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Directed geometrical worm algorithm applied to the quantum rotor model
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We discuss the implementation of a directed geometrical worm algorithm for the study of quantum link-
current models. In this algorithm the Monte Carlo updates are made through the biased reptation of a worm
through the lattice. A directed algorithm is an algorithm where, during the construction of the worm, the
probability for erasing the immediately preceding part of the worm, when adding a new part, is minimal. We
introduce a simple numerical procedure for minimizing this probability. The procedure only depends on
appropriately defined local probabilities and should be generally applicable. Furthermore, we show how cor-
relation functionsC(r ,t) can be straightforwardly obtained from the probability of a worm to reach a site (r ,t)
away from its starting point independent of whether or not a directed version of the algorithm is used. Detailed
analytical proofs of the validity of the Monte Carlo algorithms are presented for both the directed and undi-
rected geometrical worm algorithms. Results for autocorrelation times and Green’s functions are presented for
the quantum rotor model.
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I. INTRODUCTION

Improving and developing new numerical algorithms li
at the heart of computational physics. Among others,
Monte Carlo~MC! methods are often seen as the best cho
for the study of phase transitions taking place in classica
quantum models. For the study of spin models, for exam
cluster algorithms, either in the classical@1,2# or quantum
@3–5# case, perform nonlocal moves in phase space, allow
for the treatment of systems much larger than with traditio
local update methods~single spin-flip algorithms!. These
types of algorithms have almost completely solved the pr
lem of critical slowing down arising near phase transition

The class of systems for which cluster methods are kno
to exist is limited, and it is, therefore, of great interest
search for new algorithms possessing the same efficient
tures for other models. In this context, we have propo
recently a nonlocal ‘‘worm’’ algorithm for the study of quan
tum link-current models@6#. These models arise from
phase approximation of bosonic Hubbard models, but
also relevant in the context of quantum electrodynamics@7#.
Previous MC simulations of the quantum link-current~quan-
tum rotor! model used a local algorithm suffering from crit
cal slowing down. In the new algorithm@6# updates are mad
by reptating a ‘‘worm’’ through the lattice@5,8#. Since the
movement of the worm only depends on a few probabilit
determined locally with respect to the current position of
‘‘head’’ of the worm, we call this type of algorithm a geo
metrical worm algorithm as opposed to other recently dev
oped worm algorithms based on high-temperature series
pansions@8#. The geometrical worm algorithm gives rise
very small autocorrelation times and by directing the alg
rithm these autocorrelation times can be even further
duced.

*Electronic address: alet@phys.ethz.ch
1063-651X/2003/68~2!/026702~11!/$20.00 68 0267
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In this paper, we briefly recall the principles of the ge
metrical worm algorithm@6#. During the construction of a
worm a new part is added to the worm by moving the wo
through one of thes nearest-neighbor links. Usually the a
sociateds probabilitiesps are chosen in an unbiased ge
metrical way and there is, therefore, a significant probabi
that the new part of the worm will backtrack in its own pat
thereby erasing the immediately preceding part. In ma
cases this backtracking~or bounce! probability is the domi-
nant probability among thes probabilities and using thes
unbiased probabilities is, therefore, clearly rather waste
Here we describe an improvement of this geometric wo
algorithm, which we call the directed worm algorithm, as
reference to recently developed directed loop methods for
quantum Monte Carlo~QMC! simulations of spin system
@9#. This directed geometrical worm algorithm is identical
its undirected counterpart except for the fact that the pr
abilities ps are now chosen in a biased way, using know
edge of the immediately preceding step in the construction
the worm. These biased probabilities can all be tabulate
the start of the simulation and the additional computatio
effort stems solely from the significantly wider distributio
of the directed worms. The directed algorithm gives rise
even better results, as will be shown in the following part
this paper, where we present results on autocorrelation ti
for both directed and ‘‘undirected’’ worm algorithms. Th
procedure for choosing the ‘‘biased’’ probabilities leading
the directed algorithm is quite general and should be ap
cable to other algorithms that depend on local probabiliti
Furthermore, we show how Green’s functionsC(r ,t) of the
original quantum model can be measured efficiently dur
the construction of the worm by calculating the probabil
that the worm reaches a given site (r ,t) away from its start-
ing point, independent of whether a directed or undirec
algorithm is used. For both the derivation of the direct
algorithm and the measurements of correlation functio
©2003 The American Physical Society02-1
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F. ALET AND E. S. SO”RENSEN PHYSICAL REVIEW E68, 026702 ~2003!
analytical proofs of the validity of the algorithms are pr
sented.

The outline of the paper is as follows. In the followin
section, we present the quantum rotor model and introd
some useful notation. Then, a brief description of the ‘‘un
rected’’ worm algorithm is given in Sec. III A, before pro
ceeding to the main contents of this paper, a description
the directed geometrical worm algorithm~Sec. III B!. A
simple procedure for numerically determining the bias
probabilities for the worm moves is presented. In additi
we derive a proof of detailed balance for the directed wo
algorithm. In order to compare our algorithms to relat
ones, we present in Sec. III C another recent approach du
Prokof’ev and Svistunov@8#, originally based on high-
temperature series expansion for classical statistical mod
which we therefore will refer to as ‘‘classical worms
throughout this paper. In Sec. IV, we estimate the efficien
of the three algorithms by calculating autocorrelation tim
We then discuss the measurements of correlation funct
within the worm algorithm in Sec. V and show some resu
at a specific point of the phase diagram. We conclude wi
discussion of the features of the directed algorithm.

II. THE MODEL

Many magnetic systems, Josephson Junction arrays
several other systems can be described by a quantum
model @10#:

Hqr5
U

2 (
r

S 1

i

]

]u r
D 2

1 i(
r

m r

]

]u r
2t (

^r ,r8&

cos~u r2u r8!.

~1!

Here,u r is the phase of the quantum rotor,t is the renormal-
ized coupling strength, andm r is an effective chemical po
tential. If m[0, it can be shown that this model displays t
same critical behavior as the (D11)-dimensionalXY model.
However, whenm rÞ0, this model is not amenable to dire
numerical treatment in this representation due to the res
ing imaginary term. It is, therefore, very noteworthy that
equivalentcompletely realrepresentation in terms of link
currents exists even for nonzerom r . This link-current~Vil-
lain! representation is a classical~211!D equivalent Hamil-
tonian, which is usually written in the following manne
@11#:

H5
1

K (
(r ,t)

F1

2
J(r ,t)

2 2m rJ(r ,t)
t G . ~2!

The sum is taken over all divergenceless current config
tions “•J50. The degrees of freedom are ‘‘currents’’J
5(Jx,Jy,Jt) living on the links of the lattice. These link
variablesJx,Jy,Jt50,61,62,63 . . . are integers.K is the
effective temperature, varying liket/U in the quantum rotor
model. We refer to Ref.@11# for a precise derivation of this
model and for a description of its physical implications.

Another incentive for studying the critical behavior of th
quantum rotor model comes from the close relation betw
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this model and bosonic systems. Bosonic systems w
strong correlations are often described in terms of the~dis-

ordered! boson Hubbard model:HbH5( r@(U/2)n̂r
22m rn̂r#

2t0(^r ,r8&(F̂ r
†F̂ r81c.c). The correlations are here describ

by U, the on-site repulsion. The hopping strength is given
t0 andm r the chemical potential varying uniformly in spac

betweenm6D. n̂r5F̂ r
†F̂ r is the number operator. If we se

F̂ r[uF̂ ruei ûr and integrate out amplitude fluctuations, it ca
be shown thatHbH is equivalent to the quantum rotor mod
@11#. For systems where amplitude fluctuations can be
glected at the critical point, such as granular superconduc
and Josephson junctions arrays, the quantum rotor m
should, therefore, correctly describe the underlying quan
critical phenomena.

In the following we only discuss the quantum rotor mod
in d52 dimensions corresponding to the (d11)-
dimensional link-current model. In general, a nonzerom will
introduce separate dynamics for the time and space di
tions from which a dynamical critical exponentz can be de-
fined. If the divergence of the spatial correlation length clo
to criticality is characterized by the exponentn, z is defined
by requiring that the correlation length in the time directi
diverges with the exponentzn. For what will be discussed
herem50 andz51.

III. ALGORITHMS

A. The geometrical „undirected… worm algorithm

The quantum rotor model has been extensively studie
the link-current representation using the conventional Mo
Carlo technique using local updates@11–15#.

The conventional Monte Carlo updates on model~2! con-
sists of updating simultaneously four link variables,
shown in the left part of Fig. 1 (A). To ensure ergodicity, one
also has to use global moves, updating a whole line of l
variables (B in Fig. 1!. The acceptance ratio for these glob
moves becomes exponentially small with the system size
large systems. Many interesting quantities such as the s

FIG. 1. The Monte Carlo moves in the model. To ensure
divergenceless condition, only closed moves can be performed
the left part of the figures, previous Monte Carlo updates with
local algorithm are depicted. In the right part is given an example
a move with the worm algorithm starting from an initial random s
~black dot!.
2-2
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DIRECTED GEOMETRICAL WORM ALGORITHM APPLIED . . . PHYSICAL REVIEW E68, 026702 ~2003!
ness, necessary for the determination of the critical po
and current-current correlations, necessary for the calcula
of transport properties such as the resistivity and the c
pressibility, areonly nonzero when these global moves a
successful. An effective Monte Carlo sampling of these g
bal moves is, therefore, imperative and it is easy to und
stand that the performance of the local algorithm is rat
poor, especially near a phase transition: critical slow
down in the Monte Carlo simulations prohibits the study
large system sizes.

In order to be able to correctly describe the directed g
metrical worm algorithm, we have to review the geometri
worm-cluster algorithm introduced in Ref.@6# in some detail.
This algorithm allows for nonlocal moves as those depic
on the right part of Fig. 1 (C). The performances of this
algorithm have been reported in the previous work@6#. This
algorithm is closely related to other cluster algorithms@1–3#
and especially to ‘‘worm’’ algorithms@5,4,8#, from which we
have borrowed the name. We stress that this algorithm
different from the ‘‘classical’’ worm algorithm presented
Ref. @8# in the sense that it is geometrical: link variables a
not ‘‘flipped’’ with a thermodynamic probability, instead,
new part of the worm is added by selecting a direction
cording tos locally determined probabilitiesps . Since these
probabilities only depend on the local environment, we c
them ‘‘geometrical’’ probabilities. Secondly, even though th
local probabilitiesps do depend on the effective temperatu
K, we always have(sps51 ~per definition! and the only
effect of the temperature is, therefore, to preferentially mo
the worm in one direction as opposed to another one
some sense this is very similar to theN-fold way @16# as well
as to the Rosenbluth scheme@16# of performing the Monte
Carlo simulations.

We now describe the contents of the geometrical al
rithm: we update the configurations by moving a ‘‘worm
through the lattice of links—the links through which th
worm pass are updatedduring its construction. The configu
rations generated during the construction~‘‘reptation’’ ! of the
worm are not valid~the vanishing of the divergence ofJ is
not fulfilled! but at the end of its path, when the worm form
a closed loop, this condition is verified and the final config
ration is valid.

We first define a convention for the orientation of t
lattice. Around each site with coordinates@r5(x,y),t#,
there are six links on which the integer currentsJ(r ,t)

s are
defined with s5x,y,t,2x,2y,2t. The change inJ(r ,t)

s

that the worm will perform during its course depends
whethers is an incoming or outgoing link: here our conve
tion is to consider positivex,y,t as outgoing directions an
2x,2y,2t as incoming~see left lower part of Fig. 1!.

If the worm is leaving the site (r ,t) passing through an
outgoing links5x,y,t, then

J(r ,t)
s →J(r ,t)

s 11. ~3!

If it is leaving through an incoming links52x,2y,2t, we
have

J(r ,t)
s →J(r ,t)

s 21. ~4!
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Graphically, the convention means that the update inJ(r ,t)
s

is 11 (21) if the worm goes in the same~opposite! direc-
tion as the arrows denoted in the left lower part of Fig. 1

The construction~‘‘reptation’’ ! of the worm can be de-
scribed by the following way: First, we start the worm at
random siteN15(r1 ,t1) of the lattice~black dot in Fig. 1!.
From this site, the worm has the possibility to go to one of
six neighboring sites. To choose which direction to take
weight As is calculated for the six directionss56x,6y,
6t. For As, we use a Metropolis-like weight:

As5min$1,exp@2~Es82Es!/K#%, ~5!

whereEs5 1
2 (Js)22mJsds,t is the local energy carried by

the link s and Es85 1
2 (Js61)22m(Js61)ds,t is the local

energy on the links if the worm passes through this link.
The plus or minus sign depends on the incoming or outco
ing nature of the link~see above!. Please note that there ar
other possible choices forAs @17#.

Once theAs’s are calculated, one computes the probab
ties ps by normalizing the weightsAs :

ps5
As

N
, ~6!

whereN5(sAs is the normalization. A random number un
formly distributed in @0,1# is generated and a directions
chosen according to Eq.~6!. Once a direction is chosen, th
corresponding link variableJs is updated by61 and the
worm moved to the next lattice site in this direction.

From there, we apply the same procedure to choose
other site, modify the link variable, and move the worm un
the worm eventually reaches its starting point and form
closed loop. This is then the end of this nonlocal move.

To satisfy the detailed balance condition, this worm mo
must either be accepted or rejected. To check this, one ha
store the initial and final normalizationsNs1

i andNs1

f @calcu-

lated as in Eq.~6!# of the weights at the sites15(r1 ,t1). Ns1

i

is the initial normalizationbefore the worm is inserted and
Ns1

f is the final normalizationafter the worm reaches the

initial point. The worm move is then accepted with probab
ity Ns1

i /Ns1

f . If the move is rejected, we have to cancel

changes of the link-currents made during the construction
the worm. During a typical simulation the rejection probab
ity is usually very small.

As already mentioned, the link configurations genera
during the worm move do not satisfy the divergenceless c
straint, but it is easy to see that the final configuration do
It is important to note that the worm may pass many tim
though the same link and that at each step, it can bou
back ~back track! to the previous lattice site in its path.

A proof of detailed balance for this algorithm is obtaine
by considering the moves of the worm and of an antiwor
going exactly in the opposite direction@6#. This worm algo-
rithm satisfies ergodicity since the worm can make lo
loops and line moves as in the local algorithm, which
ergodic.
2-3
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All in all, the geometrical undirected worm algorithm ca
be summarized by using the following pseudoalgorithm.

~1! Choose a random initial sites15(r1 ,t1) in the space-
time lattice.

~2! For each of the directionss56x,6y,6t, calculate
the weightsAsi

s with Asi

s 5min@1,exp(2DEsi

s/K)#, DEsi

s 5Esi
8s

2Esi

s .

~3! Calculate the normalizationNsi
5(sAsi

s and the asso-

ciated probabilitiespsi

s 5Asi

s /Nsi
.

~4! According to the probabilitiespsi

s , choose a direc-

tion s.
~5! Update Jsi

s for the direction chosen and move th

worm to the new lattice sitesi 11.
~6! If siÞs1, go to ~2!.

~7! Calculate the normalizationsN̄s1
andNs1

of the initial

site s1, with and without the worm present. Erase the wo

with probability Pe512min(1,Ns1
/N̄s1

).

B. The directed geometrical worm algorithm

The above algorithm for geometrical worms is not op
mal since the worm quite often will choose to erase itself
returning to the previous site. While it is, in general, n
possible to always set this backtracking~or bounce! prob-
ability to 0, it is quite straightforward to choose the pro
abilities psi

s such that the bounce or backtracking probabil

will be eliminated in almost all cases and, in general, will
as small as possible. The procedure for doing this amoun
solving a simple linear programming optimizing problem.
we consider models with disorder, this has to be done at e
site, but the correctly optimized~biased! probabilitiespsi

s can

still be tabulated at the start of the calculation.
In order to see how we can minimize the backtrack

probability, let us define the 636 matrix Psi
of probabilities

where the elementPsi

kl of the matrix Psi
is given by the

conditional probabilitypsi
(skus l) for going in the direction

sk at the sitesi if the worm is coming from the directions l .
The backtracking probabilities at the sitesi now correspond
to thediagonalelements of the matrixPsi

. For the algorithm

described in the preceding section,psi
(skus l) was simply

chosen asAsi

sk/Nsi
independent ofs l . Thus, all the columns

of Psi
were the same andPsi

had, in general, rather larg
diagonal elements. However, as we shall see below, the
trix Psi

only needs to satisfy the following two conditions
order to define a working geometrical worm algorithm
These conditions are

(
k

psi
~skus l !51 ~7!

~probability!,
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Psi

kl

Psi

lk
[

psi
~skus l !

psi
~s l usk!

5
Asi

sk

Asi

s l
~8!

~detailed balance!.
These conditions are not very restrictive and will in mo

cases allow us to define a matrixPsi
with all the diagonal

elements~backtracking probabilities! equal to 0. The conven
tional geometrical worm algorithm, discussed in the prec
ing section, corresponds toPsi

kl5Asi

sk/Nsi
.

If we define a functionf as the sum of the diagonal ele
ments ofPsi

, f 5(kPsi

kk , we can reformulate the search for

matrix Psi
with minimal diagonal elements as a standa

linear programming problem. WritingPsi

kk512( lÞkPsi

kl we

should minimizef subject to the constraints( lÞkPsi

kl<1 ;k.

The minimum can be found using standard techniques
linear programming@18# and corresponds in almost all cas
to f 50. The matrixPsi

depends on the value of all the s

link currentsJsi

s . During the construction of the worm onl

sites whereJsi

2x1Jsi

2y1Jsi

2t2Jsi

x 2Jsi

y 2Jsi

t 51, siÞs1 occur.

Since, in general,uJsi

s u will almost never exceed a certai

value Jmax, it is easy to construct a lookup table for th
matricesPsi

at the beginning of the simulation and only ca

culate Psi
($Jsi

s%) during the simulation if for somes uJsi

s u
.Jmax.

This idea of minimizing the bounce processes is also
the heart of the quantum Monte Carlo directed loop meth
@9#. The previous restrictions on the matrixP and the way to
solve them numerically are indeed very general, and con
tute a simple framework for how one can construct a direc
algorithm out of a ‘‘standard’’ nonlocal loop, worm or cluste
algorithm.

We can now define adirected geometrical worm algo-
rithm with minimal backtracking probability. Using a
pseudocode notation, we have the following.

~1! Choose a random initial sites15(r1 ,t1) in the space-
time lattice.

~2! If i 51, then for each of the directionss56x,6y,
6t, calculate the weightsAsi

s with Asi

s 5min@1,exp

(2DEsi

s/K)#, DEsi

s 5Esi
8s2Esi

s . Calculate the normalization

Nsi
5(sAsi

s and the associated probabilitiespsi

s 5Asi

s /Nsi
.

Else: According to the incoming directions l , setpsi

s equal

to the l th column ofPsi
.

~3! According to the probabilitiespsi

s , choose a direc-

tion s.
~4! Update Jsi

s for the direction chosen and move th

worm to the new lattice sitesi 11.
~5! If siÞs1, go to ~2!.
~6! Calculate the normalizationsN̄s1

, of site s1 with the

worm present, andNs1
, without the worm. Erase the worm

with probability Pe512min(1,Ns1
/N̄s1

).
Now we turn to the proof of detailed balance for the d
2-4
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rected algorithm. Let us consider the case where the worw
visits the sites$s1 , . . . ,sN% wheres1 is the initial site. The
worm then goes through the corresponding link variab
$ l 1 , . . . ,l N%, with l i connectingsi andsi 11. Note thatsN is
the last site visited before the worm reachess1. Hence,sN
ands1 are connected by the linkl N . The total probability for
constructing the wormw is then given by

Pw5Ps1
~12Pw

e !
As1

s

Ns1

)
i 52

N

psi
~si 11usi 21!. ~9!

The indexs denotes the direction needed to go froms1 to
s2 , Ps1

is the probability for choosing sites1 as the starting

point, andPw
e is the probability for erasing the wormw after

construction.psi
(si 11usi 21) is the conditional probability for

continuing to sitesi 11, at sitesi , given that the worm is
coming from si 21. If the worm w has been accepted, w
have to consider the probability for reversing the move. T
is, we consider the probability for constructing an antiwo
w̄ annihilating the wormw. We have

Pw̄5Ps̄1
~12Pw̄

e
!
Ās1

s̄

N̄s̄1

)
i 5N

2

psi
~si 21usi 11!. ~10!

Here, the indexs denotes the direction needed to go froms1
to sN . Note that, in this case, the sites are visited in
opposite order,s1 ,sN , . . . ,s2. From Eq. ~8! we have that
psi

(si 11usi 21)/psi
(si 21usi 11)5Asi

sk/Āsi

s l. Since

Asi

s /Āsi

s 5exp~2DEsi

s /K !, i 51, . . . ,N, ~11!

and sincePs1
5Ps̄1

, we find

Pw

Pw̄

5
12Pw

e

12Pw̄
e

N̄s̄1

Ns1

exp~2DETot /K !, ~12!

whereDETot is the total energy difference between a config
ration with and without the wormw present. With our defi-
nition of Pe we see that @12Pe(w)#/@12Pe(w̄)#

5Ns1
/N̄s1

, and it follows that

Pw

Pw̄

5exp~2DETot /K !. ~13!

For a worm of lengthN there areN starting sites that will
yield the same final configuration. The above proof sho
that for each of the starting sites there exists an antiwormw̄,
such thatPw5exp(2DETot /K)Pw̄ . Hence, if we denote by
m the configuration without the worm andn the configura-
tion with the worm and furthermore letPw(si) denote the
probability of building the wormw starting from sitesi , we
see that
02670
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P~m→n!

P~n→m!
5

(
i

N

Pw~si !

(
i

N

Pw̄~si !

5

(
i

N

Pw̄~si !

(
i

N

Pw̄~si !

exp~2DETot /K !

5exp~2DETot /K !. ~14!

Ergodicity is proved the same way as for the undirected
gorithm as the worm can perform local loops and wi
around the lattice in any direction, as in the conventio
algorithm.

C. The classical worm algorithm

Prokof’ev and Svistunov@8# have proposed a very elega
way of performing the Monte Carlo simulations on the hig
temperature expansion of classical statistical mechan
models using worm algorithms. In order to distinguish b
tween the algorithms we call this algorithm the classi
worm algorithm. In a recent study@19# these authors have
performed simulations on the quantum rotor model in
link-current representation, Eq.~2!. Due to the divergence
less constraint, the classical worm algorithm is in this ca
quite close to the geometrical worm algorithm proposed p
viously in Ref. @6# and not directly related to the high
temperature expansion of this model. Recasting their a
rithm in the same framework used above we outline o
understanding of their algorithm below for comparison.

~1! Choose a random initial sites15(r1 ,t1) in the space-
time lattice.

~2! For each of the directionss56x,6y,6t, calculate
the probabilitiesAsi

s with Asi

s 5min@1,exp(2DEsi

s/K)#, DEsi

s

5Esi
8s2Esi

s .

~3! With uniform probability choose a directions.
~4! With probability Asi

s accept to go in the directions,

and with probability 12Asi

s go to ~3!.

~5! Update Jsi

s for the direction chosen and move th

worm to the new lattice sitesi 11.
~6! If siÞs1, go to ~2!.
~7! If si5s1, go to~1! with probabilityp0 and to~3! with

probability 12p0 @p0P(0,1) and usuallyp051/2]. We use
p051/2 in the following.

One advantage of this algorithm is its simplicity and t
fact that a constructed worm is always accepted; on the o
hand, this algorithm is not directed and steps~3! and ~4!
above are quite wasteful since in many cases the worm is
moved. This is avoided in the geometrical worm algorithm
the price of occasionally having to reject a complete wor
The geometrical worm algorithm, as described in the prec
ing sections, should be straightforwardly applicable to
high-temperature expansion, as it was done in Ref.@8#, using
the classical worm algorithm. We expect that this would e
hance the efficiency of the Monte Carlo sampling.

IV. PERFORMANCE OF THE ALGORITHMS

Here we present results on autocorrelation times obtai
with both directed and undirected algorithms. For the sake
2-5



lts
v

s

e

iz

f

ur
i-

t

ri-
o
k

ry

tu
e

ff-
d

o-
di-
au-

a
re

ing
ed

s,

the
to-

uld

by

la-
s
al
ms
this

. 3
hat
rly

rlo

e

F. ALET AND E. S. SO”RENSEN PHYSICAL REVIEW E68, 026702 ~2003!
brevity, we restrict ourselves to the casem50, where the
critical point is known with high precision, and where resu
on autocorrelations for the undirected worm algorithm ha
already been published@6#. All the results presented in thi
section correspond to run on cubic lattices of 107–108 Monte
Carlo worms for a value ofK50.333, extremely close to th
critical point @estimated asKc50.33305(5) in Ref.@6##. In
principle, simulations should be performed on lattices of s
L3L3Lt , but here since the dynamical exponentz51 at
m50, we can setLt5L. We focus here on calculations o
the energyE5^H& and the stiffnessr defined as

r5
1

L3 K S (
r ,t

Jr ,t
x D 2L , ~15!

whereL is the linear size of the lattice.
For the simulations with directed worms, we restrict o

selves touJu<3 for the tabulation of probabilities. Probabil
ties involving higher values ofuJu were calculated during the
construction of the worm. Such configurations were found
be exceedingly rare.

For the case at hand, only 1% of the ‘‘scattering’’ mat
cesPsi

contained diagonal elements corresponding to a n
zero back-tracking probability. Moreover, these bac
tracking ~bounce! processes were found to occur for ve
unlikely configurations. The acceptance rate 12Pe is very
high for both algorithms atKc ~around 98% for undirected
worms and 97% for directed worms for all lattice sizes!. For
the classical worms, all worms are accepted due to the na
of the algorithm. However, we found that many propos
attempts at changing one link were refused~more than 60%
in our simulations!.

In Fig. 2, we present the autocorrelation function of sti
ness for a lattice sizeL556, for directed, undirected, an
classical worms. The autocorrelation functionCO(t) of an
observableO is defined in the standard way:

FIG. 2. Autocorrelation function of stiffness vs the Monte Ca
time ~defined by one worm construction, see text! for L556 at K
50.333 for directed~circle!, undirected~dotted line!, and classical
~solid line! algorithms.
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CO~ t !5
^O~ t !O~0!&2^O&2

^O 2&2^O&2
, ~16!

where^•••& denotes statistical average andt is the MC time,
measured in the number of constructed worms~accepted or
not!. We clearly see in Fig. 2 that the directed worm alg
rithm is more efficient at decorrelating the data than un
rected and classical worms, the latter having the longest
tocorrelation times.

Now we define the autocorrelation timetO of an observ-
ableO. In Ref. @6#, tO was defined as the greater time of
double-exponential fit of the autocorrelation function. He
we use a much simpler definition, independent of any fitt
procedure:tO is defined as the time where the normaliz
autocorrelation function decrease below a thresholdtO . We
can use different thresholds for different observablesO.
Since for small lattices and especially for directed worm
autocorrelation times are small, and sinceCO(t) is known
only for discrete values oft, tO is determined by a simple
linear interpolation between the two times surrounding
threshold. It is important to note that the values of the au
correlation time depends on the thresholdtO , but the depen-
dence on lattice size of these autocorrelation times sho
not change as long astO is small enough. Error bars ontO
have been estimated by slightly changing the threshold,
an amount in between 2% and 5% in this work.

Using the above-mentioned determination of autocorre
tion times, we extract autocorrelation times of the stiffnesr
and the energyE for directed, undirected, and classic
worms. The threshold was set the same for all algorith
when comparing the same quantity: we used through
work tr50.02 for the stiffness andtE50.05 for the energy.
Scaling of these times with the lattice size is shown in Fig
for stiffness and in Fig. 4 for energy. It can be seen t
although autocorrelation times grow approximately linea

FIG. 3. Autocorrelation times of the stiffnessr for directed,
undirected, and classical algorithms vs lattice sizeL. Shown are the
raw autocorrelation times,beforerescaling to take into account th
computational effort expended.
2-6
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DIRECTED GEOMETRICAL WORM ALGORITHM APPLIED . . . PHYSICAL REVIEW E68, 026702 ~2003!
with lattice size for all algorithms, the slope is significant
smaller for the directed worm algorithm.

It is clear from these results that the directed algorit
significantly reduces the autocorrelation times. However,
average size of the directed worms could be larger,
hence on average consume more computational time. Fo
algorithms the computational effort is linearly proportion
to the length of the worm. To make an honest comparis
we therefore have to multiply the autocorrelation times
the number of attempted changes per link, which we de
as ^w&/(3L3), where^w& is the mean worm size~the mean
number of links the worm has attempted to visit!, L is the
lattice size preceded by an irrelevant factor indicating t
there are three links per site. For the classical worms,
mean worm sizêw& is defined as thetotal number of pro-
posed attempts~step 4 in the pseudocode presentation in S
III C !. In order to make an unbiased comparison of the th
algorithms, it is here necessary to include the updates refu
during the construction of the classical worms in the defi
tion of ^w&.

As mentioned, the computational effort~the CPU time! is
linear in ^w& for all algorithms. An equivalent rescaling wa
used in Ref.@6# in order to make a fair comparison with th
local algorithm. Figure 5 shows the mean worm size^w&
~divided by 3L3) for the three algorithms versus lattice siz
corresponding to the average fraction of the total numbe
links occupied by the worm. In both cases, we see that
fraction decreases withL. We also note that the classic
worms are longer than that in the other proposed algorith
which will result in larger autocorrelation times. Directe
and undirected worms are almost of the same size, with v
slightly larger directed worms. The corresponding effect
the value of rescaled effort~presented in the following para
graph! will be small when comparing autocorrelation tim
for those algorithms; however, we wish to keep it present
a more fair analysis.

Having discussed the behavior of^w& we now take into

FIG. 4. Autocorrelation times of energyE for the three algo-
rithms vs lattice sizeL. Shown are the raw autocorrelation time
before rescaling to take into account the corresponding comp
tional effort expended.
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account the computational effort used to construct the wo
by rescaling the autocorrelation times by^w&/(3L3). We
show in Fig. 6 the rescaled autocorrelation times for the th
algorithms. We find that the autocorrelation times per li
stay reasonably small for all algorithms, but the directed
gorithm clearly gives better results, with autocorrelati
times smaller by a factor around 4~1.5–1.7! for the stiffness
~energy! with respect to the undirected algorithm, and a fa
tor around 10~4! with respect to the classical worm for th
largest sizes. The fact that both algorithms are more effic
at decorrelating the stiffness than the energy seems to i
cate that the worms couple more effectively to ‘‘windin
modes,’’ from which the stiffness is uniquely determine
than to simple local modes that determine the energy. W
the same argument, we can see that directed worms are
efficient at updating winding modes than undirected or cl
sical worms.

-

FIG. 5. Mean sizê w& divided by 3L3 vs lattice sizeL for
directed, undirected, and classical worms.

FIG. 6. Autocorrelation times of stiffnessr and energyE for the
three presented algorithms vs lattice sizeL. These autocorrelation
times arerescaledautocorrelation times where the computation
effort is taken into account.
2-7
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The actual distribution of the size of the worms generat
P(w), is also of interest. In Fig. 7 we show results for t
probability density,P(w) for generating a worm occupying
fraction of w/3L3 of the lattice, as a function ofw/3L3 for
the directed and undirected algorithms. The classical wo
algorithm has a distribution identical to that shown for t
undirected algorithm. Clearly, the directed worms have
somewhat broader distribution but for both algorithms
distribution follows a power-law formP(w);w2a with a
;1.37. The power-law behavior is to be expected since
simulations were performed at the critical point. Away fro
the critical point we have verified that the initial power-la
form crosses over to an exponential behavior at large a
ments.

To summarize, we find that in all cases, rescaled auto
relation times stay almost constant with the lattice size,
could also be fitted with a very small power-law or log
rithm, showing an almost complete elimination of critic
slowing down. All in all, the main result of this section
that directed worms produce less correlated data~smaller au-
tocorrelation times!, even if the scaling is good for all th
three ~directed, undirected, and classical! algorithms. We
also note that the geometrical worm algorithms perform b
ter than the classical worm algorithm.

The fact that both directed and undirected algorithms h
almost the same scaling of the rescaled autocorrelation
with L seems also to be observed for the directed loop qu
tum Monte Carlo cluster algorithms@9#.

V. THE CORRELATION FUNCTIONS

A. Measurements of correlation functions
with worm algorithms

For the quantum rotor model, the correlation functions
interest have the following form@11#:

C~r ,r 8,t,t8!5^ei [ ûr(t)2 ûr8(t8)]&, ~17!

FIG. 7. The probability densityP(w) for generating a worm
occupying a fraction ofw/3L3 of the lattice, as a function ofw/3L3

for the directed and undirected algorithms. Shown are the result
a lattice of linear sizeL556 at K5Kc . The solid lines indicate
power-law fits to the data.
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whereû ’s are the operators for the phase of the bosons,
ei ûr(t)5etHei ûre2tH. Due to translational invariance
C(r ,r 8,t,t8)5C(r2r 8,t2t8). Physically this correspond
to creating a particle at (r ,t) and destroying it at (r 8,t8).
When this correlation function is mapped onto the lin
current representation, the creation and destruction of
particle is interpreted as a particle current going from (r ,t)
to (r 8,t8). As is evident from the definition of the correla
tion function in Eq.~17! the value of the correlation function
cannot depend on the specific path taken from (r ,t) to
(r 8,t8), as long as we take into account the fact that going
the x,y,t directions increases the local current, whereas
ing in the2x,2y,2t directions decreases the local curre
In the link-current representation this correlation functi
can be written@11# in the following way:

C~r ,t!5K )
(r i ,t i )P path

expH 2
1

K S sgn~s i !~J(r i ,t i )
n

2ds i ,6tm̃ r i
!1

1

2D J L , ~18!

where ‘‘path’’ is any path on the space-lattice connecting t
points a distance (r ,t) apart ands i is the direction needed to
go from (r i ,t i) to (r i11 ,t i 11), s i56x,6y,6t. When go-
ing in the directions i5x,y,t, we propagate aparticle and
the correlation function corresponds toincrementingthe cor-
responding link variable by 1. When going in the directio
s i52x,2y,2t, we propagate ahole in thex,y,z directions
and the correlation function corresponds todecrementingthe
corresponding link variable by 1. This is indicated in E
~18! by sgn(s i). Furthermore, we only get a contributio
from m r i

whenever we go in thet direction and we take this

into account byds i ,6t . If we define J(x,y,t)
2x 52J(x21,y,t)

x

with analogous definitions for the other directions we s
that by incrementing and decrementing the link-current va
ables in the above manner(sJ(r ,t)

s 50 at all the sites be-
tween (r i ,t i) and (r i11 ,t i 11). The current is divergenceles
at all the intermediary sites. The sites (r i ,t i) and (r i11 ,t i 11)
will have nonzero divergence with(sJ(r ,t)

s 51 correspond-
ing to a site where a particle is created~or a hole destroyed!.
A site with (sJ(r ,t)

s 521 is a site where a hole is created~or
a particle destroyed!. In Fig. 8 we show two possible path
Pa and Pb for the evaluation of the correlation functio
C(r ,t). As usual,C(r ,t)5C(r1L,t1Lt) but C(r ,t) is, in
general, not equal toC(r ,2t).

Previous work@11,14# have attempted to calculate th
correlation function by evaluating the thermal expectat
value in Eq.~18! along a straight path from (r ,t) to (r 8,t8).
Although formally correct, this method fails for large arg
ments of the correlation function due to the fact that fo
given configuration of the link variables roughly onlyone
specific path between (r ,t) and (r 8,t8) will yield a contri-
bution of order 1.

The geometrical worm algorithm allows for a much mo
efficient way of evaluating the correlation functions. In e
sence, before the worm returns to the starting site, the pat

or
2-8
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DIRECTED GEOMETRICAL WORM ALGORITHM APPLIED . . . PHYSICAL REVIEW E68, 026702 ~2003!
the worm corresponds precisely to the creation of a part
at site s1 and the destruction at the current sitesi with a
current going between the two sites. This is precisely
correlation function that we want to calculate. More pr
cisely we extend Eq.~18! to include a summation over a
possible paths:

C~r ,t!5
1

NP
(P K )

(r i ,t i ) PP
expH 2

1

K S sgn~s i !~J(r i ,t i )
n

2ds i ,6tm̃ r i
!1

1

2D J L . ~19!

HereP is a path for the correlation function andNP is the
number of paths included in the sum. Since the geometr
worm algorithm generates paths between (r ,t) and (rn ,tn)
with the correct exponential factor~except for a multiplica-
tive constant!, it is now easy to calculate the correlatio
functions.

Suppose that, by using either the directed or undirec
worm algorithm, we have reached the equilibrium config
ration m. The probability for, during the construction of
worm starting at sites15(r1 ,t1), creating a currentj that
reachessn5(rn ,tn)Þs1 is given by

P~ j ;m→m8!5P~s1!)
i 51

n21 Asi

s

Nsi

~20!

for the undirected algorithm. For the directed algorithm
have

P~ j ;m→m8!5P~s1!
As1

s

Ns1

)
i 52

n21

psi
~si 11usi 21!. ~21!

FIG. 8. Two possible pathsPa and Pb for the evaluation of
C(r ,t). When the path is going in thex,y,t directions aparticle is
propagated in the forward direction corresponding to anincrement
in the current. When the path is going in the2x,2y,2t directions,
we propagate ahole in the forward direction corresponding to
decrementin the current. The solid circles correspond to sites wh
a singleparticle is created or destroyed.
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If we call the resulting statem8 we can calculate the prob
ability for, starting fromm8, creating an anticurrentj̄ , going
from sn to s1. We find, for the undirected algorithm,

P~ j̄ ;m8→m!5P~sn!)
i 5n

2 Āsi

s

Nsi

, ~22!

and for the directed algorithm,

P~ j̄ ;m8→m!5P~sN!
Āsn

s

N̄sn

)
i 5n21

2

psi
~si 21usi 11!. ~23!

In both cases we see that

P~ j ;m→m8!

P~ j̄ ;m8→m!
5

N̄sn

Ns1

)
(r i ,t i ) PP

expH 2
1

KS sgn~s i !~J(r i ,t i )
n

2ds i ,6tm̃ r i
!1

1

2D J . ~24!

Hence, we see that for both algorithms the intermedi
states generated during the construction of the worm follo
precisely the distribution needed apart from the fac
N̄sn

/Ns1
. It follows that whenever a worm reaches a point

distance (r ,t) away from the initial point, it contributes a
factor of Ns1

/N̄sn
to the correlation function of argumen

(r ,t). Note that it follows from the above proof thatall
worms, even those that are finally rejected, have to be
cluded in the calculation of Green’s functions. As per defi
tion C(0,0,0)[C(L,L,Lt)[1.

B. Results

The above procedure is straightforward to impleme
Suppose we want to calculate Green’s functions for ad
11)-dimensional system withd52. Since the two space
directions are equivalent by symmetry, it is only necessary
calculateC(x,t). This is easily done by keeping track of th
position of the worm during construction. If the relative p
sition of the worm with respect to its starting points1 is
denoted by (xr ,yr ,t r), when the worm has reached sitesn ,
we addNs1

/N̄sn
to C(xr ,yr ,t r). This can be done with very

little computational effort and since an enormous amoun
worms are generated during the simulation extremely g
statistics can be obtained forC(xr ,yr ,t r) by averaging over
the worms~which cannot be achieved with the local alg
rithm!. As mentioned, in order not to bias the calculatio
even worms that are eventually rejected should be inclu
for a correct calculation of Green’s functions. In Fig. 9 w
show results for Green’s function as a function ofx for a
system of sizeL3,L564. For this simulation the directe
algorithm was used with a total number of worms equal
1.53108. It is easy to obtain extremely small error bars
Green’s functions even for very large system sizes. For
results shown in Fig. 9,m50 and by symmetryC(t) is
identical to C(x). From scaling relations@21# C(r ) is ex-

e
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F. ALET AND E. S. SO”RENSEN PHYSICAL REVIEW E68, 026702 ~2003!
pected to decay asr 2(d221z1h), wherez is the dynamical
critical exponent. With m50, z51 we find C(r )
;r 2(11h). Fitting to this form we findh50.035(5). The
obtained critical exponents are in excellent agreement w
previous work@11# and more recent high-precision estimat
for the critical exponents of the 3DXY model @20#.

It would be of much interest to calculateC(r ,t) for m
Þ0, using this method. Such calculations are currently
progress@22#.

VI. SUMMARY AND DISCUSSION

We have proposed a directed worm algorithm for t
quantum rotor model. This algorithm is an improvement
the ‘‘undirected’’ algorithm presented in Ref.@6#. It has been
shown that by adjusting the degrees of freedom left in
detailed balance condition, one can construct a more effic
algorithm by minimizing the backtracking~bounce! prob-
ability for the worm to erase itself. The minimal probabilitie
can be found by solving a linear programming problem s
ject to a few well-defined constraints. A proof of detaile
balance for the directed case has also been presented
directed and undirected algorithms are identical except
the fact that appropriately defined local probabilitiesps for
moving the worm through the lattice are chosen in an o
mal manner for the directed algorithm. Hence, only a v

FIG. 9. Green’s functionC(x) for a system of sizeL3,L564 at
K5Kc50.333 05,m50, as a function ofx. The solid line indicates
a power-law fit of the form 0.296@x21.0351(642x)21.035#.
tt.
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limited amount of additional programming has to be done
implement the directed algorithm.

These central ideas for this directed algorithm can
straightforwardly applied to directed quantum Monte Ca
~QMC! loop algorithms@9# and one can avoid an analytica
calculation for each new model where one wants to imp
ment a directed algorithm. More generally speaking, we
lieve that the framework presented here could be useful
constructing new algorithms for other models, for examp
classical spin models@23#.

We have shown the superiority of the directed algorith
as compared to the undirected one and to the appro
~‘‘classical worms’’! proposed in Ref.@8# by calculating au-
tocorrelation times of different observables near a criti
point. Although the computational gain is not as drastic
when passing from a local update algorithm to a worm al
rithm @6,17#, we showed that one gains a factor ranging fro
1.5 to 10~depending on the quantity and on the comparis!
for the simulations considered here. We did not try to e
mate autocorrelation exponentz for the algorithms, becaus
in all cases, it is small~as can be seen in Fig. 6! and it would
be hard to determine with high precision. Looking at t
data, it is likely that values ofz for all algorithms are the
same or quite close. A logarithmic dependence oft on L,
indicatingz50, cannot also be excluded.

In this paper, we have also derived an efficient way
measuring correlation functions during the worm constr
tions. This feature is similar to other worm algorithms@4,5#,
but here we show, including analytical arguments, that it a
works for directed worms. The situation for directed QM
loop algorithms@9# is less certain, even if some results we
recently presented in Ref.@24#.

The directed worm algorithm could be specially useful
study the transition for a noncommensurate value of
chemical potential in the pure quantum rotor model or for
disordered case, where very strong finite size effects h
been identified@17,19,22#.
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