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Dispersion-managed cnoidal pulse trains
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We report on the existence and properties of breathing periodic cnoidal pulse trains propagating in dispersion
managed systems with piecewise constant dispersion. Our numerical investigations show that the dispersion
management enhances the robustness of the periodic cnoidal pulse trains in comparison to the pulse trains
existing in a uniform medium. The concept might have direct applications to pulse trains generated by mode-
locked fiber lasers.
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I. INTRODUCTION

Self-action and interaction of wave packets in nonline
media with periodically varying dispersion or diffraction is
fundamental physical problem with a wide range of practi
applications. Optical pulse transmission in dispersio
managed optical fibers~see, e.g.,@1–10# and references
therein!, stretched pulse generation in mode-locked laser s
tems and recirculating fiber loops@11–16#, propagation of
guiding-center solitons and light bullets in tandem perio
quadratic nonlinear media@17,18#, evolution of solitonlike
beams in periodically modulated cubic nonlinear me
@19,20# and in Bose-Einstein condensates@21,22# should be
mentioned in this context.

During the last decade, impressive progress was achie
in this area from theoretical as well as experimental a
practical points of view. Several methods have been de
oped to study the propagation of solitary nonlinear waves
dispersion or diffraction managed systems: different va
tional approaches@3,7,8,23–27#, the guiding-center concep
@1,5,9#, the multiscale theory@28,29#, spectral domain analy
sis @30#, and the numerical averaging method@2,31,32#. In
addition to conventional bright dispersion-managed solito
dark, gray, and antisymmetric solitons were also studied
cently @33–36#. Dispersion management offers a variety
advantages of paramount practical importance in high-
rate, long-haul optical fiber links. In this context, the k
features of dispersion-managed systems employing so-c
return-to-zero, or solitonlike pulse trains, are the redu
pulse-pulse interaction and the pulse energy enhancem
which are possible under proper conditions@37–42#. This
reduces the inter-symbol-interaction errors and enhances
signal-to-noise ratio; hence dispersion-managed soliton p
trains exhibit improved performances in data transmiss
communications. Thus, high-bit-rate, long-haul, all-optic
fiber links employing this technique are already installed a
in use.

Besides localized single-pulse solutions, the nonlin
1063-651X/2003/68~2!/026613~7!/$20.00 68 0266
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Schrödinger equation~NLS! that serves as a starting poin
for the description of many dispersion-managed systems
mits periodic solutions in the form of Jacobi elliptic func
tions, which lead to so-called cn, dn, and sn waves that e
in different regimes characterized by a varying degree
localization. In the regime of strong localization, dn and
waves feature, respectively, trains of in-phase or out-
phase well-separated solitonlike pulses. Similarly, sn wa
describe trains of out-of-phase dark solitons or optical kin
In the case of weak localization, the cnoidal wave conc
bridges the gap between soliton and linear harmonic~cn and
sn cases! or continuous~dn case! waves. From this point of
view, notice that periodic nonlinear waves play a similar ro
in nonlinear optics as diffraction gratings in classical line
optics. On the other hand, passive mode-locked fiber la
under certain conditions can deliver a continuous wave tr
of picosecond or femtosecond pulses at a repetition
higher than 100 GHz@11,12,14,16#, with essentially discrete
Fourier spectra of synchronized modes, which can be ef
tively described by cnoidal waves. The properties of stati
ary cnoidal waves supported by the NLS in uniform med
have been studied in detail~see Refs.@43–47#!. Neverthe-
less, the impact of dispersion management on the cno
wave pulse trains, hence the corresponding new features
practical advantages, have never been addressed to dat

In this paper, we report on the result of comprehens
computer simulations that reveal, for the first time to o
knowledge, the existence and basic properties of whole fa
lies of breathing cnoidal waves in dispersion managed ph
cal systems described by the NLS. In the strong localizat
limit, these waves have much in common with dispers
managed solitons. In particular, the energy of breathing cn
dal wave is enhanced relative to the pulse trains propaga
in media with the corresponding constant average dispers
We have shown that periodic dispersion modulation c
strongly, yet not completely, reduce the dynamical a
modulational instabilities that affect the families of cnoid
wave trains.
©2003 The American Physical Society13-1
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II. THEORETICAL MODEL AND SYSTEM PARAMETERS

Our starting point is the (111)-dimensional nonlinea
Schrödinger equation for the lossless focusing cubic m
dium, modified to include spatially varying group veloci
dispersiond(j):

i
]q

]j
5

1

2
d~j!

]2q

]h22ququ2. ~1!

Here q(h,j)5(Ldis/Lspm)1/2A(h,j)I 0
21/2 is the dimension-

less complex amplitude,A(h,j) is the slowly varying enve-
lope, I 0 is the input intensity,h5(t2z/ugr)/t0 is the nor-
malized running time,t0 is the characteristic time scale
ugr5(]k/]v)v5v0

21 is the group velocity,k05k(v0) is the

wave number,v0 is the carrying frequency,j5z/Ldis is the
normalized propagation distance, andLdis5t0

2/ub2u is the
dispersion length. The coefficientb25(]2k/]v2)v5v0

is de-
fined by the group velocity dispersion~GVD! for a standard
telecommunication fiber,Lspm52c/(v0n2I 0) is the self-
phase modulation length, andn253pv0x (3)(v0)/@k(v0)c#
is the nonlinear coefficient which is proportional to the Fo
rier transformx (3)(v0) of the corresponding element of th
nonlinear susceptibility tensor.

Throughout the paper we consider the simplest two-s
dispersion map consisting of two fiber segments with leng
La and Ln , having different GVD coefficientsba,n at the
carrier frequencyv0 . Therefore the dimensionless dispe
sion coefficient in Eq.~1! is introduced as

d~j!5da for nL<j,nL1La/2,

d~j!5dn for nL1La/2<j,nL1La/21Ln , ~2!

d~j!5da for nL1La/21Ln<j,~n11!L,

where L5La1Ln is the period of the dispersion map,n
50,1,2,..., andda5ba /ub2u,0 anddn5bn /ub2u.0 for fi-
ber segments with anomalous and normal group velocity
persion, respectively. We assume that light is launched
the fiber in the middle of the segment with anomalous GV
corresponding to one of the chirp-free points of the syste
Note that for the typical valueub2u50.2 ps2/km of the GVD
coefficient for telecommunication fibers and the typical pu
width t051 ps, the period of the dispersion mapL51 that is
used in the paper corresponds to an actual propagation
tance of about 5 km. For simplicity, from now on we co
sider dispersion maps with equal lengths of fiber segme
with anomalous and normal GVD, i.e.,La5Ln5L/2.

The two-step dispersion map considered here is fu
characterized by two parameters: the path-average dispe
dave5(daLa1dnLn)/L and the dispersion modulation dep
dd5dn2da . For the constant anomalous group velocity d
persiond(j)[21, Eq. ~1! admits two periodic stationary
solutions in the form of cnoidal dn and cn waves@43–47#,
given by

qdn~h,j!5xdn@x~h2h02aj!,m#exp@ iah1 i jx2

3~12m2/2!2~ i /2!a2j1 ic0#,
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qcn~h,j!5mxcn@x~h2h02aj!,m#exp@ iah1 i jx2

3~m221/2!2~ i /2!a2j1 ic0#, ~3!

and one stationary periodic solution for normal constant d
persiond(j)[1:

qsn~h,j!5mxsn@x~h2h02aj!,m#exp@2 iah

1 i jx2~11m2!/21~ i /2!a2j1 ic0#. ~4!

In expressions~3! and ~4!, the symbols cn(h,m), dn(h,m),
and sn(h,m) stand for elliptic functions, 0<m<1 is the
modulus of the elliptic function that can be treated as a
rameter describing the degree of localization of the wa
field energy,x is the arbitrary form factor,h0 is the initial
time shift,a is the initial frequency shift, andc0 is the initial
phase. Note that the period of the dn wave is 2K(m)/x,
whereK(m) is the elliptic integral of the first kind, wherea
the period of both the cn waves and the sn waves
4K(m)/x, which is twice higher.

In the case of weak dispersion maps, i.e.,dd!1, one can
average Eq.~1! over large propagation distancesj to obtain a
system with constant coefficients. The solutions of this eq
tion also have the form of Eqs.~3! and ~4! and can serve as
a good initial guess for the calculation of the profile of t
true breathing cnoidal waves propagating in stronger ma
with higher values of dispersion modulation depthdd, when
direct averaging is inapplicable. It is instructive to rescale
resulting solution of Eqs.~3! and~4! by the proper selection
of the form factorx, in such way that the periodT of the dn
wave equals to 2p and the period of the cn and sn wav
equals to 4p. This choice means that the characteristic tim
scalet0 in Eq. ~1! is related to the repetition rate of pulses
the cnoidal wave train but not to the individual pulse du
tion.

To find the profiles of the arbitrary dispersion-manag
cnoidal waves, we used the method of numerical averag
developed by Nijhof and co-workers@2,31,32#. Convergence
of this method proved to be relatively fast for well-localize
solitonlike high-energy solutions and is considerably slow
for delocalized low-energy quasiharmonic waves. For stro
dispersion maps, the propagation distance step should
carefully controlled in the calculations to avoid numeric
errors.

The profiles of the numerically calculated breathing cn
dal waves are generally nontrivial, and can be character
by two key parameters, namely, the energy flowU per time
periodT,

U5E
2T/2

T/2

uq~h,j!u2dh, ~5!

and the integral width of the individual pulses forming th
periodic sequence, defined as

W52S E
2T/4

T/4

h2uq~h,j!u2dh D 1/2S E
2T/4

T/4

uq~h,j!u2dh D 21/2

.

~6!
3-2
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DISPERSION-MANAGED CNOIDAL PULSE TRAINS PHYSICAL REVIEW E68, 026613 ~2003!
This expression is valid only for cnoidal cn waves and
waves, whereas in the case of dn waves integration in Eq~6!
should be carried out over the segment@2T/2,T/2#. The
energy flow~5! gives a measure of the strength of the no
linearity and the integral width~6! determines thedegree of
localization of the energy flow carried by the pulses of
cnoidal wave. For the fixed cnoidal wave periodT, the inte-
gral width W can be treated as a function ofU. Hence, the
dependenciesW(U) for periodic waves in dispersion
managed fiber links are somehow analogous to the dis
sion curves~dependencies of energy flow on nonlinear
induced phase shift! for localized stationary solitons in th
uniform NLS. We thus use the dependenciesW(U) to char-
acterize the whole families of dispersion-managed cno
waves.

III. RESULTS AND DISCUSSION

Using the numerical averaging method described abo
we have analyzed the basic properties of the cn-, dn-,
sn-type breathing cnoidal waves existing for different valu
of the path-average dispersiondave and dispersion modula
tion depthdd. The period of the cn and sn waves was se
4p, whereas the period of dn wave was set to 2p. Solutions
for arbitrary values of these periods can be obtained from
above cases by simple scaling transformations using
similarity rules of the NLS.

cn-type breathing wave. The typical propagation dynam
ics of cn waves is shown in Fig. 1 for low and high values
the energy flow, in the case of anomalous path-average
persion and a relatively strong dispersion map. For this
persion map there exist two chirp-free points~where local
frequencydw/dh[0) situated in the middle of segmen
with normal and anomalous GVD, and two points with ma
mal chirp situated at the boundaries between segments
normal and anomalous GVD. In the first part of the anom
lous dispersion segment, spreading dominates over
compression. After this, chirped wave enters normal disp
sion segment, where it first compresses and t
decompresses. Finally, the initial chirp-free profile is resto
at the end of the second half of the anomalous disper
segment. The intensity profile of low energy waves is alm
harmonic. The frequency chirp at the entrance of the nor
dispersion segment can also be approximated by a harm
function shifted by a quarter of its period in comparison w
the intensity distribution. The profile of high-energy wav
looks like a sequence of well-separated bell-shaped pu
the frequency chirp can be approximated by an ellipti
function. However, in the central energy bearing part of
pulse, the frequency chirp is practically linear, a findi
which is consistent with previous results on single solitons
dispersion-managed fiber links@1–10#. An interesting point
is that the breathing of the high-energy wave is more p
nounced@compare Figs. 1~a! and 1~b!#.

Figure 2 summarizes the basic properties of cn wav
Figures 2~a! and 2~b! illustrate the energy-width diagram
W(U) for different values of the dispersion modulatio
depth dd and path-average dispersiondave. It should be
pointed out that for fixed pulse width and wave period, t
02661
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energy flow of the cnoidal waves quickly increases with
crease of the dispersion map strength~dispersion modulation
depth!, similar to the case of single dispersion-managed s
tons. One can also see from Fig. 2~b! that for fixed widthW,
the energy flow increases with growing path-averaged
persion modulusudaveu. This effect is most pronounced fo
small values ofudaveu<0.2. It should be pointed out that c
waves exist for zero value of path-average dispersion,
even for small positive values ofdave, but in this parameter
range the method of numerical averaging becomes unst
and it is difficult to obtain energy-width diagrams for th
whole energy range. Typical profiles of cn waves are
picted in the Fig. 2~c! for different values of the energy flow
U. One can see from this figure that with increasing ene
flow, the wave transforms from an almost harmonic profile
a sequence of well-separated out-of-phase pulses with
like shapes. Further increase of the energy flow leads to
pearance of oscillating tails in the pulses forming the cnoi
wave train. The presence of oscillating tails is also a char
teristic feature of the dispersion-managed waves.

dn-type breathing wave. The propagation dynamics of th

FIG. 1. Dynamics of propagation of cn waves with energy flo
U50.4 ~a! and 10~b! within one period of dispersion map. Cond
tions: dave520.1 anddd510. Lower plots display the intensity
distribution and frequency chirp of the propagating waves at v
ous distances. All quantities are plotted in dimensionless units.
3-3
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dn waves is shown in Fig. 3 for the case of anomalous p
average dispersion. The main features of dn-wave prop
tion are similar to those encountered for cn waves. The m
difference between these two waves is that dn waves in
low-energy limit contain a constant pedestal, whereas in
high-energy limit they transform into a sequence of in-ph
solitons. As in the case of cn waves, the frequency chirp
low-energy dn waves at the boundary between segments
anomalous and normal dispersion can be described by
monic functions. However, in the high-energy limit, the fr
quency chirp profile is more complicated. In the central p
of the pulse, the chirp remains almost linear.

Typical features of the families of dn waves are summ
rized in Fig. 4. Figures 4~a! and 4~b! show energy-width
diagramsW(U) for different values of the dispersion modu
lation depthdd and path-average dispersiondave. These de-
pendencies differ from those of cn waves only in the lo
energy limit U!1 where the contribution of the consta
pedestal is considerable. At fixed widthW, the energy flow of
the breathing dn waves increases with growing dispers
map strength~dispersion modulation depth!. One can also
see a drastic increase of the energy flow of the dn waves
fixed width, with increase of the modulus of the path-avera
dispersionudaveu @Fig. 4~b!#. Notice that this effect is mos
pronounced for weakly localized waves with relatively hi
widths W;2. Representative profiles of the dn-type cnoid
waves are shown in the Fig. 4~c! for different values of the
energy flow U. When increasing the energy flow, th
dispersion-managed dn-wave transforms from harmonic
cillations superimposed on constant pedestal into a sequ
of bell-shaped in-phase solitons that acquire oscillating t

FIG. 2. Energy-width diagrams for the family of cn waves.~a!
dave520.1 and various values of dispersion difference;~b! dd
510 and various values of path-average dispersiondave. Panel~c!
shows the wave profiles corresponding to the energy flowsU
50.5, 2, and 10, withdave520.1 anddd510. All quantities are
plotted in dimensionless units.
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for high enoughU values. Also note that contrary to its coun
terpart in the NLS with constant dispersion, the dn waves
dispersion-managed system can change sign along the
poral coordinateh.

sn-type breathing waves. We have found waves of this
type only at the regime of normal path-average group vel
ity dispersion, i.e.,dave.0. Figure 5 illustrates the propaga
tion dynamics of sn waves inside one period of the disp
sion map. It should be mentioned that for the same value
the dispersion modulation depth, the intensity variations
the sn wave are rather weak in comparison with those
countered for cn and dn waves. The profile of low-energy
waves is very close to the quasilinear harmonic wave;
frequency chirp at the boundary between segments w
anomalous and normal dispersions can be well describe
a harmonic function in the low-energy limit. High-energ
waves exhibit rather complicated intensity profiles~see also
Fig. 6 with the properties of sn-wave families!, but have
much in common with the sequence of out-of-phase d
solitons. Notice that dispersion-managed sn waves have
nounced amplitude oscillations in the plateau area, in c
trast with conventional snoidal waves in the NLS with co

FIG. 3. Dynamics of propagation of dn waves with energy flo
U50.2 ~a! and 5~b! within one period of dispersion map. Cond
tions: dave520.1 anddd510. Lower plots display the intensity
distribution and frequency wave chirp at various propagation d
tances. All quantities are plotted in dimensionless units.
3-4
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DISPERSION-MANAGED CNOIDAL PULSE TRAINS PHYSICAL REVIEW E68, 026613 ~2003!
stant dispersion. Such oscillations were recently shown to
the characteristic feature of strongly dispersion-mana
dark solitons@36#. The frequency chirp in the plateau area
almost linear. As one can see from the Fig. 6, the width
the pulses carried by sn waves is a nonmonotonic functio
the energy flow. We attribute this specific feature to p
nounced oscillations of the wave amplitude in the plate
area that grows up with increase of energy flow@Fig. 6~c!#.
Notice that sn-type cnoidal wave looks like a sequence
kinks up to moderate values of energy flow, a feature t
might find practical applications.

Cnoidal waves in media with constant dispersion
known to be unstable with respect to the perturbations
input profiles in the anomalous dispersion regime and sta
in the normal dispersion regime@43–47#. Thus, dn waves are
highly unstable due the presence of constant backgro
whereas cn waves suffer weak oscillatory instabilities;
waves are completely stable in normal dispersion. Theref
the natural question that arises is whether the influence
alternating dispersion in different segments of dispers
map reduces the instability strength of the cnoidal pu
trains. To get insight into this issue, we have solved the g
erning Eq.~1! numerically with the input conditionsq(h,j
50)5w(h)F(h)@11r(h)#, wherew(h) is the profile of
the breathing dispersion-managed waves,r~h! is a complex
random function with a Gaussian distribution and varian
s2, andF(h) is a broad Gaussian envelope imposed on
otherwise transversely infinite pulse pattern. The width of
envelope was much bigger than the cnoidal wave period
we monitored the evolution dynamics in the central part
the envelope.

FIG. 4. Energy-width diagrams for the family of dn waves.~a!
dave520.1 and various values of dispersion difference;~b! dd
510 and various values of path-average dispersiondave. Panel~c!
shows the wave profiles corresponding to energy flowsU50.25, 1,
and 5, withdave520.1 anddd510. All quantities are plotted in
dimensionless units.
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The typical propagation dynamics of perturbe
dispersion-managed cn waves with moderate widthW
51.24 and energy flowU52 is shown in Fig. 7~a!. One can
see that dispersion-managed waves conserve their i
structure for large distances~in the particular case displayed
up to 250 dispersion lengths!. The instability of the cn waves
decreases with growing energy flows~i.e., at higher degree
of localization!. For example, we observed numerically th
the perturbed cn waves with energy flowU520 could propa-
gate undistorted over more than 1000 dispersion leng
This result could be compared with propagation of perturb
cnoidal waves in uniform medium. Comparison can be ma
with different criteria, e.g., one can follow the dynamics
perturbed waves with the same energy flow or with the sa
width. Moreover, it is possible to consider uniform mediu
either with dispersion coefficientd corresponding to path
average dispersiondave or with dispersion coefficient corre
sponding to dispersionda on the anomalous segment of fib
link. A cn wave in an uniform medium withd5dave

FIG. 5. Dynamics of propagation of sn waves with ener
flows U50.4 ~a! and 10~b! within one period of dispersion map
Conditions:dave50.1 anddd510. Lower plots display the intensity
distribution and frequency wave chirp at various propagation d
tances. All quantities are plotted in dimensionless units.
3-5
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KARTASHOV et al. PHYSICAL REVIEW E 68, 026613 ~2003!
and the same energy flow is much more localized than
dispersion-managed counterpart. Despite this fact, the co
sponding cn wave in the uniform medium destabilizes mu
faster than the dispersion-managed cn wave. A typical
ample is shown in Fig. 7~b!. In contrast, for this particula
case, the cnoidal wave in the uniform medium withd5dave

and with the same individual pulse width survives larg
propagation distances than its dispersion-managed cou
part. This is illustrated in Fig. 7~c!. Note, however, that the
corresponding wave in the uniform medium carries an
tremely low energy, and thus is close to a linear harmo
wave. Note that such stabilization of cnoidal waves in
low-energy limit is a known fact@43–47#. However, such
waves are not attractive from a practical point of view b
cause of their low contrast, hence very small signal-to-no
ratio. The comparison of the propagation dynamics of p
turbed dispersion-managed waves and waves in uniform
dium with d5da with equal energies and equal widths@Figs.
7~d! and 7~e!, respectively# also leads to the conclusion th
dispersion-managed waves feature weaker instabilities.
physical grounds, such stabilization is analogous to the
duction of the time jitter of isolated pulses in dispersio
managed fiber transmission lines with strong maps. This c
clusion holds also for the case of dn waves with moder
and high energiesU.1, when the constant pedestal almo
vanishes and thus the modulational instability is correspo
ingly weakened. Finally, notice that sn waves which a
completely stable in uniform medium with normal dispersi
become unstable in dispersion-managed fibers. Howeve

FIG. 6. Energy-width diagrams for the families of sn waves.~a!
dave50.1 and various values of dispersion difference;~b! dd56
and various values of path-average dispersiondave. Panel~c! shows
the wave profiles corresponding to the energy flowsU50.25, 4, and
15, with dave50.1 anddd56. All quantities are plotted in dimen
sionless units.
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our simulations, as in the case of cn waves, the typical de
distance for sn waves exceeds 100–200 dispersion leng

IV. CONCLUSIONS

In summary, we have found numerically families
dispersion-managed, breathing cnoidal wave trains of cn,
and sn types supported by NLS models. Such wave trains
energy enhanced in comparison with their counterparts
uniform settings with the same average dispersion. In
case of pulse trains propagating in optical fibers, this is
vorable from the practical point of view because it yields
improved signal-to-noise ratio. We also found that und
proper conditions, dispersion management enhances the
namical stability and reduces the time jitter of the cnoid
wave trains.

FIG. 7. ~a! Dynamics of propagation of the perturbe
dispersion-managed cn wave with widthW51.24 and energy flow
U52, with dave520.1,dd510. For comparison,~b! and~c! show
the dynamics of propagation of the perturbed stationary wave w
the same energy and the same width, respectively, but in the
form medium with dispersiond520.1 equal to path-average dis
persiondave. Panels~d! and ~e! show the propagation of perturbe
stationary wave with, respectively, the same energy and width as
wave~a!, but in uniform medium with dispersiond525.1 ~i.e., the
dispersion on anomalous segment of dispersion map!. Random
noise realizations are identical in all cases. Noise variances2

50.02. All quantities are plotted in dimensionless units.
3-6
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