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Dispersion-managed cnoidal pulse trains
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We report on the existence and properties of breathing periodic cnoidal pulse trains propagating in dispersion
managed systems with piecewise constant dispersion. Our numerical investigations show that the dispersion
management enhances the robustness of the periodic cnoidal pulse trains in comparison to the pulse trains
existing in a uniform medium. The concept might have direct applications to pulse trains generated by mode-
locked fiber lasers.
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I. INTRODUCTION Schralinger equationNLS) that serves as a starting point
for the description of many dispersion-managed systems ad-
Self-action and interaction of wave packets in nonlineamits periodic solutions in the form of Jacobi elliptic func-
media with periodically varying dispersion or diffraction is a tions, which lead to so-called cn, dn, and sn waves that exist
fundamental physical problem with a wide range of practicalin different regimes characterized by a varying degree of
applications. Optical pulse transmission in dispersiondocalization. In the regime of strong localization, dn and cn
managed optical fibergsee, e.g.,[1-10] and references waves feature, respectively, trains of in-phase or out-of-
therein, stretched pulse generation in mode-locked laser sygphase well-separated solitonlike pulses. Similarly, sn waves
tems and recirculating fiber loog41-16, propagation of describe trains of out-of-phase dark solitons or optical kinks.
guiding-center solitons and light bullets in tandem periodicin the case of weak localization, the cnoidal wave concept
guadratic nonlinear medigl7,18, evolution of solitonlike bridges the gap between soliton and linear harméericand
beams in periodically modulated cubic nonlinear mediasn casesor continuousdn case¢ waves. From this point of
[19,20 and in Bose-Einstein condensaf@4,22 should be view, notice that periodic nonlinear waves play a similar role
mentioned in this context. in nonlinear optics as diffraction gratings in classical linear
During the last decade, impressive progress was achievagptics. On the other hand, passive mode-locked fiber lasers
in this area from theoretical as well as experimental andunder certain conditions can deliver a continuous wave train
practical points of view. Several methods have been develbf picosecond or femtosecond pulses at a repetition rate
oped to study the propagation of solitary nonlinear waves irhigher than 100 GHg11,12,14,18§ with essentially discrete
dispersion or diffraction managed systems: different variafourier spectra of synchronized modes, which can be effec-
tional approacheg3,7,8,23—-27, the guiding-center concept tively described by cnoidal waves. The properties of station-
[1,5,9], the multiscale theor}28,29, spectral domain analy- ary cnoidal waves supported by the NLS in uniform media
sis [30], and the numerical averaging meth@31,33. In have been studied in detdibee Refs[43—47]). Neverthe-
addition to conventional bright dispersion-managed solitonsless, the impact of dispersion management on the cnoidal
dark, gray, and antisymmetric solitons were also studied rewave pulse trains, hence the corresponding new features and
cently [33—36. Dispersion management offers a variety of practical advantages, have never been addressed to date.
advantages of paramount practical importance in high-bit- In this paper, we report on the result of comprehensive
rate, long-haul optical fiber links. In this context, the key computer simulations that reveal, for the first time to our
features of dispersion-managed systems employing so-callddhowledge, the existence and basic properties of whole fami-
return-to-zero, or solitonlike pulse trains, are the reducedies of breathing cnoidal waves in dispersion managed physi-
pulse-pulse interaction and the pulse energy enhancemeral systems described by the NLS. In the strong localization
which are possible under proper conditiol8’—42. This  limit, these waves have much in common with dispersion
reduces the inter-symbol-interaction errors and enhances tleanaged solitons. In particular, the energy of breathing cnoi-
signal-to-noise ratio; hence dispersion-managed soliton pulsgal wave is enhanced relative to the pulse trains propagating
trains exhibit improved performances in data transmissiorin media with the corresponding constant average dispersion.
communications. Thus, high-bit-rate, long-haul, all-opticalWe have shown that periodic dispersion modulation can
fiber links employing this technique are already installed andstrongly, yet not completely, reduce the dynamical and
in use. modulational instabilities that affect the families of cnoidal
Besides localized single-pulse solutions, the nonlineawave trains.
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Il. THEORETICAL MODEL AND SYSTEM PARAMETERS Ger 7,6) =My x(7— 70— &), mlexdi ap+iéx?

Our starting point is the (+1)-dimensional nonlinear X (M2—1/2) = (i12) a?&+i ], 3)
Schralinger equation for the lossless focusing cubic me-
dium, modified to include spatially varying group velocity and one stationary periodic solution for normal constant dis-
dispersiond(¢): persiond(¢)=1:
2
i§—q:3d(§)j—;—q|q|2. (1) Usrl 7,6) =My s x(7— no— ), mlexd —ian
+HiEX2(L+mA) 2+ (i) a®E+io].  (4)
Here q(7,£€) = (Lais/Lspm) Y?A(7,€)15 7% is the dimension-
less complex amplitudéd( 7, €) is the slowly varying enve- In expressiong3) and (4), the symbols cng,m), dn(z,m),
lope, I is the input intensity,y=(t—2z/ug)/ 7, is the nor-  and snf,m) stand for elliptic functions, &m=<1 is the
malized running time,r, is the characteristic time scale, modulus of the elliptic function that can be treated as a pa-
ugrz(ak/aw);iwo is the group velocityko=k(wg) is the rameter describing the degree of localization of the wave
field energy,y is the arbitrary form factoryg is the initial
time shift, « is the initial frequency shift, angy, is the initial
phase. Note that the period of the dn wave K(&)/y,
whereK(m) is the elliptic integral of the first kind, whereas
the period of both the cn waves and the sn waves is
4K(m)/y, which is twice higher.
In the case of weak dispersion maps, i&l<1, one can
average Eq(l) over large propagation distancét obtain a

wave numberwg is the carrying frequency=1z/L 45 is the
normalized propagation distance, ahg=73/|3;| is the
dispersion length. The coefficiepy=(d°k/dw?) -, is de-
fined by the group velocity dispersid@VD) for a standard
telecommunication fiberL s,,=2c/(wgnylp) is the self-
phase modulation length, amg =37 wox*)(we)/[k(we)c]

is the nonlinear coefficient which is proportional to the Fou-

i ® i : ol . :
rier transformy™*(wo) of the corresponding element of the gy gtem with constant coefficients. The solutions of this equa-
nonlinear susceptibility tensor. . . tion also have the form of Eq$3) and(4) and can serve as
_ Throughout the paper we consider the simplest two-ste 44 intial guess for the calculation of the profile of the
dispersion map consisting of two fiber segments with lengthgy e breathing cnoidal waves propagating in stronger maps,
L, andL,, having different GVD coefficient, , at the i higher values of dispersion modulation depth, when
carrier frequencywo. Therefore the dimensionless disper- girect averaging is inapplicable. It is instructive to rescale the
sion coefficient in Eq(1) is introduced as resulting solution of Eqs(3) and(4) by the proper selection
_ of the form factory, in such way that the period@ of the dn
d(§)=da for nL=é<nl+Lo/2, wave equals to 2 and the period of the cn and sn wave
d(&)=d. for nL+L./2<é<nlL+L./2+L,, 2 equals tp 4. Th|s' choice means that thg characteristic tlme
(&)=d, al2=¢ & . @ scalery in Eq. (1) is related to the repetition rate of pulses in

d(&)=d, for nL+L./2+ L <é<(n+1)L the cnoidal wave train but not to the individual pulse dura-
2 as e ’ tion.
where L=L,+L, is the period of the dispersion map, To find the profiles of the arbitrary dispersion-managed
=0,1,2,..., andd,= B,/| 8,|<0 andd,=B,/|8,|>0 for fi-  choidal waves, we used the method of numerical averaging

ber segments with anomalous and normal group velocity disdeveloped by Nijhof and co-workef8,31,32. Convergence
persion, respectively. We assume that light is launched int@f this method proved to be relatively fast for well-localized
the fiber in the middle of the segment with anomalous GVD Solitonlike high-energy solutions and is considerably slower
corresponding to one of the chirp-free points of the systemfOr deIo_callzed low-energy quas!harmpnlc waves. For strong
Note that for the typical valuB,|=0.2 pg/km of the GvD  dispersion maps, the propagation distance step should be
coefficient for telecommunication fibers and the typical pulsecarefully controlled in the calculations to avoid numerical
width 7o=1 ps, the period of the dispersion mag-1 thatis  €ITors. _ _ _ _
used in the paper corresponds to an actual propagation dis- The profiles of the numerically calculated breathing cnoi-
tance of about 5 km. For simplicity, from now on we con- dal waves are generally nontrivial, and can be characterized

sider dispersion maps with equal lengths of fiber segment8Y two key parameters, namely, the energy fldvper time

with anomalous and normal GVD, i.e.,=L,=L/2. periodT,

The two-step dispersion map considered here is fully
characterized by two parameters: the path-average dispersion U= jm (7, &)|%d (5)
dae=(d,L,+d,L,)/L and the dispersion modulation depth 7 at7. 7

od=d,—d,. For the constant anomalous group velocity dis-

persiond(§)=—1, Eq. (1) admits two periodic stationary and the integral width of the individual pulses forming the
solutions in the form of cnoidal dn and cn waVe8—47,  periodic sequence, defined as

given by

Ti4 12 T4 -2
ar( 7, €)= xdn x(7— 19— a&),mlexfian+iéx? W=2U nzlqw,f)lzdﬂ) U ICI(n,f)Izdn) :
—T/4 —TI4

X (1—m?2)— (i2) a?&+i o], (6)
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This expression is valid only for cnoidal cn waves and sn
waves, whereas in the case of dn waves integration irf@q.
should be carried out over the segméntT/2,T/2]. The
energy flow(5) gives a measure of the strength of the non-
linearity and the integral widtli6) determines thelegree of
localization of the energy flow carried by the pulses of the
cnoidal wave For the fixed cnoidal wave periofl the inte- lq|
gral width W can be treated as a function bf Hence, the
dependenciesW(U) for periodic waves in dispersion-
managed fiber links are somehow analogous to the disper
sion curves(dependencies of energy flow on nonlinearity
induced phase shjftfor localized stationary solitons in the

uniform NLS. We thus use the dependendigéU) to char- 009 0 L/2 5 0
acterize the whole families of dispersion-managed cnoidal » Lf 4]
waves. _;: 0.064 g N
w
s i\ g .| 2
Il. RESULTS AND DISCUSSION g 001V g I
1 /4
Using the numerical averaging method described above, g , , , 0 , i .
we have analyzed the basic properties of the cn-, dn-, anc 1005 00 05 10 -0 05 00 05 10
sn-type breathing cnoidal waves existing for different values n/(2m) n/(2w)
of the path-average dispersial,, and dispersion modula- 034 9
tion depthdd. The period of the cn and sn waves was set to
47, whereas the period of dn wave was set 0 3olutions S 0171 L/4 S 1 L/4
for arbitrary values of these periods can be obtained from the & N
above cases by simple scaling transformations using thei 0.001 2 01
similarity rules of the NLS. = g
cn-type breathing waveThe typical propagation dynam- © S
ics of cn waves is shown in Fig. 1 for low and high values of 34 : . . 2 . : .
-1.0 -0.5 0.0 0.5 1.0 .10 -05 00 05 1.0

the energy flow, in the case of anomalous path-average dis
persion and a relatively strong dispersion map. For this dis- n/(2m) n/(2m)

ersion map there exist two chirp-free poiritghere local ) . .
P P b poirt FIG. 1. Dynamics of propagation of cn waves with energy flows

frequencyde/dn=0) situated in the middle of segments e . ) ) X
with normal and anomalous GVD, and two points with maxi-L.J_OA(a) and 10(b) within one period of dispersion map. Condi-

. . . .tions: d,e=—0.1 and§d=10. Lower plots display the intensit
mal chirp situated at the boundaries _between segments Wn:hstribu?i\gn and frequency chirp of th(g propaggtigg waves at v)z/ari-
normall and gnomalous GVD. In th? first pa_rt of the anoma; us distances. All quantities are plotted in dimensionless units.
lous dispersion segment, spreading dominates over sel?—
compression. After this, chirped wave enters normal disper-
sion segment, where it first compresses and the§nergy flow of the cnoidal waves quickly increases with in-
decompresses. Finally, the initial chirp-free profile is restoregrease of the dispersion map strengttspersion modulation
at the end of the second half of the anomalous dispersiodlepth, similar to the case of single dispersion-managed soli-
segment. The intensity profile of low energy waves is aimostons. One can also see from FigbRthat for fixed widthWw,
harmonic. The frequency chirp at the entrance of the normahe energy flow increases with growing path-averaged dis-
dispersion segment can also be approximated by a harmonpersion modulusd,,d. This effect is most pronounced for
function shifted by a quarter of its period in comparison withsmall values ofd,,J<0.2. It should be pointed out that cn
the intensity distribution. The profile of high-energy waveswaves exist for zero value of path-average dispersion, and
looks like a sequence of well-separated bell-shaped pulsesyen for small positive values af,,., but in this parameter
the frequency chirp can be approximated by an ellipticalrange the method of numerical averaging becomes unstable
function. However, in the central energy bearing part of theand it is difficult to obtain energy-width diagrams for the
pulse, the frequency chirp is practically linear, a findingwhole energy range. Typical profiles of cn waves are de-
which is consistent with previous results on single solitons irpicted in the Fig. &) for different values of the energy flow
dispersion-managed fiber link&—10. An interesting point U. One can see from this figure that with increasing energy
is that the breathing of the high-energy wave is more proflow, the wave transforms from an almost harmonic profile to
nounced compare Figs. () and 1b)]. a sequence of well-separated out-of-phase pulses with bell-

Figure 2 summarizes the basic properties of cn wavedike shapes. Further increase of the energy flow leads to ap-
Figures 2Za) and 2b) illustrate the energy-width diagrams pearance of oscillating tails in the pulses forming the cnoidal
W(U) for different values of the dispersion modulation wave train. The presence of oscillating tails is also a charac-
depth 6d and path-average dispersiah,.. It should be teristic feature of the dispersion-managed waves.
pointed out that for fixed pulse width and wave period, the dn-type breathing wavéhe propagation dynamics of the
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FIG. 2. Energy-width diagrams for the family of cn wavés. 0.16 4
dae=—0.1 and various values of dispersion differenée)} &d £ ol —
=10 and various values of path-average dispersign. Panel(c) % 0.08 L/4 3 2 L/4
shows the wave profiles corresponding to the energy flaivs S 0,001 % 0]
=0.5, 2, and 10, withd,,=—0.1 andsd=10. All quantities are o 2
plotted in dimensionless units. .4::; -0.084 % 2]
. - 0.16 . : : 4 . . .
dn waves is shown in Fig. 3 for the case of anomalous path- -0 05 00 05 10 10 05 00 05 10
average dispersion. The main features of dn-wave propaga- n/(2m) n/(2m)

tion are similar to those encountered for cn waves. The main

difference between these two waves is that dn waves in the FIG. 3. Dynamics of propagation of dn waves with energy flows
low-energy limit contain a constant pedestal, whereas in th& =0.2 (a) and %b) within one period of dispersion map. Condi-
high-energy limit they transform into a sequence of in-phaseions: d,,= —0.1 and 5d=10. Lower plots display the intensity
solitons. As in the case of cn waves, the frequency chirp oflistribution and frequency wave chirp at various propagation dis-
low-energy dn waves at the boundary between segments witances. All quantities are plotted in dimensionless units.
anomalous and normal dispersion can be described by har-

monic functions. However, in the high-energy limit, the fre- for high enoughJ values. Also note that contrary to its coun-
quency chirp profile is more complicated. In the central parterpart in the NLS with constant dispersion, the dn waves in

of the pulse, the chirp remains almost linear. dispersion-managed system can change sign along the tem-
Typical features of the families of dn waves are summa-poral coordinate;.
rized in Fig. 4. Figures @ and 4b) show energy-width sn-type breathing wavesVe have found waves of this

diagramswW(U) for different values of the dispersion modu- type only at the regime of normal path-average group veloc-
lation depthsd and path-average dispersidg,.. These de- ity dispersion, i.e.d,>0. Figure 5 illustrates the propaga-
pendencies differ from those of cn waves only in the low-tion dynamics of sn waves inside one period of the disper-
energy limit U<1 where the contribution of the constant sion map. It should be mentioned that for the same value of
pedestal is considerable. At fixed widtt the energy flow of  the dispersion modulation depth, the intensity variations for
the breathing dn waves increases with growing dispersiotthe sn wave are rather weak in comparison with those en-
map strength(dispersion modulation depthOne can also countered for cn and dn waves. The profile of low-energy sn
see a drastic increase of the energy flow of the dn waves favaves is very close to the quasilinear harmonic wave; the
fixed width, with increase of the modulus of the path-averagdrequency chirp at the boundary between segments with
dispersion|d,,d [Fig. 4b)]. Notice that this effect is most anomalous and normal dispersions can be well described by
pronounced for weakly localized waves with relatively higha harmonic function in the low-energy limit. High-energy
widths W~ 2. Representative profiles of the dn-type cnoidalwaves exhibit rather complicated intensity profilsse also
waves are shown in the Fig(e} for different values of the Fig. 6 with the properties of sn-wave familjedbut have
energy flow U. When increasing the energy flow, the much in common with the sequence of out-of-phase dark
dispersion-managed dn-wave transforms from harmonic ossolitons. Notice that dispersion-managed sn waves have pro-
cillations superimposed on constant pedestal into a sequenoeunced amplitude oscillations in the plateau area, in con-
of bell-shaped in-phase solitons that acquire oscillating tail$rast with conventional snoidal waves in the NLS with con-
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dimensionless units. e o
3 011 8 04
[ 9} (&)
stant dispersion. Such oscillations were recently shown to be 08
the characteristic feature of strongly dispersion-managec 10 05 00 05 10 10 05 00 05 10
dark solitong36]. The frequency chirp in the plateau area is n/(2m) n/(2m)

almost linear. As one can see from the Fig. 6, the width of

the pulses carried by sn waves is a nonmonotonic function of g 5. Dynamics of propagation of sn waves with energy

the energy flow. We attribute this specific feature to pro-fiows U=0.4 (a) and 10(b) within one period of dispersion map.
nounced oscillations of the wave amplitude in the platealconditions:d,,=0.1 andsd=10. Lower plots display the intensity

area that grows up with increase of energy fldvig. 6(c)].

distribution and frequency wave chirp at various propagation dis-

Notice that sn-type cnoidal wave looks like a sequence ofances. All quantities are plotted in dimensionless units.

kinks up to moderate values of energy flow, a feature that
might find practical applications.

Cnoidal waves in media with constant dispersion are
known to be unstable with respect to the perturbations of

in the normal dispersion reginid3—47. Thus, dn waves are

whereas cn waves suffer weak oscillatory instabilities; s

The

typical

propagation

input profiles in the anomalous dispersion regime and Stablgispersion-managed cn waves with moderate withh
=1.24 and energy flow =2 is shown in Fig. 7@). One can

ngee that dispersion-managed waves conserve their input

rgiructure for large distancém the particular case displayed,

dynamics

of perturbed

waves are completely stable in normal dispersion. Thereford!P t0 250 dispersion lengthsThe instability of the cn waves

the natural question that arises is whether the influence diécreases with growing energy flowise., at higher degree
alternating dispersion in different segments of dispersiorPf localization. For example, we observed numerically that
map reduces the instability strength of the cnoidal pulséhe perturbed cn waves with energy fltwv=20 could propa-
trains. To get insight into this issue, we have solved the govgate undistorted over more than 1000 dispersion lengths.
erning Eq.(1) numerically with the input conditiong( 7, & This result could be compared with propagation of perturbed
=0)=w(n)F(n)[1+p(7)], wherew(n) is the profile of cnoidal waves in uniform medium. Comparison can be made
the breathing dispersion-managed way&s;) is a complex  with different criteria, e.g., one can follow the dynamics of
random function with a Gaussian distribution and varianceperturbed waves with the same energy flow or with the same
o?, andF(7) is a broad Gaussian envelope imposed on thavidth. Moreover, it is possible to consider uniform medium
otherwise transversely infinite pulse pattern. The width of theeither with dispersion coefficierd corresponding to path-
envelope was much bigger than the cnoidal wave period andverage dispersiod,, or with dispersion coefficient corre-
we monitored the evolution dynamics in the central part ofsponding to dispersiod, on the anomalous segment of fiber
the envelope. link. A cn wave in an uniform medium withd=d_,
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FIG. 6. Energy-width diagrams for the families of sn wav@s.
d.e=0.1 and various values of dispersion differend®; 5d=6
and various values of path-average dispersign. Panel(c) shows
the wave profiles corresponding to the energy flddvs0.25, 4, and
15, with d,,=0.1 andéd=6. All quantities are plotted in dimen- 0
sionless units. 0 -4 -2 0 2 4
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and the same energy flow is much more localized than its, ~'C: 7- (& Dynamics of propagation of the perturbed
dispersion-managed cn wave with widtth=1.24 and energy flow

disper_sion-manage.d counte.rpart. Despite this faqt_, the corr(—b—zz With do= — 0.1, 5d=10. For comparisor(b) and () show
sponding cn Wavg n thg uniform medium destab|I|ze§ rnuCllhe dynamics of propagation of the perturbed stationary wave with
faster than the dispersion-managed cn wave. A typical eXgme same energy and the same width, respectively, but in the uni-
ample is shown in Fig. (B). In contrast, for this particular  form medium with dispersionl=—0.1 equal to path-average dis-
case, the cnoidal wave in the uniform medium witkd,,.  persiond,,. Panelsd) and(e) show the propagation of perturbed
and with the same individual pulse width survives largerstationary wave with, respectively, the same energy and width as for
propagation distances than its dispersion-managed counterave(a), but in uniform medium with dispersioth= —5.1(i.e., the
part. This is illustrated in Fig. (). Note, however, that the dispersion on anomalous segment of dispersion )m&andom
corresponding wave in the uniform medium carries an exoise realization_s_ are identical _in gll cases. Noise_ variamte
tremely low energy, and thus is close to a linear harmoniczo'oz' All quantities are plotted in dimensionless units.

wave. Note that such stabilization of cnoidal waves in the

low-energy limit is a known fac{43—47. However, such

waves are not attractive from a practical point of view be-our simulations, as in the case of cn waves, the typical decay
cause of their low contrast, hence very small signal-to-noisélistance for sn waves exceeds 100-200 dispersion lengths.
ratio. The comparison of the propagation dynamics of per-

turbed dispersion-managed waves and waves in uniform me-

dium with d=d, with equal energies and equal wid{l&gs. IV. CONCLUSIONS

7(d) and 7e), respectively also leads to the conclusion that |, summary, we have found numerically families of

dispersion-managed waves feature weaker instabilities. Oﬂispersion-managed, breathing cnoidal wave trains of cn, dn,
physical grounds, such stabilization is analogous to the regnd sn types supported by NLS models. Such wave trains are
duction of the time jitter of isolated pulses in dispersion-energy enhanced in comparison with their counterparts in
managed fiber transmission lines with strong maps. This conuniform settings with the same average dispersion. In the
clusion holds also for the case of dn waves with moderatease of pulse trains propagating in optical fibers, this is fa-
and high energiet) >1, when the constant pedestal almostvorable from the practical point of view because it yields an
vanishes and thus the modulational instability is correspondimproved signal-to-noise ratio. We also found that under
ingly weakened. Finally, notice that sn waves which areproper conditions, dispersion management enhances the dy-
completely stable in uniform medium with normal dispersionnamical stability and reduces the time jitter of the cnoidal
become unstable in dispersion-managed fibers. However, wave trains.

& axis
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