0.1631!
@37# 12.25 0.0872 0.182
@38# 11.4 (;0.45) 0.0762 (;0.1693)
@39# 12.96 0.090 0.171
@40# 11.4 .0.9 0.0967 ,0.1074

.0.8 0.0849 ,0.1061

FIG. 5. A map of band gaps by 1283128 grid for the hexagona
lattice in Fig. 1 by varying radiusr /a of circular columns. The
dielectric contrast«/«0 is 13 with fixedd/a50.035.
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Pentium 4. The computing time for the present method is
a good orderN5Ngrid , and tends to be superlinear at lar
N. The plane wave expansion, on the contrary, has the c
putational cost of about the orderN2.873. Figure 3 shows a
comparison of PWE, the plain idea and the good idea
implementing inverse iteration with multigrid acceleratio
The good-idea algorithm is roughly four times faster than
plain-idea algorithm, and even better at largerN. Neverthe-
less, both of them are faster than PWE by almost two ord
in Ngrid .

The fast algorithm developed above enables effici
search for the optimal geometry of the photonic crystals
Fig. 1. The largest gap-midgap ratio for silicon air («/«0
513) corresponds tor /a50.155 andd/a50.035. Figure 4
shows the detailed band structure at these ratios. It is in
esting to notice that the full band gap is almost thesimulta-
neousmaximum band gap of bothE andH polarizations. In
order to ensure the accuracy of the band gap, computat
are performed on five different grids. Table II lists the n

FIG. 6. A map of band gaps by 1283128 grid for the hexagona
lattice in Fig. 1 by varying widthd/a of connecting rods. The
dielectric contrast«/«0 is 13 with fixedr /a50.155.

FIG. 7. A map of band gaps by 1283128 grid for the hexagona
lattice in Fig. 1 by varying radiusr i /a of the inserted center col
umns. The dielectric contrast«/«0 is 13 with fixedr /a50.155 and
d/a50.035.
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merics of the location of the maximum full band gap f
different grids forN>1283128. In this paper, most of the
computations are performed with the gridN51283128. All
the computed results coincide with each other to three
nificant digits. Table III has a list of references that report
numerics of large band gaps. It is found that for GaAs
(«/«0511.4) the presentDv/vmid50.1972 is the largest
while for silicon air the presentDv/vmid50.2421 isnot
only the largestbut 30% larger than reported in Ref.@31#.

Figure 5 is a gap map versusr /a ~with fixed d/a
50.035). This map is obtained by computing the band str
tures at every 0.0025 ofr /a. Figure 6 is a gap map versu
d/a ~with fixed r /a50.155). This gap map is obtained b
computing the band structures at every 0.0025 ofd/a. The
two maps show clearly the location of the full band gap w
maximum gap-midgap ratio. In particular, by increasingd/a
from 0.035, the full band gap is gradually embedded into
large band gap ofH polarization. By varyingr /a near 0.155,
the band gaps ofE polarization and ofH polarization have a
good overlap with each other. It is noted that addition o
smaller column in the center of the unit cell of a squa
honeycomb lattice for symmetry reduction can increase
full band gap@40#. However, the present study does not fi
further increase of the full band gap by inserting a circu
column, no matter what its radius is, in the center of t
photonic structure of Fig. 1. Figure 7 shows the gap map.
r i /a (r i : the radius of the inserted column! increase from 0,
the full band gap shrinks gradually in size due to the d
crease of the band gap inE polarization. Figure 8 is the resu
of all elaboration plotted in a three-dimensional band-g
diagram. It gives an overall outlook of the major full ban
gap, and shows the most sensitive direction to geome
parameters. This plot is composed of as many band gap
computed for 61 values ofr /a and 41 values ofd/a, each for
E and H polarizations. There are totally 60 024 eigenvalu
computed.

IV. CONCLUDING REMARKS

In conclusion, we have developed two fast inverse me
ods with multigrid acceleration for computing photonic ba

FIG. 8. A three-dimensional terrain of the major full band ga
for 0<r /a<0.3 and 0<d/a<0.2.
4-4
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structures in two dimensions. The fast algorithms are cap
of resolving multieigenvalue band structures, and applica
to photonic crystals with interfaces of strong contrast. In p
ticular, the good idea algorithm is even faster than the pl
idea algorithm. The methods enable us to explore photo
band structures with two or more geometric parameters
tematically. In addition, we propose a photonic structure t
has significantly larger full band gaps compared to those e
reported in the literature. The study has illustrated that o
mal design of photonic structures can benefit greatly fr
physical principle, aided by fast computation. Presently,
methods are applied to two-dimensional photonic crystals
ei
ith

nd
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B
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principle, they can be extended to problems in three dim
sions. Three-dimensional problems are, however, more c
lenging by presenting themselves as eigenproblems of ve
operators. One such extension is currently being under in
sive investigation, and the results will be reported elsewh
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