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Slide-rule-like property of Wigner's little groups and cyclic S matrices for multilayer optics
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It is noted that X2 “ S" matrices in multilayer optics can be represented by th&Bgroup whose algebraic
property is the same as the group of Lorentz transformations applicable to two spacelike and one timelike
dimensions. It is also noted that Wigner’s little groups have a slide-rule-like property that allows us to perform
multiplications by additions. It is shown that these two mathematical properties lead to a cyclic representation
of the Smatrix for multilayer optics, as in the case ABCD matrices for laser cavities. It is therefore possible
to write the N-layer S matrix as a multiplication of theN single-layerS matrices resulting in the same
mathematical expression with one of the parameters multiplied.tdy addition, it is noted, as in the case of
lens optics, that multilayer optics can serve as an analog computer for the contraction of Wigner’s little groups
for internal space-time symmetries of relativistic particles.
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[. INTRODUCTION reduced to the lwasawa form. In this paper, we present the
cyclic property for the most general form of multilayers,
In our previous paper on multilayer opti¢4], it was  without the restriction we imposed in our previous pagr
shown that the complex>22 S matrix formalism is equiva- \We shall show that the core of tf&matrix takes the form
lent to a 2<2 real matrix representation of the @pgroup,
which shares the same algebraic property as the Lorentz cosa —sina coshg sinhg
group applicable to two spacelike and one timelike dimen- sinae  cosa sinh@ cosh3/’
sions. This group has three independent parameters. It was
shown, furthermore that, under certain conditions, one of the 1 0 1
off-diagonal elements vanishes and the three remaining ele- ( ) or ( )
ments can be computed analytically. We called this the

Iwasawa effecf1]. In this paper, we remove those “certain ] ] L ]
conditions” and achieve the same kind of simplification for These matrices form the core of Wigner's little groups appli-

all possible multilayer cases. Cabl_e to the internal space-time symmetries_ of relativistic
Indeed, the group $@) plays the central role in both partlcl_es[5,6]. We note here that these matrices have the
quantum and classical optics, including multilayer opfls ~ following interesting property. o
It consists of X2 real matrices whose determinantis 1. Each We cannot write (co&; coSa)=C0s( +ay) because it is
matrix contains at most three independent parameters. It 4rong. However, in the 2 matrix form
thus a simple matter to multiply two or three matrices. How- ) i
ever, multiplication of a large number of matrices presents a COSa; —SINa;|(COSa; —SiNa;
new problem. The product of that many matrices will also be sina; cosa; /\sina, cosa,
one 2<2 matrix with a unit determinant, but how can we ]
calculate their elements? _[cosartaz)  —sin(aytay)
For example, let us look at laser cavities. It consists of a sin(ay+a,)  cofaq+ ay)
chain ofN identical two-lens systems, whekeis the number
of cycles the light beam performs. The resultihfCD ma-  and we have similar expressions for the remaining matrices
trix can be written as a multiplication ®f identical matrices, in Eq. (1). We call this the slide-rule-like property of Wign-
but the resulting matrix has the same mathematical form agr’s little groups.
that for the single cyclé3]. If they are cycledN times, they take the forms
Can we then expect a similar cyclic property in multilayer
optics? We have shown in Ré¢l] that theN dependence can cogNa) —sin(Na) cosiNB) sinh(Ng)
be made quite transparent if the multilay@matrix [4] is (sin(Na) cogNa) ) ( sinhB)  (coshp) )

(1)

y 1 0 1

: (2
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respectively. This mathematical instrumentation works for
laser cavity optic$3]. The question is whether this is appli-
cable to multilayer optics.

The purpose of this paper is to show that the answer to the 2
above question is yes. We note first that 8matrix consists - B(n)
of N cycles. Each cycle consists of two phase-shift matrices, 1 P((D1 )
one boundary matrix, and its inverse, and this cycle does not e B(‘T]) _
take any of the forms given in Eql) if we start the cycle 2 P((Dz)
from the boundary. In this paper, we show that it is possible
to obtain the core in the form of EQl) if we start the cycle 1
from somewhere within one of the media between the two
boundaries.

Throughout this paper, we avoid group theoretical lan-
guages and rely on explicit2 matrices with real elements.
However, in doing so, we are exploiting an important group
theoretical feature that became known to us only recently
concerning contractions of Wigner’s little groups. This as-
pect was discussed in detail in a recent paper on Ien§ opt!cs FIG. 1. Optical layers. There are phase-shift matrices for their
[.7]' Thus, we shall borrow some of the mathematical Identl'respective layers. There is a boundary matrix for transition from the
ties from't'hat paper. . Jirst to the second medium, and its inverse applies to the transition

In addition, in the present paper, we observe that W'gnergfrom the second to the first medium. The mathematics becomes

little group has slide-rule-like properties that allow us to con-y e simpler if the cycle starts in the middle of the second layer.
vert multiplications into additions. This property was noted
for one of the little groups in the paper by Hahal.In this  yission and the reflection of the beam. As the beam passes

paper, we shall show that all three of the little groups haVEihrough medium 1, it undergoes the phase shift represented
the same slide-rule-like property, using E@). by the matrix

In Sec. Il, we formulate the problem in terms of tBe
matrix method widely used in multilayer opti¢4,8,9, and
show that the comple® matrices can be transformed to real P(q&l):(
matrices by a conjugate transformation, and thus to the alge-
bra of the SE2) group which is by now a familiar math-
ematical language in optics. In Sec. lll, we import from the
literature mathematical identities useful for the purpose o
the present paper. They are derivable from Wigner’s little
groups and their contractions. In Sec. IV, using the cyclic B(—7n)=
property of Eq.(3), it is possible to write the multilaye®
matrix as a multiplication of thé\ single-layerS matrices
resulting in the same mathematical expression with one
the parameters multiplied by. In Sec. V, it is pointed out

one cycle

e—i¢1/2 0
) . (5)

0 ei¢1/2
When the wave hits the surface of the second medium, the
f(:orresponding matrix is

cosin/2) —sinh(7/2) )

—sinh(n/2)  cosh 7/2) ©)

¥VhiCh is the inverse of the matrix given in Ed). Within the
0 . . : g
second medium, we write the phase-shift matrix as

that the mathematical identities presented in this paper can e-id22
be tested experimentally. We discuss the condition under p(¢2):( o /2)_ (7)
which the system can achieve the lwasawa eff&ttin Sec. 0 e"?

VI, we explain what we do in this paper using group theo- ) i )
retical language, particularly in terms of Wigner's little Then, when the wave hits the first medium from the second,

groups which dictate internal space-time symmetries of relalV€ have to go back to Ed4). Thus, one cycle consists of

tivistic particles. cosl(7/2) sini(7/2)\ /e 12 0
II. FORMULATION OF THE PROBLEM 1 ( sinf(z/2) - cost 77/2)) ° ei(bl&)

It was noted in our previous paper that one cycle in X( cosiin/2) - =sinn(z/2) (e_i¢2/2 .0 )
N-layer optics starts with the boundary matrix of the form —sinf(7/2)  costi7/2) 0 e
[10] ®)

cosi(7/2)  sinh( 7/2) This arrangement of matrices is illustrated in Fig. 1.

(4) The M; matrix, Eq.(8), contains complex numbers, but
we are interested in carrying out calculations with real ma-
trices. This can be done if we make the following conjugate

which, as illustrated in Fig. 1, describes the transition fromtransformatior] 1].

medium 2 to medium 1, taking into account both the trans- Let us next consider the matrix

BOD=| sinh(p2) costini2)]’
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1/ 1 1\(1 i
C=3l-1 i 1)7

1 ol /4 il of Eq. (1) for multilayer optics. Then, as we can see in Eq.
E(  imla iw,4). (9  (3), the chain effect is straightforward. We shall calculate

(M)N first and then 1,)N.
This matrix and its inverse can be written as

eiq-r/4 1 1 efiw/4 1 —i
J2 ( ) CoT J2 (l i Wigner’s little groups were formulated for internal space-
_ _ time symmetries of relativistic particl¢5,6]. However, they
We have shown in our previous paper that produced many mathematical identities useful in other
branches of physics, including classical layer optics, which

e e

IIl. MATHEMATICAL IDENTITIES
FROM THE LORENTZ GROUP

Cc= ) . (10

— -1
Mz=CM,C"~, (1D) depends heavily on>22 matrices. The correspondence be-
with tween the X2 and 4<4 representations of the Lorentz group
has been repeatedly discussed in the litergtiy® 7). In the
e”2 o cog ¢1/2) —sin($,/2) 2X2 representation, we write the rotation matrix around the
M,= . i
? ( 0 e ”’2) ( Sin(./2)  cog ¢u/2) ) yexses
e 72 0 \[cogp,l2) —sin(p,l2) , (cos{ $12)  —sin(¢/2) 18
X . . 1 i '
0 e™/\sin¢y/2) cos,l2) 12 sin(¢/2)  cos $/2)
The conjugate transformation of E@.1) changes the bound- and the boost matrices along th@ndx axes as
ary matrixB of Eq. (4) to a squeeze matrix
Y (m) 9@ a e’ 0 | coshh sinh)\)
0 e 72 sinh\  cosh\ |’ (19

e”? 0
) : (13

S(n)= ( 0 e 2
respectively. We shall use only these three matrices in this
and the phase-shift matricd¥(¢;) of Egs.(5) and (7) to  paper.
rotation matrices We use the following identity that Baskal and Kim intro-
duced recently in their paper on lens optics and group con-

cog ¢il2) —sin(¢i/2) tractions[7,11]:
R(¢i):( sin(¢-ll2) cos(¢-/|2) , (14) (711
! ! nl2 _ o —nl2
(e 0 )(cos(¢>/2) sm(¢/2))<e 0 )
with i=1,2. — 2 : 7l2
Indeed, the matriced; andM, can be written as 0 e sin($/2)  cos$/2) 0 ©
M1=B(5)P($1)B(— m)P(s) cog6/2) —sin(6/2)\(coshn sinh\
1=B(m)P(¢ mP(b2), ~\sin(6/2) cog6/2) |\ sinhx  cosh\
M2=S(7)R(¢1)S(— 7n)R(¢2). (15) cog 6/2)  —sin(6/2)
: , 20
The matrixM, can be obtained fronM, by the conjugate (sm( 0/2)  cog6/2) ) 20
transformation in Eq(11). ConverselyM, can be obtained
from M, through the inverse conjugate transformation: with
M;=C M,C. (16) cog ¢/2) = cosh\ cos¥,
In addition, the conjugate transformations have the fol- cosh\ sin 8-+ sinhx
lowing properties: e?7= (21)

~ cosh sin#—sinh\
(MpN=C(MpNC™H,  (MpN=C (MY C. (17)
The left-hand side of the above expression is one rotation

Thus, we can studiv, in order to studyM,. The advantage matrix sandwiched between one boost matrix and its inverse,
of M, is that it consists of real matrices. The group of thesewhile the right-hand side consists of one boost matrix sand-
matrices is called S@) which is like (isomorphi¢ the Lor-  wiched between two identical rotation matrices.
entz group applicable to three space and one time dimen- The left-hand side of Eq20) is the same as the first three
sions. This group contains very rich group-theoretical conmatrices of the core matrikl, given in Eq.(12). However,
tents including those of Wigner's little groups. We intend tothe fourth matrix is a rotation matrix. Since one rotation
study M., in terms of those little groups. matrix multiplied by another rotation matrix is still a rotation

The problem is thall , takes a simple form and,)?is  matrix, the core matri®M, is one boost matrix sandwiched
manageable, but we cannot predict what forvh,J" takes.  between two different rotation matrices. Thus, the problem is
In this paper, we shall construct the core matrix of the formto find a transformation that will make those two rotation
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matrices the same, and go back to the form of the left-hand
side of Eq.(20). We shall come back to this problem in Sec.

IV.
If we complete the matrix multiplications of both sides,
the result is

cog ¢/2) —e’sin( ¢/2)
( e 7sin( ¢/2) coq ¢/2)
coshh cosé —(cosha sin 6+ sinh\)
N ( coshhsin —sinhA coshhcoséd
(22)

Then, we can writep and  in terms ofA and @ as given in
Eq. (21). The parameters and # can be written in terms of
¢ and 7y as

cosh\ = (coshz) V1—coS($/2)tanit 7,

cog ¢/2)
(coshy)\1—co(#/2)tanfy

cosf=

(23

The above relation is valid only if (coshsing/2
—sinh\) is positive. If it is negative, the left-hand side of the
above expression should be

e”? 0 cosl(x/2) —sinh(x/2)\[e 7% 0
0 e 7?]\ —sinhx/2) coshx/2) 0 e
cosh x/2) —e’sinh x/2)
| —e 7sinh(x/2)  coshx/2) |’ (24)
with

cosh x/2) =cosh\ cos,
) cosh\ sin#+ sinh\

e 1= (25)

~ sinh\ —cosh\ sing”

Conversely\ and 6 can be written in terms of and » as

cosh\ = (coshz) \cosH(x/2) —tantt 7,

cosh{ x/2)

cosf= (26)

(coshz) VcosR( x/2)—taniR 7

An interesting case is when sinh-coshi sin @ becomes

zero andzn becomes very large. If we insist that
e’sin( $/2)=u, (27)

remain finite, theng¢/2 must become very small. On the

right-hand side
with  singd=tanh\.

u=2 sinhx, (28

The net result is that both sides take the form

PHYSICAL REVIEW E68, 026606 (2003

1
0
In their recent papdi7], Baskal and Kim studied in detail
the transition from Eq(22) to Eq.(24) through Eq.(29), and
showed that the one-lens camera goes through this transition
as we try to focus the image. Mathematically, the system
goes through group contraction processes. In the present pa-

per, we show that the same contraction process can be
achieved in multilayer optics.

— 2 sinh\
) (29

1

IV. CYCLIC REPRESENTATION OF THE S MATRIX
It was noted in Sec. Il that each cycle consists of
(SRS™'Ry), (30

with
R1=R(¢1)

of Eq. (14), respectively. The squeeze matfxis given in
Eq. (13). For the layer consisting df cycles, let us consider
the chain

and R,=R(¢,), (3D

M5=(SRS 'Ry) (SRS 'Ry)
X(SRS'R,) - - (SRS R,). (32

According to Eq.(20), we can now writeSR S ! in the
above expression as

SRS '=R; XR3, (33
with
B ( cog ¢p3/2)  —sin( ¢3/2)) B ( coshh sinh)\)
3 \sin(¢paf2) cogpsf2) | 7 \sinha  coshn )/’
(34)
and
cosh\ = (coshz) 1 —coS( ¢,/2)tantt 7,
co ¢1/2)
COS¢h3= (39

(coshy) V1—cod(,/2)tan 7y

The parametera and ¢4 are determined fromy and ¢,
which are the input parameters from the optical properties of
the media.

The chain of Eq(32) becomes

M3 = (ReXR3R,) (ReXRsR2) (RsXRsRy) - - - (ReXRgRy).

(36)
Let us next introduce the rotation mati «) as
R(a)=(Rp) "R, (37
with
a= 3t 3, (39)

026606-4
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whereg, is an input parameter. Sineg; is determined byy
and ¢4, the rotation angler is determined by the three input
parameters, namely;, ¢4, and ¢,.

In terms ofR=R(«), the chain of Eq(36) becomes

MY=R;R™YRXR(RXR(RXR- - - (RXRR R3R,.
(39

SinceR;R™ =R, ? andR™'R3R,=R}? from Eq. (38),

M§=(RZ)’1’2(RXR)(RXR)(RXR)...(RXR)(RZ)U? |
40

The (R,)Y? factors in this expression indicate that the cycle
starts in the middle of the second medium, as illustrated in

Fig. 1.
According to Eqs(20) and(22), we can now writeRXR
as

cosh\ cosa —(cosh\ sina+sinh\)

RXR=
cosh\ cosa

cosh\ sina—sinh\
(41

According to the formulas given in Sec. lll, especially Eqg.
(20), RXRcan also be written as

RXR=ZAZ 1, (42)
with
ef2 0
Z= 0 e (43

Now the 2<2 matrix A can take one of the following forms.
If the off-diagonal elements of the matrix of E@.1) have
opposite signs, thé& matrix becomes

B ( cog ¢/2) —sin( qb/2))
A= sin(¢/2)  cog¢l2) |’ “4
with
cog ¢/2)=cosh\ cosa,
coshk sina+sinha
e*= (45)

" cosh\ sine—sinh\

PHYSICAL REVIEW E 68, 026606 (2003

We note from Eqgs(44) and (46) that the matrixA takes
circular or hyperbolic forms depending on the sign of the
lower-left element of Eq(41), which is

sinhA — (sina)coshn, (48)
and note that this expression can change from a positive to
negative number continuously as the paramelerand «
vary. These two parameters are determined from the reflec-
tion and transmission properties of the media.

While expression of Eq48) makes continuous transition,
it has to go through zero. If it vanishes,

1

0

— 2 sinh\
) (49)

RXR=
b

The transition ofA from Eq. (44) to Eq. (46) through this
process has been discussed in detail in R&fin connection
with the contraction of Wigner’s little groups.

As we noted in Sec. Il, the matrik has the desired cyclic
property. Thus,

MY=(Ry) " Y (ZAZ )(ZAZ 1) (ZAZ ). - (ZAZ Y)]

X(Ry) Y2, (50
Consequently,
M3=(Rp)~¥4Z AV Z71(Ry) Y2, (51)
If A takes the form of Eq(44),
- ( cogN¢p/2) — sin(N¢/2))
A= sinNg/2)  cogN@/2) | (52
For A given in Eq.(46),
N_( cosh{Ny/2) —sinr(NX/2)>
A= —sinh(Nx/2)  cosiNx/2) | 63
As Eq. (49),
1 —2Nsinhh
(RXR)N=(0 1 ) (54)

Then, the calculation ofNl,)N for the N-layer case is
straightforward. We can now compute the mati )N us-
ing the conjugate transformation of E4.7). Let us write our

If, on the other hand, the off-diagonal elements of the matrixesult in 2x2 matrices:

RXRhave the same sign, the matéxshould be written as

cosiix/2) —sinh x/2) 4
| —sinh(x/2) coshx/2) |’ 46
with
cosh x/2) =cosh\ cosa,
,; COSh\ sina+sinhA
€= (47)

" sinh\ —cosh\ sina

N (coq¢2/4) —sin(q§2/4)) (ef’Z 0 ”
|\ sin(¢po/4)  cog gl |\ 0 e €2
cogN@¢/2) —sin(Ng/2)\[[e % 0
X(sin(NqS/Z) cos(N¢/2))( 0 effz)
COg ¢,l4)  sin(p,l4)
X(_Sif’(¢2/4) cos<¢2/4>” 59

for A of Eq. (44). For A of Eq. (46),
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cod ¢,/4) —sin(¢2/4)) (effz 0 ”

27 | sin(¢old) coddyld) || 0 e &2
( cosiiNy/2) —sinh(N X/z)) ( et 0 )
—sin(Nx/2)  cogNx/2) 0 ef?
cos old)  Sin( pyld)
X( —sin($,/4) cog @/4)”' (50

If the lower-left element given in Eq48) vanishes, we
have to go back to Eq$40) and (49), and write

N_(coe(¢2/4) —sin(¢2/4))(1 —2Nsinh)\)
27 | sin(¢,l4)  cog ¢,l4) |\ 0 1

( cog ¢l4)  sin( ¢>2/4))

X _ 5
—Sin(g,/4) cos dld) 57
As we noted in Sec. Il, we udd, andM} for mathemati-

cal convenience. In the real world, we have to e and

M?. It is not difficult to write this expression using the

conjugate transformation of EL6). It can be written as

N e %" 0 \[cosh&lR) sinh(§/2))
MY= , .
! 0 e' %24/ sinh(£/2)  cosh &/2)

e-iNo2 cos(¢/2)  —sinh(&/2)

X 0 eiNqs/z) (—Sinf(§/2) coshé/2) )
ei Pl 0

X 0 e—i¢2/4) 58

if A takes the form of Eq(44) with a positive value of Eq.
(49). If it takes the form of Eq(46) with a negative value of
Eq. (48),

e %% 0 \/cosh&l2) sinh £/2)
s (| |

0 €%\ sinh(¢/2) costi£l2)
cosiiNx/2)  isinh(Nx/2)

X( —isinh(Nx/2) coshiNx/2) )

( cosh &/2) —sinh(§/2)>(ei¢z/4 0 ”

—sinh(¢/2)  cosh(&/2) 0 e-idala] |

(59

If the expression of E¢(48) vanishes,

i e 1940 )(1—iNsinh)\ iN sinhx )
1 0 €?%*| —iNsinhx  1+iNsinh\
ei¢2/4 0
X\ g i) (60)

This is not yet theS matrix. The first and the last layers

PHYSICAL REVIEW E68, 026606 (2003

forward to take these boundary conditions into consideration.
This procedure was discussed in detail in our previous paper

[1].

V. EXPERIMENTAL POSSIBILITIES

The variables for thés matrix given in Secs. Il and IV
are determined by the optical parameters, namely, the two
phase shifts and one reflection/transmission coefficient. The
combinations of these three variables will determine the
form of the S matrix, which may take three different forms.

We note first that th&l dependence of thB matrix comes
from the form of theA matrix or theR X Rmatrix of Eq.(41).

If the optical parameters are such that fenatrix takes the
form of Eq. (44), the elements of thAN matrix of Eq.(52)
are bounded and oscillating functions Mf If A takes the
form of Eq.(46), the AN matrix becomes Eq53). The ele-
ments of this matrix are not bounded Bsbhecomes large.
Thus, in the real worldN layers can have two different types
depending on the form oA.

In addition, the optical layers can satisfy the condition
that the expression of E@¢48) be zero:

sinh\ —(sina)coshn =0. (62

Then theRXR matrix takes the form of Eq49) and theN
dependence is linear. This case can be tested as the optical
parameters are varied from positive values of E®) to a
positive value through zero. This condition does not depend
on N. We have discussed a similar case in our previous paper
[1].

In their recent pap€l7], Baskal and Kim noted the same
transition process for one-lens optics. They noted that the
camera focusing mechanism corresponds to contraction of
Wigner’s little groups. It is interesting to note that the same
contraction mechanism exists Mlayer optics.

VI. WIGNER'S LITTLE GROUPS

The algebra of X2 matrices is the basic scientific lan-
guage in ray optics, including polarization optics, interferom-
eters, lens systems, lasers, and multilayer optics. The algebra
of 2X2 unimodular matrices is called the group Slo)2,and
is the universal covering group for the six-parameter Lorentz
group applicable to Lorentz transformations in the
Minkowskian space of one time and three space dimensions.
This allows us to study ray optics with the Lorentz group.

There are a number of interesting subgroups of the Lor-
entz group. Among them is the three-parameter rotation
group. There is also a subgroup that shares the same alge-
braic property as the two-dimensional Euclidean group.
There is also a three-parameter subgroup consisting of Lor-
entz transformations applicable to the Minkowskian space of
one time and two space dimensions. In 1939 Wigner
observed that these subgroups dictate the internal space-time
symmetries of massive, massless, and tachyonic particles,
respectively.

These are called Wigner's little groups. In his 1939 paper,

have boundaries with air or the third medium. It is straight-Wigner constructed the little group as the maximal subgroup
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of the Lorentz group whose transformations leave the four- VII. CONCLUDING REMARKS

momentum of a given particle invariant. For instance, the 5. 4 oo Wigner's little groups, we have developed an

four—momentum of a massive particle In its rest frame ISalgebraic method that allows us to study the cyclic properties
invariant under rotations in the three-dimensional space

hat h hen th icl > Th of 2X2 S matrices for multilayer optics. Starting from the
What happens when the particle moves? The momentum Qingje_|ayerS matrix, it is possible to write thél-layer ma-

t_he particle can be boosted from that of its rest frame. Theyy by multiplying one of the parameters By. The N de-
little group is then a Lorentz-boosted rotation group. INpendence is therefore transparent.
mathematical language, this is a conjugate transformation. In Thjs is possible because the core matrices of Wigner's
this case, the rotation matrix is sandwiched between a boosttle groups have a slide-rule-like property that allows us to
matrix and its inverse, as in the case of E&). In this paper, perform multiplications by additions, as noted in HE).
we exploited this aspect of Wigner’s little group. This property is an important element in computer designs.
In addition, each little group contains a one-parameter As was noted in Refl7], the transition from Eq(44) to
subgroup. For instance, rotations around yhaxis form a  Eq. (21) corresponds to camera focusing in one-lens optics.
one-parameter Abelian group. The slide-rule-like propertyFrom the mathematical point of view, it corresponds to the
discussed in this paper comes from this aspect of the littlgontraction and expansion of the little groups. From the geo-
groups. metrical point of view, this corresponds to transformation
As for the Si2) group, it is gratifying to note that the  from a circle to a hyperbola. It i_s inte.resting. to note that we
matrix formalism, originally formulated in terms of complex can also perform these operations in multilayer optics. In-
matrices, can be transformed into the real-matrix represent&le€d, as in the case of lens optj@3, multilayer optics can
tion of SH2) by a conjugate transformation as was noted inS€rVe as an analog computer for group contractions.
Sec. Il, and as was discussed in detail in our previous paper 1h€ correspondence between the Lorentz grou(s1D
[1]. This is equivalent to restricting transformations in thend SL(2¢), the group of 22 unimodular matrices, is well
two-dimensional space consisting of boosts alongzthedx known. Since most of the matrices in ray optics are22the

directions and rotations around th@xis. Under this restric- Lorentz group is becoming the major language in this field.

tion, the little groups become one-parameter Abelian groupsRay optics is the backbone of future technology, and optical

ted by th tri : : Wi devices, such as polarizers, lenses, interferometers, and mul-
represented by the matrices given in D). /V€ can recover tilayers, all speak the language of the Lorentz group. Thus, it
the full little groups by simply adding rotations around the

; is possible for the Lorentz group to play computational roles
axis[12]. _ , _in future generations of computers.
The little groups can be discussed in the framework of Lie |t js 4 prevailing view in physics, especially in optics, that

groups and Lie algebras. In this framework, group contracyroup theory is only for studying symmetries and is not use-
tions are strictly singular transformations, and it is not posfy| for computational purposes. Indeed, we do not need
sible to make an analytic continuation from one little groupgroup theory to carry out the matrix multiplications given in

to another. However, we can circumvent this inconvenienceghis paper, and we started only with three matrices given in
by using different parametrization. In this way, it is possibleEgs. (18) and (19). However, we are going through some

to make the desired analytic continuation. This aspect wasnportant theorems in group theory while going through the
noted by Baskal and Kim in their recent pap@fand is seen simple matrix algebras given in this paper. We choose not to

again in the present paper. elaborate on this point.
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