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Large full band gaps for photonic crystals in two dimensions computed by an inverse method
with multigrid acceleration

R. L. Chern!? C. Chung Chang,Chien C. Chang,and R. R. Hwany
Lnstitute of Physics, Academia Sinica, Taipei 115, Taiwan, Republic of China
2Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan, Republic of China
(Received 21 April 2003; revised manuscript received 12 June 2003; published 29 August 2003

In this study, two fast and accurate methods of inverse iteration with multigrid acceleration are developed to
compute band structures of photonic crystals of general shape. In particular, we report two-dimensional pho-
tonic crystals of silicon air with an optimal full band gap of gap-midgap rai® ;4= 0.2421, which is 30%
larger than ever reported in the literature. The crystals consist of a hexagonal array of circular columns, each
connected to its nearest neighbors by slender rectangular rods. A systematic study with respect to the geometric
parameters of the photonic crystals was made possible with the present method in drawing a three-dimensional
band-gap diagram with reasonable computing time.
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I. INTRODUCTION photonic crystals with two or more geometric parameters.
In this study, we further propose to consider a hexagonal
Photonic crystals with large full band gaps are of acaJattice shown in Fig. 1. The reason of choosing this geometry
demic and practical intereft,2]. Large full band gaps allow is: previous studies indicate that band gapsEqolarization
strong photon localization with the g4p,4], and a detailed are favored in a lattice of isolated highregion, and band
manipulation of photonic defect statEs6]. They have im- gaps forH polari.zation are favored in a connected lattice
portant applications such as defect cavitigd, optical [31]- A compromise must therefore be reached between the
waveguideg8], defect-mode photonic crystal laségd, and ~ Sizes of the dielectric column and the connecting rod in order
feedback mirror in laser diodd40]. to have a large full band gap for a given column radius. This
As a problem with two geometrical parameters, i.e., the radius

Because of the diversity of photonic crystals, there is ¢ the circul | d the width of th i q
great demand for a general method for fast and accurate prcé- € circular columns and the width of the connecting roas.

I . : . earching for their optimal values is often computationally
diction of thel_r band-gap _structures. The most widely use demanding, but with the presently developed methods, this
method for this purpose is plane wave expandibh-13, be d ith fici h f th

hich has indeed provided useful information to band-ga can be done with great efficiency. The rest of the paper pro-
w . Vides a detailed description of the numerical algorithms and
structures. But there are several known disadvantages wi

sults of the computed band structures.
this method: slow convergen¢#&4,15, the need to interpo- P
late the dielectric propertyl6,17], and sophisticated skills to
diagonalize a dense matifi£8]. The purpose of this study is  Il. BASIC EQUATIONS AND NUMERICAL METHODS

therefore twofold: one is to develop fast algorithms for com- . . : . . :
. . . For linear isotropic and frequency-independent dielectric
puting band structures of photonic crystals, the other is to . . " X .
ropose possible larae full band-aap structures. the anal Smatenals with permeability close to one, the time-harmonic
prop P 9 gap ' Y$Rodes in two dimensions foE polarization (TM) can be

of which requires major computational efforts. written as
Among various other possible techniques—transfer ma-
trix method[19,20, multiple scattering methof21,22, fi-
nite difference time domain methd@3,24), and finite ele- 1( P? &P ) . (w)zE @

ment method[25,26—finite difference multigrid method S E <9_y2
[27,28 has the potential to meet the above standards. On the

other hand, the studi¢&9,30 provided an interesting algo-
rithm toward optimization of band structures, but onlyBn
polarization orH polarization. In the present study, a highly
fast and accurate inverse method with multigrid acceleration
is developed to be applicable to photonic crystals comprising
of general-shape dielectric-dielectric materials. The opera-
tion count is a good ordeN (the matrix siz¢ where the
proportional constant is dependent upon the shape and prop-
erty of the materials used. Moreover, the developed algo-
rithm is capable of resolving multieigenvalue band struc-
tures, and applicable to photonic crystals with interfaces of
strong contrast. These salient features of the present method

make it a highly efficient computational technique to analyze FIG. 1. Hexagonal array of circular columns and rods.
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a , TABLE |. Computing times in CPU seconds for six bands.
T //
S / Ngria /Nwaye FMGI PWE
La O 2
2 N y 32x32 0.03 5.80
co // 48x 48 57.06
a, 64X 64 0.17 339.53
b
@ 128x 128 0.74 1283@st)
FIG. 2. Domain of computation for the hexagonal lattice. ~ 256X256 2.74
512x512 9.39
andH polarization(TE) as 1024x 1024 33.59
a1 a d (14 w\? )
Tlaxleax Tyl ay) Ml @ until (A= X,1)bll,< e

n
whereE andH are the electric and magnetic field intensities, end }

respectively, and=¢(r) is the dielectric function. To dis- wherek;<\,=<-.-<M\gis the sequence of smallest eigen-
cretize Egs.(1) and (2), a second-order central difference values, andj,, . .. ,qs are the corresponding eigenvectors.
scheme is used. At the grid point near the interface, the diThe inner product-,-) is defined as

electric function forE polarization is interpolated 446,18

e=fagatTpep ©) <X,Y>:§i: WiX;Yi aWi:[

and forH polarization as

e(r;) for E polarization
1 for H polarization

in view of the different orthogonal properties Bffield and

11 1 ,  Held:
€ - asa bgby ( )
wheres, ande,, are dielectric constants of materiasndb, VJVEMY)S(V)En(r)dF = Smn, )

respectively, andf, and f,, are fractions of the grid cell

which containe, andey,, respectively. The domain of com- 1

pu.ta.ti_on is chosen as a rectangle \{vith the same area of one _f H* (F)HA(r)dr = 8y, ®)
primitive cell of the hexagonal lattice as shown in Fig. 2. Viv

Bloch'’s theorem is applied at the domain boundary:

whereE, andH,, are thenth eigenmodes of the electric and
magnetic fields, respectivel) denotes the volume of the
primitive cell andé,,, is the Kronecker delta. LUD denotes
the lower-upper decomposition solver for matrix inversion
and PCG the preconditioned conjugate gradient method.

E(r+a)=e*3E(r), (5)
Hi(r+a)=e*aH(r), (6)

where E, and H, are the Bloch functions for electric and
magnetic fields, respectively, associated with the wave vector

10°

k in the first Brillouin zone, andy(i =1,2) is lattice transla- ' ' ' '
tion vector.
From a practical point of view, the first few branches of 42| -
eigenvalues are of primary interest. As a first step, it is natu-g
ral for us to propose the method of inverse iteration to com-2
pute the eigenvalues as well as eigenvectors. % 10" 1
Let A be the discretization matrix of the differential op- E
erator in Egs.(1) and (2). The basic idea is to solveA( o
. . . . £ 10 —
— pl)x=b by inverse iteratiof32,33, whereu is chosento 3
be close to the eigenvalue one wishes to compute. The in§
verse algorithm is as follows: © ol i
. —— PWE
InverseEigen{ —=— Planeidea
forn=11t0S ——@—— Good idea
. -2 1 1 1 1
Initial guessb 1055 0° 107 10° 10 107
do Number of Grid Points or Waves
Solve (A—ul)x=b by LUD or PCG FIG. 3. Comparison of PWE, a plain idea and a good idea. The
Deflatex by g; to g, plain idea embeds the multigrid solver in the inverse iteration loop,
Setb:X/HXH while the good idea embeds the inverse iteration in the multigrid
Rayleigh Quotiend ,=(b,Ab) acceleration structure.
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08 TABLE IIl. Comparison of the gap-midgap ratios for two-
dimensional photonic crystals.
07 .
06 eleg awmig2mC aA w/2mrc Awl wnyig
E 05 ~ Present 13 0.4407 0.1067 0.2421
5 N : 11.4 0.4503 0.0888 0.1972
3 Photonic Band Gap
%’ 0.4 [ - [31] 13 0.186
5 o R g . [36] 11.4 (0.7 0.1158 (0.1632
g PRI B ‘\.\ [37] 12.25 0.0872 0.182
v o2k 4 M e N [38] 114 (~0.45) 0.0762 £0.1693)
Z \'-\7 [39] 12.96 0.090 0.171
o % e N [40] 11.4 >0.9 0.0967 <0.1074
- E polarization -
. 7 X\ >0.8 0.0849 <0.1061

I

M

K

FIG. 4. Band structures by 25&56 grid for the hexagonal

where MGV denotes the well-known multigriV-cycle
lattice in Fig. 1 €/e¢=13, r/a=0.155, andd/a=0.035).

solver in numerical linear algebf&4,35.

Next, we proposéwo ideasto accelerate the convergence i T(;]e wh?Ie |(3ea ?cf proposm? an "’;}V‘ifs‘? mt()ethgd vtwth tmul—
of matrix inversion in the algorithm. plain ideais to embed Ignd acceleration for computing photonic band structures

a multigrid solver in the inverse iteration loop, namely, mul- @S now become clear. First of all, the interface interpola-
tigrid takes place of the expensive LUD.good ideais to ~ tOns (3) and (4) are used to take care of strong dielectric
embed inverse iteration in the multigrid acceleration struccontrasts. Second, the deflation in the algorithm of inverse
ture. In this idea, the Rayleigh quotient is updated at eackeration enables singling out the eigenvalues one by one
grid level, which results in a more efficient algorithm. The from the smallest even when they may be degenerated.
basic idea of multigrid metho[B4,35 is to solve the matrix Third, interlacing the inverse iteration and multigrid accel-
problem by approximating the solution on a fine grid, solv-eration makes the whole method an amazingly fast algorithm
ing the residue on a coarse grid, and then improving thdéor computing photonic band structures, as demonstrated be-
solution on the fine grid. Successively applying this idea orlow.
each level of grids causes relaxation of errors on different
resolution, and hence accelerates the convergence.

Let there bel levels of grids. On each grid leveh, the
differential operator is discretized to form the matAX™. As an example of test, we compute the first six frequency
The multilevel algorithm based on the good idea is as folbands at the poinX of a square array of dielectric columns
lows: with radius r/a=0.45 and dielectric contrasé/ey=13.

FMGInverse { Table | shows a comparison of computing times in central

Call InverseEigenat m=1 processing unitCPU) seconds between the present method
form=2tolL (FMGI) and plain plane wave expansi¢RWE). The com-

III. RESULTS AND DISCUSSION

forn=110S (M=1) ¢ () parison is made by averaging the computing times over 68
Idnterpolateqn tob wave numbers. Both computations are performed on a PC
0

Solve AM — x)x(M=b(M py MGV ]
Deflatex(™ by q{™ to q{™,

B E polarization _|
Setb(M= X(m)/”X m)” 09 [ H polarization
Rayleigh QuotA ™= (b(M A(Mp(m) 08 [ ] Full band gap -
until [|(AM —\M)b(M||,< e 5 07 i
Setq{™=b(m 5
n S 06 -
end B
end} > 05 -
[ =
TABLE II. Convergence test for maximum band gap against the % 04 7
grid size. L 03 .
02 4
Ngrid 64° 128 256 512 1024
01} .
aw,/2mc 04917 04940 0.4940 0.4941  0.4940 . 0 , , ,
awow/2mC 0.3946 0.3876 0.3873 0.3873  0.3873 g a Ra diﬂ'i (t/a) 04 g3 e
awmigl2mC 0.4431 0.4408 0.4407 0.4407 0.4407
aAw/2mc 0.0971 0.1064 0.1067 0.1068 0.1067 FIG. 5. Amap of band gaps by 128128 grid for the hexagonal
Awlwmig 0.2191 0.2413 0.2421 0.2423 0.2421 lattice in Fig. 1 by varying radius/a of circular columns. The
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0.9 [l E polarization |
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FIG. 6. A map of band gaps by 12828 grid for the hexagonal FIG. 8. A three-dimensional terrain of the major full band gaps
lattice in Fig. 1 by varying widthd/a of connecting rods. The for O=<r/a<0.3 and G=d/a=<0.2.
dielectric contrast/eq is 13 with fixedr/a=0.155. . . .
merics of the location of the maximum full band gap for
Pentium 4. The computing time for the present method is oflifferent grids forN=128x128. In this paper, most of the
a good ordeN =Ny, and tends to be superlinear at large computations are performed with the gh=128x128. All
N. The p|ane wave expansion, on the Contrary, has the Corﬁhe Computed reSU|tS CO|nC|de W|th eaCh Other to three S|g'
putational cost of about the ord&?83 Figure 3 shows a Nificant digits. Table Il has a list of references that reported
comparison of PWE, the plain idea and the good idea oftumerics of large band gaps. It is found that for GaAs air
implementing inverse iteration with multigrid acceleration. (¢/g0=11.4) the presen w/wnig=0.1972 is the largest,
The good-idea algorithm is roughly four times faster than thevhile for silicon air the presenf w/wpiq=0.2421 isnot
plain-idea algorithm, and even better at largierNeverthe-  0only the largesbut 30% larger than reported in R¢B1].
less, both of them are faster than PWE by almost two orders Figure 5 is a gap map versusa (with fixed d/a
in Ngig - =0.035). This map is obtained by computing the band struc-
The fast algorithm developed above enables efficientures at every 0.0025 of/a. Figure 6 is a gap map versus
search for the optimal geometry of the photonic crystals ird/a (with fixed r/a=0.155). This gap map is obtained by
Fig. 1. The largest gap-midgap ratio for silicon ai/§, computing the band structures at every 0.002%l/@. The
=13) corresponds to/a=0.155 andd/a=0.035. Figure 4 two maps show clearly the location of the full band gap with
shows the detailed band structure at these ratios. It is inteflaximum gap-midgap ratio. In particular, by increasiig
esting to notice that the full band gap is almost #irmulta-  from 0.035, the full band gap is gradually embedded into a
neousmaximum band gap of both andH polarizations. In large band gap dfi polarization. By varying/a near 0.155,
order to ensure the accuracy of the band gap, computatioribe band gaps d& polarization and oH polarization have a
are performed on five different grids. Table Il lists the nu-good overlap with each other. It is noted that addition of a
smaller column in the center of the unit cell of a square/
T T T honeycomb lattice for symmetry reduction can increase the
M E polarization | full band gap[40]. However, the present study does not find
E;‘umz';a;‘:; further increase of the full band gap by inserting a circular
column, no matter what its radius is, in the center of the
. photonic structure of Fig. 1. Figure 7 shows the gap map. As
4 ri/a (ri: the radius of the inserted columimcrease from O,
the full band gap shrinks gradually in size due to the de-
™ crease of the band gap Ehpolarization. Figure 8 is the result
. of all elaboration plotted in a three-dimensional band-gap
4 diagram. It gives an overall outlook of the major full band
gap, and shows the most sensitive direction to geometric
parameters. This plot is composed of as many band gaps as

1 T T

Frequency (wa/2nc)

01 . computed for 61 values ofa and 41 values ofl/a, each for
0 L L ! ! L E andH polarizations. There are totally 60 024 eigenvalues
0 0.1 0.2 0.3 0 0.5 0.6
Radius (r/a) computed.

FIG. 7. Amap of band gaps by 128128 grid for the hexagonal IV. CONCLUDING REMARKS
lattice in Fig. 1 by varying radius; /a of the inserted center col- ] )
umns. The dielectric contrast e is 13 with fixedr/a=0.155 and In conclusion, we have developed two fast inverse meth-
d/a=0.035. ods with multigrid acceleration for computing photonic band
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structures in two dimensions. The fast algorithms are capablprinciple, they can be extended to problems in three dimen-
of resolving multieigenvalue band structures, and applicablgions. Three-dimensional problems are, however, more chal-
to photonic crystals with interfaces of strong contrast. In par{fenging by presenting themselves as eigenproblems of vector
ticular, the good idea algorithm is even faster than the plan@perators. One such extension is currently being under inten-

idea algorithm. The methods enable us to explore photonigjve investigation, and the results will be reported elsewhere.
band structures with two or more geometric parameters sys-

tematically. In addition, we propose a photonic structure that
has significantly larger full band gaps compared to those ever
reported in the literature. The study has illustrated that opti-
mal design of photonic structures can benefit greatly from This work was supported in part by the National Science
physical principle, aided by fast computation. Presently, theCouncil of the Republic of China under Contract No. NSC
methods are applied to two-dimensional photonic crystals. 190-2212-E-002-238.
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