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Directed geometrical worm algorithm applied to the quantum rotor model
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We discuss the implementation of a directed geometrical worm algorithm for the study of quantum link-
current models. In this algorithm the Monte Carlo updates are made through the biased reptation of a worm
through the lattice. A directed algorithm is an algorithm where, during the construction of the worm, the
probability for erasing the immediately preceding part of the worm, when adding a new part, is minimal. We
introduce a simple numerical procedure for minimizing this probability. The procedure only depends on
appropriately defined local probabilities and should be generally applicable. Furthermore, we show how cor-
relation function<C(r,7) can be straightforwardly obtained from the probability of a worm to reach arsitg (
away from its starting point independent of whether or not a directed version of the algorithm is used. Detailed
analytical proofs of the validity of the Monte Carlo algorithms are presented for both the directed and undi-
rected geometrical worm algorithms. Results for autocorrelation times and Green'’s functions are presented for
the quantum rotor model.
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[. INTRODUCTION In this paper, we briefly recall the principles of the geo-
metrical worm algorithm{6]. During the construction of a
Improving and developing new numerical algorithms liesworm a new part is added to the worm by moving the worm
at the heart of computational physics. Among others, theéhrough one of ther nearest-neighbor links. Usually the as-
Monte Carlo(MC) methods are often seen as the best choicaociatedo probabilitiesp,, are chosen in an unbiased geo-
for the study of phase transitions taking place in classical ometrical way and there is, therefore, a significant probability
quantum models. For the study of spin models, for examplethat the new part of the worm will backtrack in its own path,
cluster algorithms, either in the classiddl2] or quantum thereby erasing the immediately preceding part. In many
[3-5] case, perform nonlocal moves in phase space, allowingases this backtrackingr bounce probability is the domi-
for the treatment of systems much larger than with traditionahant probability among the: probabilities and using these
local update methodgsingle spin-flip algorithmes These npiased probabilities is, therefore, clearly rather wasteful.
types of algorithms have almost completely solved the probryare we describe an improvement of this geometric worm

lem of critical slowing down ar_ising near phase transitions. algorithm, which we call the directed worm algorithm, as a

to Zggt(:lizsﬁn?ift:()jmgrr?cjs iftoirswwlzhrggrséeroTetrZ:?smigégog?eference to recently developed directed loop methods for the
C ' o 9 L guantum Monte CarldQMC) simulations of spin systems

search for new algorithms possessing the same efficient fe 9]. This directed geometrical worm algorithm is identical to

tures for other models. In this context, we have propose .
recently a nonlocal “worm” algorithm for the study of quan- i s_t_mdlrected counterpart ex_cept f_or the fact tha_\t the prob-
abilities p, are now chosen in a biased way, using knowl-

tum link-current modelg6]. These models arise from a - . § : :
phase approximation of bosonic Hubbard models, but argdge of the |mmed|§tely precedlng_step in the construction of
also relevant in the context of quantum electrodynarfifgs the worm. These_ b|ase_d probabilities can all be tabulat_ed at
Previous MC simulations of the quantum link-curréguan-  the start of the simulation and the additional computational
tum rotoD model used a local a|g0rithm Suffering from criti- effort stems SOIer from the Significantly wider distribution
cal slowing down. In the new algorithf6] updates are made Oof the directed worms. The directed algorithm gives rise to
by reptating a “worm” through the lattic§5,8]. Since the even better results, as will be shown in the following part of
movement of the worm only depends on a few probabilitieshis paper, where we present results on autocorrelation times
determined locally with respect to the current position of thefor both directed and “undirected” worm algorithms. The
“head” of the worm, we call this type of algorithm a geo- procedure for choosing the “biased” probabilities leading to
metrical worm algorithm as opposed to other recently develthe directed algorithm is quite general and should be appli-
oped worm algorithms based on high-temperature series exable to other algorithms that depend on local probabilities.
pansiong8]. The geometrical worm algorithm gives rise to Furthermore, we show how Green’s functicdér, 7) of the
very small autocorrelation times and by directing the algo-original quantum model can be measured efficiently during
rithm these autocorrelation times can be even further rethe construction of the worm by calculating the probability
duced. that the worm reaches a given sitef) away from its start-

ing point, independent of whether a directed or undirected

algorithm is used. For both the derivation of the directed

*Electronic address: alet@phys.ethz.ch algorithm and the measurements of correlation functions,
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analytical proofs of the validity of the algorithms are pre-
sented.

The outline of the paper is as follows. In the following
section, we present the quantum rotor model and introduce
some useful notation. Then, a brief description of the “undi- B LT c
rected” worm algorithm is given in Sec. Illl A, before pro- A
ceeding to the main contents of this paper, a description of y “ N

the directed geometrical worm algorithiggec. 11l B). A . %11)( -

simple procedure for numerically determining the biased
probabilities for the worm moves is presented. In addition, ¥
we derive a proof of detailed balance for the directed worm )
algorithm. In order to compare our algorithms to related F!G. 1. The Monte Carlo moves in the model. To ensure the
ones, we present in Sec. Il C another recent approach due %vergenceless condition, only closed moves can be performed. In
Prokof'ev and SvistunoV(8], originally based on high- the left part of the figures, previous Monte Carlo updates with the
temperature series expansio,n for classical statistical modelléjcal algorithm are depicted. In the right partis given an example of
which we therefore will refer to as “classical worms” a’move with the worm algorithm starting from an initial random site

. . _ lack .
throughout this paper. In Sec. IV, we estimate the efﬂmenc;;b ack do}
of the three algorithms by calculating autocorrelation times. _ _ _
We then discuss the measurements of correlation functiori§is model and bosonic systems. Bosonic systems with
within the worm algorithm in Sec. V and show some resultsstrong correlations are often described in terms of (this-
at a specific point of the phase diagram. We conclude with &rdered boson Hubbard model =3[ (U/2)n?— u,n,]

discussion of the features of the directed algorithm. —t02<,,r,>(<i>:<i>,/+c.c). The correlations are here described
by U, the on-site repulsion. The hopping strength is given by
to and i, the chemical potential varying uniformly in space
Many magnetic systems, Josephson Junction arrays aribtweenu+A. n,=®'d, is the number operator. If we set
several other systems can be described by a quantum rOtﬁfrzlﬁMei?’r and integrate out amplitude fluctuations, it can

model[10]: be shown thaH, is equivalent to the quantum rotor model
[11]. For systems where amplitude fluctuations can be ne-
] 10\ . d glected at the critical point, such as granular superconductors
quZE Er (T(g_gr) +'Z Mr(g_gr_t<r2r,> cos 6= Or). and Josephson junctions arrays, the quantum rotor model
’ (1) should, therefore, correctly describe the underlying quantum
critical phenomena.
Here, ¢, is the phase of the quantum rotbis the renormal- In the following we only discuss the quantum rotor model
ized coupling strength, and, is an effective chemical po- in d=2 dimensions corresponding to thed+1)-
tential. If =0, it can be shown that this model displays the dimensional link-current model. In general, a nonzerwill
same critical behavior as th®&(+ 1)-dimensionaKY model.  introduce separate dynamics for the time and space direc-
However, whernu, #0, this model is not amenable to direct tions from which a dynamical critical exponentan be de-
numerical treatment in this representation due to the resulined. If the divergence of the spatial correlation length close
ing imaginary term. It is, therefore, very noteworthy that anyq criticality is characterized by the exponentz is defined
equivalentcompletely realrepresentation in terms of link- ., requiring that the correlation length in the time direction

currents exists even for nonzerq . This link-current(Vil- diverges with the exponemtv. For what will be discussed
lain) representation is a classio@+1)D equivalent Hamil- herex=0 andz=1

tonian, which is usually written in the following manner
[11]:

Il. THE MODEL

lll. ALGORITHMS
1

H=1 >

(r.7)

1

EJE,’T)—M,J(TM) . (2 A. The geometrical (undirected) worm algorithm

The quantum rotor model has been extensively studied in

The sum is taken over all divergenceless current configurathe link-current representation using the conventional Monte
tions V-J=0. The degrees of freedom are “currentd” Carlo technique using local updatelsl—15.
=(J%,3¥,J7) living on the links of the lattice. These link The conventional Monte Carlo updates on mao@lcon-
variablesJ*,J¥,J7=0,21,-2,=3 ... are integersK is the  sists of updating simultaneously four link variables, as
effective temperature, varying likgU in the quantum rotor shown in the left part of Fig. 1X). To ensure ergodicity, one
model. We refer to Ref.11] for a precise derivation of this also has to use global moves, updating a whole line of link
model and for a description of its physical implications. variables B in Fig. 1). The acceptance ratio for these global

Another incentive for studying the critical behavior of the moves becomes exponentially small with the system size for
quantum rotor model comes from the close relation betweefarge systems. Many interesting quantities such as the stiff-
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ness, necessary for the determination of the critical point, Graphically, the convention means that the updati/in,

and current-current correlations, necessary for the calculatiol +1 (—1) if the worm goes in the sam@pposite direc-

of transport properties such as the resistivity and the comtion as the arrows denoted in the left lower part of Fig. 1.
pressibility, areonly nonzero when these global moves are  The construction“reptation”) of the worm can be de-
successful. An effective Monte Carlo sampling of these gloscribed by the following way: First, we start the worm at a
bal moves is, therefore, imperative and it is easy to underrandom siteN,;=(r,,7,) of the lattice(black dot in Fig. 1.
stand that the performance of the local algorithm is ratheFrom this site, the worm has the possibility to go to one of its
poor, especially near a phase transition: critical slowingsix neighboring sites. To choose which direction to take, a
down in the Monte Carlo simulations prohibits the study ofweight A? is calculated for the six directions= *+x,=*y,

large system sizes. + 7. For A’, we use a Metropolis-like weight:
In order to be able to correctly describe the directed geo-
metrical worm algorithm, we have to review the geometrical A”=min{1,exd — (E/—E,)/K]}, (5)

worm-cluster algorithm introduced in R¢6] in some detail.
This algorithm allows for nonlocal moves as those depicte
on the right part of Fig. 1 €). The performances of this
algorithm have been reported in the previous widk This

QNhere E,= %(J")Z—MJ"&,,T is the local energy carried by
the link o andE/ =3(J°+1)?— u(J°+ 1)6, , is the local

. . . energy on the linko if the worm passes through this link
algorithm is closely related to other cluster algorithihs 3] The g?/us or minus sign depends cF))n the incomigg or OUtCOM-

and especially to “worm” algorithmg§5,4,8|, from which we . )
have borrowed the name. We stress that this algorithm ind nature of the linsee abovk Please note that there are

di . - : . other possible choices fdk,, [17].

ifferent from the “classical” worm algorithm presented in Once theA s are calculated. one computes the probabili-

Ref.[8] in the sense that it is geometrical: link variables aret. b o lizing th . ,htA ) P P

not “flipped” with a thermodynamic probability, instead, a 1€S P, Dy normalizing the Weighta, -

new part of the worm is added by selecting a direction ac-

cording too locally determined probabilities,,. . Since these p :ﬁ (6)

probabilities only depend on the local environment, we call 7 N’

them “geometrical probabilities. Secondly, even though the

local probabilitiesp,, do depend on the effective temperaturewhereN= X A, is the normalization. A random number uni-

K, we always haveX p,=1 (per definition and the only formly distributed in[0,1] is generated and a directian

effect of the temperature is, therefore, to preferentially moveehosen according to E¢6). Once a direction is chosen, the

the worm in one direction as opposed to another one. lorresponding link variablgd? is updated by+1 and the

some sense this is very similar to tNefold way[16] as well  worm moved to the next lattice site in this direction.

as to the Rosenbluth scheris] of performing the Monte From there, we apply the same procedure to choose an-

Carlo simulations. other site, modify the link variable, and move the worm until
We now describe the contents of the geometrical algothe worm eventually reaches its starting point and forms a

rithm: we update the configurations by moving a “worm” closed loop. This is then the end of this nonlocal move.

through the lattice of links—the links through which the  To satisfy the detailed balance condition, this worm move

worm pass are updatetiiring its construction. The configu- must either be accepted or rejected. To check this, one has to

rations generated during the constructitreptation”) of the  store the initial and final normalizatiod; and N;l [calcu-

worm are not validithe vanishing of the divergence 8fis  |5i0d asin Eq(6)] of the weights at the site, = (r;, ;). N.

not fulfilled) but at the end of its path, when the worm forms . - o L L

a closed loop, this condition is verified and the final configu-'sfth_e initial normalizatiorbeforethe worm is inserted and

ration is valid. Ng, is the final normalizatiorafter the worm reaches the
We first define a convention for the orientation of the initial point. The worm move is then accepted with probabil-

lattice. Around each site with coordinatés=(x,y), 7], ity N!SllNgl. If the move is rejected, we have to cancel all

there are six links on which the integer curredfs ) are  changes of the link-currents made during the construction of
defined witho=x,y,7,—x,—y,—7. The change inJ{; , the worm. During a typical simulation the rejection probabil-
that the worm will perform during its course depends onity is usually very small.

whethero is an incoming or outgoing link: here our conven-  As already mentioned, the link configurations generated
tion is to consider positive,y, 7 as outgoing directions and during the worm move do not satisfy the divergenceless con-

—X,—Yy,— 7 as incoming(see left lower part of Fig. )1 straint, but it is easy to see that the final configuration does.
If the worm is leaving the siter(7) passing through an It is important to note that the worm may pass many times
outgoing linko=x,y, 7, then though the same link and that at each step, it can bounce
back (back track to the previous lattice site in its path.
o=t 1 3 A proof of detailed balance for this algorithm is obtained

o _ _ o by considering the moves of the worm and of an antiworm,
If it is leaving through an incoming link = —x,~y,— 7, we  going exactly in the opposite directigf]. This worm algo-

have rithm satisfies ergodicity since the worm can make local
" " loops and line moves as in the local algorithm, which is
Je.n—=9m 1 (4 ergodic.
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All'in all, the geometrical undirected worm algorithm can
be summarized by using the following pseudoalgorithm. i o

(1) Choose a random initial sitg = (r;,7,) in the space- Pl ps(ailow) AT
time lattice. ' '

(2) For each of the directiones= +x,*+y,* 7, calculate (detailed balande
the WelghtsA‘S’i with A;Ti: mm[l,exp(_AEg/K)]v AE;: Eéio These conditions are not very restrictive and will in most
—E;’i. cases allow us to define a matrIB(Si with all the diagonal

(3) Calculate the normalizatioNs == /A and the asso- €lementgbacktracking probabilitigsequal to 0. The conven-
' ' tional geometrical worm algorithm, discussed in the preced-

ing section, corresponds tb'gi'zA‘S’ik/ N

If we define a functiorf as the sum of the diagonal ele-
ments ofPg, f=3,P5*, we can reformulate the search for a
matrix Ps with minimal diagonal elements as a standard
linear programming problem. Writin@s‘=1-3, P we
should minimizef subject to the constraint; P <1 Vk.

The minimum can be found using standard techniques of
. e _ — linear programming18] and corresponds in almost all cases
with probability P®=1—min(1Ns /N ). to f=0. The matrixPy depends on the value of all the six

link currentsJZ . During the construction of the worm only
1

sites whereJ *+Jg Y+ 3, "= 35 — I —J{ =1, s;#; occur.

Since, in generaIlJ‘s’i| will almost never exceed a certain

P;l ps, (ol o) A;‘ik

®

ciated probabilitie$‘s’i=A‘S’i/NSi.

(4) According to the probabilitiespgi, choose a direc-
tion o.

(5) UpdateJ‘s’i for the direction chosen and move the
worm to the new lattice sits; , ;.

(6) If s;#5s4, go to(2).

(7) Calculate the normalizatiorﬁsl and NSl of the initial
site s;, with and without the worm present. Erase the worm

B. The directed geometrical worm algorithm

The above algorithm for geometrical worms is not opti- o
mal since the worm quite often will choose to erase itself byValU€ Jmax, it is easy to construct a lookup table for the
returning to the previous site. While it is, in general, not matricesPs at the beginning of the simulation and only cal-
possible to always set this backtrackifiy bouncg prob-  culate Ps({Jg}) during the simulation if for somer [J¢]
ability to O, it is quite straightforward to choose the prob->]__ .
abilities p‘s’i such that the bounce or backtracking probability =~ This idea of minimizing the bounce processes is also at
will be eliminated in almost all cases and, in general, will bethe heart of the quantum Monte Carlo directed loop methods
as small as possible. The procedure for doing this amounts #&)- The previous restrictions on the matfxand the way to
solving a simple linear programming optimizing problem. If solve them numerically are indeed very general, and consti-
we consider models with disorder, this has to be done at ea te a simple framework for how one can construct a directed

site, but the correctly optimizebiased probabilitiespg can Zégﬂm out of a "standard” nonlocal loop, worm or cluster

still be tabulated at the start of the calculation. We can now define alirected geometrica| worm a|go_
In order to see how we can minimize the backtrackingrithm with minimal backtracking probability. Using a
probability, let us define the>$6 matrix Psi of probabilities  pseudocode notation, we have the following.

where the eIemenP;' of the matrix P is given by the (1) Choose a random initial si=(ry,7;) in the space-
conditional probabilityps (o) for going in the direction time lattice.

. . . . . . (2) If i=1, then for each of the directions=*x,*y,
o at the sites; if the worm is coming from the directioa, . +7 calculate the weightsA? with A?=min[1,exp
The backtracking probabilities at the sitenow correspond  ~ ' o o o Si Si o
to thediagonalelements of the matriRs . For the algorithm (AE/K)], AEg=E"—Eg. Calculate the normalization

described in the preceding sectign, (oy|o) was simply Ns=2,Ag and the associated probabilitiges =Ag/Ns.
chosen a#\Z*/N, independent ofr, . Thus, all the columns ~ Else: According to the incoming directio , setpg equal

of Py were the same an@, had, in general, rather large to thelth column of Py

diagonal elements. However, as we shall see below, the ma- (3) According to the probabilitiepg , choose a direc-
trix Ps only needs to satisfy the following two conditions in tion o.
order to define a working geometrical worm algorithm. ~ (4) Update J¢ for the direction chosen and move the

These conditions are worm to the new lattice sitg;, ;.
(5) If s;#5s4, go to(2).
zk: psi(ak|gl):1 7) (6) Calculate the normalizatiorld , of site s, with the

worm present, antmsl, without the worm. Erase the worm
with probability P¢=1—min(1Ng /N ).
(probability), Now we turn to the proof of detailed balance for the di-
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rected algorithm. Let us consider the case where the worm
visits the siteqs,, ... ,sy} wheres; is the initial site. The

worm then goes through the corresponding link variables

{l, ... In}, with I; connectings; ands;, ;. Note thatsy is
the last site visited before the worm reaclsgs Hence,sy
ands; are connected by the link,. The total probability for
constructing the wornmw is then given by

AZ N

Pu=Ps,(1=PON= I ps(siialsi ). 9
Sl =

The indexo denotes the direction needed to go fremto
S2, Ps, is the probability for choosing site; as the starting
point, andPy, is the probability for erasing the worm after
constructionpsi(si+1|si_1) is the conditional probability for
continuing to sites; 4, at sites;, given that the worm is
coming froms;_;. If the worm w has been accepted, we

have to consider the probability for reversing the move. Tha,

is, we consider the probability for constructing an antiworm
w annihilating the wornw. We have
A
Py=Pg,(1-P— [T p(si-alsiso)-
e

i
1

(10

Here, the indexr denotes the direction needed to go frem

to sy. Note that, in this case, the sites are visited in the

opposite orders;,Sy, - ..,S;. From Eq.(8) we have that
psi(si+llsi—1)/psi(si—llsi+l):A;k/Agil- Since

Agﬂgzemx—AEQKL i=1,...N, (11)
and sincePSlz Ps,, We find
p, 1-P° N

K Y exp(— AEry/K), (12

Py 1-PSNg

whereAE; is the total energy difference between a configu-

ration with and without the wormv present. With our_defi-
niton of P® we see that[1—PSw)]/[1—P&w)]
=Ns,/Ns, and it follows that

Pw
P—_zexp(—AETot/K).

w

(13

For a worm of lengthN there areN starting sites that will
yield the same final configuration. The above proof show

that for each of the starting sites there exists an antiwerm
such thatP,,=exp(—AE;,/K)Py . Hence, if we denote by
w the configuration without the worm andthe configura-
tion with the worm and furthermore IR, (s;) denote the
probability of building the wornw starting from sites;, we
see that

PHYSICAL REVIEW EB8, 026702 (2003

N N
Ei Pu(si) Ei Pul(s)
' _

Ei Pu(si)

P(u—v)

Prom) exp(—AEqy,/K)

~ N
Z Pu(si)

=eXp—AE,/K). (14

Ergodicity is proved the same way as for the undirected al-
gorithm as the worm can perform local loops and wind
around the lattice in any direction, as in the conventional
algorithm.

C. The classical worm algorithm

Prokof’ev and Svistuno{8] have proposed a very elegant
way of performing the Monte Carlo simulations on the high-
temperature expansion of classical statistical mechanical
models using worm algorithms. In order to distinguish be-
ween the algorithms we call this algorithm the classical

orm algorithm. In a recent studyl9] these authors have
performed simulations on the quantum rotor model in the
link-current representation, E¢2). Due to the divergence-
less constraint, the classical worm algorithm is in this case
quite close to the geometrical worm algorithm proposed pre-
viously in Ref.[6] and not directly related to the high-
temperature expansion of this model. Recasting their algo-
rithm in the same framework used above we outline our
understanding of their algorithm below for comparison.
(1) Choose a random initial sit® =(r4,7;) in the space-
time lattice.

(2) For each of the directions= *+x,+y,* 7, calculate
the probabilitiesA‘s’i with A;‘i:min[l,exp(—AEg/K)], AE;‘i
= E;i"— E;’i .

(3) With uniform probability choose a directiom.

(4) With probability A;‘i accept to go in the direction,

and with probability 1—A‘S’i go to (3).
(5) UpdateJ‘S’i for the direction chosen and move the

worm to the new lattice sits, , ;.

(6) If s;#5s4, go to(2).

(7) If s;=s4, go to(1) with probability po and to(3) with
probability 1—pg [ poe (0,1) and usuallyp,=1/2]. We use
po=1/2 in the following.

One advantage of this algorithm is its simplicity and the
fact that a constructed worm is always accepted; on the other
hand, this algorithm is not directed and std$ and (4)
above are quite wasteful since in many cases the worm is not
moved. This is avoided in the geometrical worm algorithm at
the price of occasionally having to reject a complete worm.
The geometrical worm algorithm, as described in the preced-
ing sections, should be straightforwardly applicable to the

Jﬂgh-temperature expansion, as it was done in [&f.using

the classical worm algorithm. We expect that this would en-
hance the efficiency of the Monte Carlo sampling.

IV. PERFORMANCE OF THE ALGORITHMS

Here we present results on autocorrelation times obtained
with both directed and undirected algorithms. For the sake of
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FIG. 2. Autocorrelation function of stiffness vs the Monte Carlo ~ FIG. 3. Autocorrelation times of the stiffnegs for directed,
time (defined by one worm construction, see jefar L="56 atK undirected, and classical algorithms vs lattice $iz&hown are the

=0.333 for directedcircle), undirected(dotted ling, and classical raw autocorrelation timesjeforerescaling to take into account the
(solid line) algorithms. computational effort expended.

brevity, we restrict ourselves to the cage=0, where the M2
critical point is known with high precision, and where results Co(t)= {OH0O(0))=(0)
on autocorrelations for the undirected worm algorithm have (0% —(0)?
already been publishgd]. All the results presented in this
section correspond to run on cubic lattices of 400° Monte
Carlo worms for a value dk=0.333, extremely close to the
critical point [estimated a¥.=0.33305(5) in Ref[6]]. In
principle, simulations should be performed on lattices of siz
LXLXL,, but here since the dynamical exponentl at
u=0, we can set. .=L. We focus here on calculations of
the energyE=(H) and the stiffnesg defined as

P ! <(E Npg

: (16)

where(- - -) denotes statistical average arid the MC time,
measured in the number of constructed woli@scepted or
not). We clearly see in Fig. 2 that the directed worm algo-
&ithm is more efficient at decorrelating the data than undi-
rected and classical worms, the latter having the longest au-
tocorrelation times.

Now we define the autocorrelation time, of an observ-
2 able O0. In Ref.[6], 7» was defined as the greater time of a
>, (15  double-exponential fit of the autocorrelation function. Here

we use a much simpler definition, independent of any fitting

) . . ) procedure:r, is defined as the time where the normalized
whereL is the linear size of the lattice. autocorrelation function decrease below a threshgldWe

For the simulations with directed worms, we restrict our-c5n use different thresholds for different observabigs
selves tdJ|=3 for the tabulation of probabilities. Probabili- gjnce for small lattices and especially for directed worms,
ties involving higher values dfi| were calculated during the aytocorrelation times are small, and sir€g(t) is known
construction of the worm. Such configurations were found toonly for discrete values of, 7., is determined by a simple
be exceedingly rare. . _ linear interpolation between the two times surrounding the

For the case at hand, only 1% of the “scattering” matri- threshold. It is important to note that the values of the auto-
cesPg, contained diagonal elements corresponding to a noneorrelation time depends on the threshid but the depen-
zero back-tracking probability. Moreover, these back-dence on lattice size of these autocorrelation times should
tracking (bounce processes were found to occur for very not change as long asg, is small enough. Error bars o,
unlikely configurations. The acceptance rate R® is very  have been estimated by slightly changing the threshold, by
high for both algorithms aK. (around 98% for undirected an amount in between 2% and 5% in this work.
worms and 97% for directed worms for all lattice sizd=or Using the above-mentioned determination of autocorrela-
the classical worms, all worms are accepted due to the natut®n times, we extract autocorrelation times of the stiffness
of the algorithm. However, we found that many proposedand the energyE for directed, undirected, and classical
attempts at changing one link were refugetbre than 60% worms. The threshold was set the same for all algorithms
in our simulations when comparing the same quantity: we used through this

In Fig. 2, we present the autocorrelation function of stiff- work t,=0.02 for the stiffness antk=0.05 for the energy.
ness for a lattice sizé =56, for directed, undirected, and Scaling of these times with the lattice size is shown in Fig. 3
classical worms. The autocorrelation functi@y(t) of an  for stiffness and in Fig. 4 for energy. It can be seen that
observable? is defined in the standard way: although autocorrelation times grow approximately linearly

L3 r,T
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FIG. 4. Autocorrelation times of enerdg for the three algo- /G- 5. Mean size(w) divided by 3° vs lattice sizeL for
rithms vs lattice sizd. Shown are the raw autocorrelation times, directed, undirected, and classical worms.

pefore rescaling to take into account the corresponding ComMPUtaL - ount the computational effort used to construct the worm
tional effort expended.

by rescaling the autocorrelation times kw)/(3L3%). We

with lattice size for all algorithms, the slope is significantly Show in Fig. 6 the rescaled autocorrelation times for the three
smaller for the directed worm algorithm. algorithms. We find that the auto_correlatlon times per link

It is clear from these results that the directed algorithmstay reasonably small for all algorithms, but the directed al-
significantly reduces the autocorrelation times. However, th@orithm clearly gives better results, with autocorrelation
average size of the directed worms could be larger, an§mes smaller by a factor around(2.5-1.7 for the stiffness
hence on average consume more computational time. For dnergy with respect to the undirected algorithm, and a fac-
algorithms the computational effort is linearly proportional tor around 10(4) with respect to the classical worm for the
to the length of the worm. To make an honest comparison',argeSt sizes. The fact _that both algorithms are more efﬂqen_t
we therefore have to multiply the autocorrelation times byat decorrelating the stiffness than the energy seems to indi-
the number of attempted changes per link, which we definéate that the worms couple more effectively to “winding
as(w)/(3L3), where(w) is the mean worm sizéhe mean modes,” _from which the stiffness is un_lquely determlnec_i,
number of links the worm has attempted to Vislt is the than to simple local modes that determme the energy. With
lattice size preceded by an irrelevant factor indicating thath® same argument, we can see that directed worms are more
there are three links per site. For the classical worms, théfficient at updating winding modes than undirected or clas-
mean worm sizéw) is defined as théotal number of pro- ~ Sical worms.
posed attemptéstep 4 in the pseudocode presentation in Sec.
[l C). In order to make an unbiased comparison of the three
algorithms, it is here necessary to include the updates refuse )
during the construction of the classical worms in the defini- -
tion of (w). 10

As mentioned, the computational effgthe CPU time is
linear in(w) for all algorithms. An equivalent rescaling was .~
used in Ref[6] in order to make a fair comparison with the
local algorithm. Figure 5 shows the mean worm s{z€
(divided by A.%) for the three algorithms versus lattice size,
corresponding to the average fraction of the total number of
links occupied by the worm. In both cases, we see that this S o7 Directed worms
fraction decreases with. We also note that the classical + -+, Classical worms
worms are longer than that in the other proposed algorithms 1 RQ_HMV ]
which will result in larger autocorrelation times. Directed
and undirected worms are almost of the same size, with very -
slightly larger directed worms. The corresponding effect on 10 100
the value of rescaled effo(presented in the following para- L
graph will be small when comparing autocorrelation times  FIG. 6. Autocorrelation times of stiffnegsand energyE for the
for those algorithms; however, we wish to keep it present fothree presented algorithms vs lattice sizeThese autocorrelation

a more fair analysis. times arerescaledautocorrelation times where the computational
Having discussed the behavior of/) we now take into effort is taken into account.

/‘__‘,"-Q-.
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e

B

o
®
=
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G6—or1, Directed worms
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& - -0, Classical worms
®—= 7. Directed worms
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FIG. 7. The probability density?(w) for generating a worm
occupying a fraction ofv/3L3 of the lattice, as a function af/3L3

for the directed and undirected algorithms. Shown are the results for

a lattice of linear sizd. =56 atK=K_ . The solid lines indicate
power-law fits to the data.

The actual distribution of the size of the worms generated
P(w), is also of interest. In Fig. 7 we show results for the
probability densityP(w) for generating a worm occupying a
fraction of w/3L3 of the lattice, as a function of/3L> for

the directed and undirected algorithms. The classical wornd

algorithm has a distribution identical to that shown for the
undirected algorithm. Clearly, the directed worms have

somewhat broader distribution but for both algorithms the

distribution follows a power-law formP(w)~w™ ¢ with «
~1.37. The power-law behavior is to be expected since t
simulations were performed at the critical point. Away from
the critical point we have verified that the initial power-law
form crosses over to an exponential behavior at large arg
ments.

hé

PHYSICAL REVIEW E68, 026702 (2003

where@'s are the operators for the phase of the bosons, and

e'l(N=e™Melle=™  Due to translational invariance,
C(r,r',7,7")=C(r—r',7—7"). Physically this corresponds
to creating a particle atr(7) and destroying it atr(,7").
When this correlation function is mapped onto the link-
current representation, the creation and destruction of the
particle is interpreted as a particle current going framr)

to (r',7'). As is evident from the definition of the correla-
tion function in Eq.(17) the value of the correlation function
cannot depend on the specific path taken fromr) to
(r’,7"), as long as we take into account the fact that going in
the x,y, 7 directions increases the local current, whereas go-
ing in the—x,—y, — 7 directions decreases the local current.
In the link-current representation this correlation function
can be writter{11] in the following way:

1
C(r,r)=< 11 exp[ - —(sgr(m)(J(”r. -
(ri,7j) e path K e

)

where “path” is any path on the space-lattice connecting two
points a distancer(7) apart ands; is the direction needed to

o from (r;,7) to (ris1,7+1), oi=*X, =y, = 7. When go-

ng in the directiono;=Xx,y, 7, we propagate particle and

he correlation function correspondsiterementingthe cor-
responding link variable by 1. When going in the direction

~ 1
- 5(ri ,i'rlu’ri) + E (18)

o;=—X,—Y,— 7, We propagate holein thex,y,z directions
nd the correlation function correspondsicrementinghe
corresponding link variable by 1. This is indicated in Eg.
(18) by sgn(;). Furthermore, we only get a contribution

Jrom u, whenever we go in the direction and we take this

into account byd,, ... If we define .’y h=—J35 1y,

To summarize, we find that in all cases, rescaled autocomith analogous definitions for the other directions we see

relation times stay almost constant with the lattice size, bu
could also be fitted with a very small power-law or loga-
rithm, showing an almost complete elimination of critical
slowing down. All in all, the main result of this section is
that directed worms produce less correlated dataaller au-
tocorrelation timeg even if the scaling is good for all the
three (directed, undirected, and classicallgorithms. We
also note that the geometrical worm algorithms perform bet
ter than the classical worm algorithm.

The fact that both directed and undirected algorithms hav

tum Monte Carlo cluster algorithm9].

V. THE CORRELATION FUNCTIONS

A. Measurements of correlation functions
with worm algorithms

that by incrementing and decrementing the link-current vari-
ables in the above mannér,Ji; ,=0 at all the sites be-
tween ¢;,7;) and (r;41,7+1). The current is divergenceless
at all the intermediary sites. The sitas,i;) and ¢i; 1,7 +1)
will have nonzero divergence with ,Ji =1 correspond-
ing to a site where a particle is creat@d a hole destroyed
Asite with=,J; y=—1 is a site where a hole is createst

a particle destroyedIn Fig. 8 we show two possible paths
P, and Py, for the evaluation of the correlation function

&(r,7). As usual,C(r,7)=C(r+L,r+L,) butC(r,7) is, in
almost the same scaling of the rescaled autocorrelation tim (r,7) usual C(r, ) =C( L) butC(r7) is,

with L seems also to be observed for the directed loop quan-=

eneral, not equal t€(r,— 7).

Previous work[11,14 have attempted to calculate the
correlation function by evaluating the thermal expectation
value in Eq.(18) along a straight path fronr (7) to (r’, 7).
Although formally correct, this method fails for large argu-
ments of the correlation function due to the fact that for a
given configuration of the link variables roughly onbne
specific path betweerr (r) and (',7’) will yield a contri-

For the quantum rotor model, the correlation functions ofbution of order 1.

interest have the following forrill]:

C(r,r',7-,T'):<ei[?9r(f)*9r'(f’)]>, (17)

The geometrical worm algorithm allows for a much more
efficient way of evaluating the correlation functions. In es-
sence, before the worm returns to the starting site, the path of
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At { 1 1 If we call the resulting statg.” we can calculate the prob-
7 > ability for, starting fromu’, creating an anticurrent going
Al ¥ ,(_”) from s, to s;. We find, for the undirected algorithm,
Pyj 1 1
A 2 A"
Rt I P(iu'—m)=Ps] = (22
Si
A 1 . .
! 21 A and for the directed algorithm,
yg [t |1 |1 ! AT 2
@ > >~
0.0) Py P(j;u'—u)=P(sy)=" = " AL p(sialsicn). @3
S
X In both cases we see that

FIG. 8. Two possible path®, and P, for the evaluation of _
C(r,7). When the path is going in they, r directions gpatrticle is P(j;u—pu’) Nsn
propagated in the forward direction corresponding tdramement N
in the current. When the path is going in thex, —y, — 7 directions,
we propagate dole in the forward direction corresponding to a _ 1
decremenin the current. The solid circles correspond to sites where - 5(,i - T'“fi) + >
a single particle is created or destroyed.

- 1(
i exp — | sgrio) (I -
P(j;u'—p) Ns 7 er pl’ K )

(24)

Hence, we see that for both algorithms the intermediate
Qtates generated during the construction of the worm follows

. . o . recisely the distribution needed apart from the factor
current going between the two sites. This is precisely th .
correlation function that we want to calculate. More pre- s,/Ns, It follows that whenever a worm reaches a point,
cisely we extend Eq(18) to include a summation over all distance (,7) away from the initial point, it contributes a
possible paths: factor of Ns /Ns to the correlation function of argument

(r,7). Note that it follows from the above proof thail

the worm corresponds precisely to the creation of a particl
at sites; and the destruction at the current sgewith a

1 1 , worms, even those that are finally rejected, have to be in-
C(r.n)= Ny %\, 1:)[573 exp — | sao) (I, r) cluded in the calculation of Green’s functions. As per defini-
t tion C(0,0,0=C(L,L,L,)=1.
~ 1
= Oy b)) F 2 } > : (19) B. Results

The above procedure is straightforward to implement.

HereP is a path for the correlation function amdl, is the  Suppose we want to calculate Green’s functions forda (
number of paths included in the sum. Since the geometrical 1)-dimensional system witld=2. Since the two space
worm algorithm generates paths betweenr( and ¢, 7,) directions are equivalent by symmetry, it is only necessary to
with the correct exponential factdgexcept for a multiplica- calculateC(x, 7). This is easily done by keeping track of the
tive constant it is now easy to calculate the correlation position of the worm during construction. If the relative po-
functions. sition of the worm with respect to its starting poisf is

Suppose that, by using either the directed or undirectedenoted by )@r Yr,7r), when the worm has reached s#g,

worm algorithm, we have reached the equilibrium configu-ye addN, /N 10 C(X, Y, ,7;). This can be done with very

ration p. The probability for, during the construction of a little computa‘uonal effort and since an enormous amount of
worm starting at S'tesl_.(rl.’Tl) creating a current that worms are generated during the simulation extremely good
reachess,=(n.7,) #$, is given by statistics can be obtained fax(x, ,y, ,7,) by averaging over
the worms(which cannot be achieved with the local algo-
n-1 A” rithm). As mentioned, in order not to bias the calculation,
P(jiu—n') Sl)]._.[ NS (200 even worms that are eventually rejected should be included
for a correct calculation of Green’s functions. In Fig. 9 we
show results for Green’s function as a functionxofor a
for the undirected algorithm. For the directed algorithm wesystem of sizel.3,L=64. For this simulation the directed
have algorithm was used with a total number of worms equal to
1.5x 10%. It is easy to obtain extremely small error bars on
A‘T n-1 Green’s functions even for very large system sizes. For the
P(jiu—u')= sl)— H ps(s,+1|s, ;). (21)  results shown in Fig. 9u=0 and by symmetryC(7) is
identical toC(x). From scaling relation$21] C(r) is ex-
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1F T ] T e limited amount of additional programming has to be done to
i o Swuon ] implement the directed algorithm.

[ L e ] These central ideas for this directed algorithm can be

b e | straightforwardly applied to directed quantum Monte Carlo

] (QMC) loop algorithmg[9] and one can avoid an analytical

e ® calculation for each new model where one wants to imple-

ment a directed algorithm. More generally speaking, we be-

lieve that the framework presented here could be useful for
constructing new algorithms for other models, for example,

classical spin model23].

We have shown the superiority of the directed algorithm
as compared to the undirected one and to the approach
(“classical worms”) proposed in Ref(8] by calculating au-

0017 E—T) ———""""%w tocorrelation times of different observables near a critical

X point. Although the computational gain is not as drastic as
) ) when passing from a local update algorithm to a worm algo-

FIG. 9. Green’s functioi©(x) for a system of size*L=64 at  jthm [6,17], we showed that one gains a factor ranging from
K=K;=0.33305.=0, asa f“”Ctl?rg3‘gk' The So'ﬂ (')',fe indicates 1 5 19 10(depending on the quantity and on the comparison
a power-law fit of the form 0.296 %%+ (64-x) %] for the simulations considered here. We did not try to esti-
pected to decay as (4~272¢7 wherez is the dynamical mate autoco_rr_elation exponenfor the_alg(_)rithms,_ because
criical  exponent. With =0, z=1 we find C(r) in all cases, itis sm_a[las can pe seenin Flg) énd |§ would

’ be hard to determine with high precision. Looking at the

~ 7(1+77) itti 1 1 =

o ) F!ttlng to this form we findy=0.03%5). The _data, it is likely that values of for all algorithms are the
obtained critical exponents are in excellent agreement W'tgame or quite close. A logarithmic dependenceradn L
previous work{11] and more recent high-precision estimates; ’ '

. indicatingz=0, cannot also be excluded.
for the critical exponents of the 3®Y model[20]. . ' : -
It would be of much interest to calcula@(r.7) for In this paper, we have also derived an efficient way of

. : : . measuring correlation functions during the worm construc-
0, using this method. Such calculations are currently "Nions. This feature is similar to other worm algorithpds5,
progresq22]. but here we show, including analytical arguments, that it also
works for directed worms. The situation for directed QMC
VI. SUMMARY AND DISCUSSION loop algorithmg9] is less certain, even if some results were

We have proposed a directed worm algorithm for thef€cently presented in Rejf24]. _
quantum rotor model. This algorithm is an improvement of 1he directed worm algorithm could be specially useful to
the “undirected” algorithm presented in RéB]. It has been study.the translltlo.n for a noncommensurate value of the
shown that by adjusting the degrees of freedom left in thé:_hemmal potential in the pure quantum rotor model or for the
detailed balance condition, one can construct a more efficierflisordered case, where very strong finite size effects have
algorithm by minimizing the backtrackingoounce prob-  Peen identified17,19,22.
ability for the worm to erase itself. The minimal probabilities
can be found by solvir_lg a linear pr_ogramming problem ;ub— ACKNOWLEDGMENTS
ject to a few well-defined constraints. A proof of detailed
balance for the directed case has also been presented. TheWe thank M. Troyer for useful discussions and J. Asi-
directed and undirected algorithms are identical except fokainen for a careful reading of the manuscript. This work
the fact that appropriately defined local probabilitigsfor ~ was supported by the NSERC of Canada, by the SHARC-
moving the worm through the lattice are chosen in an optiNET computational initiative, and by the Swiss National Sci-
mal manner for the directed algorithm. Hence, only a veryence Foundation.
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