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Light transmission from a twisted nematic liquid crystal: Accurate
methods to measure the azimuthal anchoring energy
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In this paper, we analyze the light transmission from a twisted nematic liquid cti#t&l) and we propose
two accurate and very direct optical methods to measure the azimuthal anchoring energy. In both of them, a
monochromatic beam of wavelength with a polarization vector that rotates at an angular frequency
impinges on a twisted nematic liquid crystal. The intensity of the transmitted beam is modulated at angular
frequency 2o with a phase shifi3, which is related to the surface azimuthal director angeat the inves-
tigated interface. It is shown that there exists a special geometry where the simple adiabatic eglation
=pB/2 is satisfied up to second order in the small perturbative parametér/(27An¢), whereAn is the
anisotropy of the refractive indices of the NLC a#ids the twist distortion length. Furthermore, the small
residual higher order correction terms can be greatly reduced by choosing a proper geometry for the experi-
ment. With this choice, the range of validity of the adiabatic theory is greatly extended. The perturbative
theoretical results are fully confirmed by numerical calculations. The azimuthal anchoring energy coefficient
can be obtained by measuring phase sBiftersus the intensity of an applied magnetic field. These methods
greatly improve the accuracy of the previous transmitted light techniques and also provide accurate measure-
ments of strong azimuthal anchoring energies.
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[. INTRODUCTION azimuthal angle can be obtained. The calculation of the de-
pendence of the polarization of the transmitted light on the
The macroscopic behavior of nematic liquid crystalssurface azimuthal angles requires a somewhat complex nu-
(NLC) is described by the unit vector fiela(r) which is  merical analysis based on the Berreman transmission matrix
called thedirector [1]. n(r) represents the local average ori- [17]. This needs a complex fitting procedure to obtain the
entation of the long molecular axes. The surface alignment surface angles from the experimental res{@s The uncer-
of the director is determined by the competition betweerfainty on the bulk material constants of the NLC and on the
surface and bulk interactions, is characterized by the sur- thickness of the nematic layer limit the applicability of this

face polar angled, that the director makes with axisor- ~ Method to relatively weak anchoring energies.
thogonal to the surface and the surface azimuthal adgle The theoretical analysis of the experimental data becomes

that the director makes with axisin the surface planésee much simpler if the characteristic lengghof the bulk twist
Fig. 1) distortion is much greater than the optical wavelengttthe

In the absence of external torques, the director is alignemauguln regimg: In such a case, if the polarization plane of

. . . o . e incident beam is parallel to the orientation of the director
along the directior{easy axi$that minimizes the anchoring P

at the first solid-nematic interface, it remains parallel to the
energyW(nS') [1,2]. W(ny) represent.s the work needed to local director field everywhere. Then, the polarization plane
rotate the director from the easy axis toward the actual su

) ) ) ) '5f the outgoing transmitted beam is parallel to the director
face orientation. Ifd; is held fixed and equal to the easy rjentation at the second interface. This theoretical result,

polar anglede,W(0s,¢s) becomes a function obs only,  \which is known as thadiabatic theoremsuggests a simple
which is called theazimuthal anchoring energyDifferent

experimental methods have been used to measure the azi-

muthal anchoring energy. Most of them consist in the optical z g
measurement of the polarization state of either transmitted
[3—-13 or reflected 14—16 light. In all these cases, a known 0,

torque is applied on the director and the consequent rotation
of the director at the surface is measured. The torque can be
generated either by applying external fieldsagnetic or =
electrig or exploiting the competition between different sur- > ~ y
face orientationghybrid cell[10]). ¢ N

In a typical transmission experiment, the polarization of a X §
monochromatic beam, which is transmitted through a nem- g 1. Orientation of the director at the interface=0) be-
atic layer, is measured. From this measurement, the surfaggeen a nematic liquid crystal and an isotropic medighgand 6,

are the azimuthal and the polar angles of the director, respectively.

zis the axis orthogonal to the interface andndy are two orthogo-
*Corresponding author. Electronic address: faetti@df.unipi.it  nal axes on the surface plane.

1063-651X/2003/6@)/02660115)/$20.00 68 026601-1 ©2003 The American Physical Society



S. FAETTI AND G. C. MUTINATI PHYSICAL REVIEW E 68, 026601 (2003

experimental method to measure the surface azimutha x
angles: the nematic .Iayer i_s inse_rted between twq polar.izer: plate 1 1 H plate 2
that are rotated until the intensity of the transmitted light

vanishes. This occurs when the transmission axis of the firs ,.‘%

polarizer is parallel to the director orientation at the first n,
surface and the analyzer is orthogonal to that at the secon ~\ I I I I [
NLC

interface. Such a method has been often used in literatur n;
(see, for instance, R€ff3]) to measure the azimuthal anchor- incident
ing energy. However, it provides accurate results only in thebeam

special case of extremely weak anchoring energies, wheri ggf;gz%r analyzer
condition £\ can be fulfilled. In fact, Oldanet al. [5-7] L X

showed that the adiabatic theorem corresponds to the zer ~ o

order expansion of the Berreman matrix in the perturbative d

parametera=\/(2wAn¢), whereAn=n,—n,~0.2 is the FIG. 2. Schematic view of the geometry of method |. A nematic

anisotropy of the refractive indices of the NLC. They showedqyer of uniform thicknessl is sandwiched between two parallel
that the first order correction is not negligible in most prac-4gjig plates. A magnetic field can be applied along axis in the
tical situations and simulates a spurious surface rotation ghyer plane. The easy axis at interface 2 is parallel to the magnetic
the director, which depends strongly on phase sldft field. A monochromatic beam passes through a rotating polarizer
=2m(neg—n,)d/\ between the extraordinary and ordinary and impinges at normal incidence on the layer. The polarization axis
optical beams. The first order correction is maximund i of the analyzer is parallel to theaxis.
an even multiple ofr, but vanishes i is an odd multiple of
m. Therefore, in order to reduce greatly these spurious conthe director azimuthal angle at interfacéske Fig. 2, which
tributions, they measured the surface director angle by seis first encountered by the incident beam. Then,assump-
ting the temperature of the NLC layer in such a way as taion is needed as far as the anchoring at the second interface
satisfy conditioné=m, wherem is an odd integer. Al- is concerned These theoretical results have been obtained
though this choice greatly improves the accuracy of the exusing the Oldano perturbative approach and have been fully
perimental results, the achievement of conditiés=mm  confirmed by the numerical integration of the Berreman
makes the experimental procedure somewhat heavy. In pagquations. Furthermore, the numerical calculations show that
ticular, an accurate thermostatation of the NLC and an accuthe higher order contributions can also be greatly reduced
rate measurement of the optical dephasiraye needed. Fur- with the choice of a proper experimental geometry. As a
thermore, the measurement of the azimuthal anchoringonsequence of these theoretical results, we propose here
energy can be performed only at those special temperaturewo transmitted light methodsnethods | and )ithat provide
where conditions=mxr is fulfilled. simple and accurate measurements of the azimuthal anchor-
More recently, Adrienkcet al. [11] proposed a different ing energy at the investigated interface, also in the critical
method with a twisted nematic layer subjected to a wealcase of strong anchoring energie®/£1 erg/cnt). The
external magnetic field. In such a case, the first order nonameasurement of the surface director angle is reduced to the
diabatic terms proportional ta were taken into account in standard measurement of phg8eof an oscillating signal.
the analysis of the experimental results. This method can berom the experimental point of view, method | is slightly
applied satisfactorily only to substrates with a relativelymore complicated than method II, because it requires that the
weak anchoring energy\(<10 2 erg/cnf). director at the second surface of the nematic cell and the
A special behavior occurs if the director twist is producedanalyzer axis are aligned parallel to the magnetic fiskk
by the competition between two different orientations of theFig. 2). An imperfect alignment introduces systematic errors
easy axes on the two plane surfaces of the NLC layer. Acin the experiment. On the contrary, method Il does not re-
cording to Polossat and Dozd\t0], the bissectrice of the quire any special orientation of the director at interface 2 and
two surface easy axes is a twofold symmetry axis. Exploitingany analyzer. This makes the experimental set up of method
this exact symmetry, they proposed a simple transmitted lighii much simpler and greatly limits the possible error sources.
method that is virtually exact because it does not make use &oth these methods overcome the main drawbacks of the
any adiabatic approximation. The main drawback of thisknown transmitted light methods and greatly increase the
technique is that it requires that the anchoring at the investiaccuracy of the measurements of the azimuthal anchoring
gated surface be much lower than that at the counterplatenergy. In particular, the measurements can be performed at
Therefore, only moderately strong anchoring energies can bany temperature and no assumption on the anchoring at the
accurately measured with this techniqueW=102 counterplate is needed. Furthermore, strong anchoring ener-
—103 erg/cnt). gies can be measured. Finally, the experimental apparatus
In this paper, we analyze in detail the light transmissionand the analysis of the experimental results is very simple.
from a twisted nematic sample using both a perturbative ap- We believe that these experimental methods can also rep-
proach and an numerical analysis. We show that there is gsent a valid alternative to the reflectometric techniques
special geometry where the first order nonadiabatic contribuF14—-16 which are known to be very accurate. In these re-
tions (linear terms in«) vanishfor all values of the optical flectometric techniques, the surface director angle is obtained
dephasings. Furthermore, the output signal depends only onfrom the measurement of the polarization of a monochro-
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matic optical beam which is reflected by the interface. As From a numerical point of view, it can be convenient to
shown in Ref[l4], this measurement procedure is Virtually Ca|cu|ates(z'h) using the truncated Tay|0r expansion
unaffected by the bulk director twist but it is more sensitive
to small external noise sources. In fact, the intensity of thep; 1 Al 2A7 N A
reflected beam is two orders of magnitude lower than that ofP(Z’h) 1+1(2mhix)A(2) — (2mh/h)"A(2)A2Z)/2+ (é)
the incident beam. Therefore, relatively high power laser
sources are needed=(l0 mW) and the actual accuracy of The output vector¥#(d/2) is related tow(—d/2) by the
the measurement is appreciably affected by the noise contrip|iowing relation:
butions coming from the light diffused from the NLC and
from other external noise contributions. =y

The paper is organized as follows. In Sec. Il, the main W(di2)=F(di2,~d/2)¥(~di2), “@
aspects of the Berreman theory and of the Oldano perturba- — .
tive approach are briefly discussed and a simple perturbativ¥nereF(d/2,—d/2) is given by
expression for the transmitted field is given. In Secs. IIIA _ _ _ _
and 11l B, we calculate the dephasiggfor method I, using ~ F(d/2,—d/2)=P(d/2—h,h)P(d/2—2h,h)- - -P(—d/2h).
the perturbative approach and the numerical Berreman ap- 6)
proach, respectively. In Sec. IV A, we use the Fourier optics _
and the perturbative approach to calculate dephaging OnceF(d/2,—d/2) is calculated, the amplitudes of the trans-
which corresponds to method Il. Numerical calculations aremitted and of the reflected beams can be obtained using the
given in Sec. IV B. Section V is devoted to the discussion ofprocedures discussed in REL7]. All the numerical calcula-
the experimental procedure that has to be used to measutions reported in the present paper have been performed us-
the azimuthal anchoring energy. Some preliminary experiing a Taylor expansion oP(z,h) [see Eq.(3)] up to sixth
mental results are also given. Section VI is devoted to conerder, which ensures a rapid convergence and a satisfactory

clusions. accuracy of the numerical results.
Some years ago, Oldarmt al. [5—7] proposed a perturba-
Il. TRANSMISSION OF A MONOCHROMATIC BEAM tive approach to describe the light transmission in a twisted
IN A TWISTED NLC nematic layer subjected to a magnetic field of intensity

The perturbative parameter of the theory is
A powerful matrix approach to the study of the transmis-

sion and the reflection from a layered anisotropic medium a=N(27wAn¢), (6)
was proposed many years ago by Berrerfféf). Consider a

plane electromagnetic wave of wavelengthwhich propa-  where¢ is the magnetic coherence length

gates along the axis in the positive versus and incides nor-

mally on a twisted nematic layer having the surfaceg at Ky 1
= —d/2 andz=d/2 as shown in Fig. 2. The director field lies &= \/—ﬁ. @
everywhere in the layer plang-y and is given byn Xa
=[cos¢(2),sin$(2),0], whereg(z) is the local director angle
with the x axis. We indicate by, andE, the x andy com-
ponents of the electric field amplitude of the electromagneti
wave and byH, andH, the corresponding magnetic field
amplitudes. The electromagnetic field in any point of the
nematic slab is described by the four components vect
W(z)=(Ex,Hy,E,,—H,). Consider now a very thin layer
of thicknessh<\ inside the nematic LC. For sufficiently
small values oh, the director orientation is virtually uniform
in this thin layer. According to Berremanf(z+h) is given

by

K, is the twist elastic constant ang, is the anisotropy of
he magnetic susceptibility. Disregarding the coupling be-
ween transmitted and reflected waves, the transmitted elec-
tric field can be described using a<x2 matrix Jones ap-
roach. The equations for the transmitted field are written in
a rotating reference system where thandy axes remain
everywhere parallel and orthogonal to the local director axis.
Then, the two base vectors represent the extraordinary and
the ordinary electric fields, respectively. The amplitudes of
the extraordinary and of the ordinary base electric fiddds
andb, are not unitary but are chosen in such a way that the
ordinary and the extraordinary waves have the same inten-
sity. This means that, andb, are proportional to 4/n, and
_ 1/\/n,, respectively. Disregarding the reflections at the inter-
whereP(z,h) is the 4< 4 transmission matrix across the thin faces, the X 2 transmission Jones matrix at the first order in
layer of thicknesd, which is given by the perturbative parameter reduces td5-7]

W(z+h)=P(z,h)W(z), (1)

exp(i 6/2) it
it* exp(—ié8/2)]’

P(z,h)=exdi2whA(z)/\], 2

T(d/2,—d/2)=exp(ik,d) (8)

where matrixK(z) depends on the extraordinary and ordi-
nary refractive indiceqn, and n, of the NLC and on the where symbol * denotes complex conjugation &nid the
director azimuthal angle’(z) (see Eq.(23) in Ref.[17]). small perturbative parametgt8:
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—iAkd| d¢ iAkd\d¢
exr{T)E Z—EX[<T>E ) (11)

. dr2 . dé 71
t——|n1j7d/2exq—|Akz)Edz, 9 t_ﬂ

1

where k,=m(ne+n,)/\ is the average wave vectog
=Akd=2m(n,—ny)d/\ is the optical dephasing between
the extraordinary and the ordinary beams, ang
=[J(ne/ny)++(ny/ng)]/2~1. By successive integrations
by parts, Eq(9) can be written in the following form:

where d¢/dz)|; and d¢/dZz)|, are the derivatives of the
director angle at surface 2€ —d/2) and 2¢=d/2), respec-
tively. If thicknessd is much greater tha§, the semi-infinite
sample approximation for the director field is very well sat-
isfied and the two surface derivatives in Effl) are given by

. [1]:
71 . d¢2 |
== —iAKZ)—e| — —
Ak(exp( [ z)OIZl Ak dg| sings .
dzd) 2 dz 2_ § ’
Xexp(—iAkz)— +) (10
dz? 1 d_(l) __sind;l 13
Since dg/dz~A ¢/¢ and d2p/dZ2~A ¢l £2, only the first dz|, &

contribution in Eq. (10) is of the first order in «
=N (27Ané)=1/(AkE). Then, at the first order of approxi- where ¢, and ¢, denote the surface azimuthal angles at

mation,t in Eq. (10) reduces to surface 1 and 2, respectively. From E(®.and(11), we get
|
— expi 8e) ifaexpide)+bexpid,)]
T(di2,~di2)=|. _ _ - >, (14)
i[aexpid,)+bexpidy)] exp(i 8,)
|
where 8,=2mnd/N and 8,=2mn,d/\ are the optical ESU'=(EI"°+ia\ng/NEM)n,+ibng/n,ENh,
dephasing of the extraordinary and the ordinary rays,and (19
andb are two small parameters defined as
~ mde and
and ESU'=ib\ny/NEMn,+ (E"°+iayne/n EN)h,.
do (20)
_nze
Thkdz)) (19

Equations(18)—(20) represent the fundamental result of
We denote byn; and h; two versors(in the layer plang the perturbative theory. Equati@h8) shows that the electro-
parallel and orthogonal to the director at surface 1 andpy Magnetic signal propagates in the twisted NLC as the super-
andh, two versors parallel and orthogonal to the director atPosition of two waves, the generalizedexXtraordinary

surface 2. AmplitudeE'™ of the incident field az=—d/2 ~ wave Eg") and the generalizeddrdinary” wave (Eg")

can be written in a compact form as having phase velocities/\/ﬁe and c/\/ﬁo, respectively. In
_ _ _ the adiabatic limit 4&=0 andb=0), the extraordinary and
EMC=ESn, +E.'hy, (17)  the ordinary electric fields in Eq$19) and(20) are reduced

' _ to the standard extraordinary and ordinary waves. In particu-
whereE.'® andE('® are the amplitudes of the extraordinary lar, the corresponding electric fields are parallel and orthogo-
and the ordinary components of the incident electric fieldnal to the local director field. For nonvanishing valuesaof
respectively. Using Eq14) and taking into account that base andb, a part of the extraordinary incident field propagates
vectorsb, and b, are proportional to 4/n, and 1A/n, (b,  With the ordinary phase velocity and vice versa. Further-
ocn/\/ﬁe and b, h/\/ﬁo), we obtain the following output More, an incident extraordinaxpr ordinary field does not

electric fieldEC' at z=d/2: follow exactly the rotation of the director field. In the fol-
lowing section we will show that it is possible to choose a
E°U'=E" exp(i o) + ES" exp(i &,), (19 proper geometry where the linear perturbative contributions
vanish. Therefore, with this special geometry the range of
where validity of the adiabatic theorem is greatly extended.
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. METHOD I: THEORETICAL ANALYSIS where y denotes a phase shift due to the twist distortion

A. The perturbative analysis which is given by

Here we consider the geometry which corresponds to 1 No .
method I. An incident beam passes through a polarizer which y= arctan 2b n—eS|n5 : (27)

rotates with angular frequency and impinges at normal
incidence on a nematic liquid crystal layer. A magnetic field|n this case, phase shifé of the intensity signal®"' is g

H can be applied parallel to theaxis in the layer planésee  _2 (4. + ) and thus, the adiabatic theore@<2¢,) is not
Fig. 2. The extraordinary and ordinary components of thegaisfied. Phase shift in Eq. (27) mimics an apparent rota-

incident field amplitudeE™ are: tion of the director at surfaca ¢,,,=y. A more accurate
expression can be obtained by taking into account the anisot-

inc__ _
Ee"=Eocogwt=¢y) (21) ropy of the ordinary and extraordinary transmission coeffi-
d cients at the solid-nematic interfaces. The improved expres-
an sion of y is
Eq°=Eqsin(wt— 1), (22 1 none+n |
y= zarctan 2b\/ — sind |, (28
2 eNot+N

where EI"*=E"°.n; and EN'°=E"®. h, and where the po-
larizer axis has been assumed to be parallel to the magnetigneren s the refractive index of the solid substrates.
field (x axis) at timet=0. An analyzer with polarization axis
A parallel to the director at surface R&n,) is inserted

after the NLC layer. The light intensity after the analyzer is _ _ _ _
The theoretical results in Sec. Il A were obtained using

|OUt= 5 (EOUL A)[(ECUY* . Al=a,(E°Ut n,)[(E°UY* . n,], the .first order_ perturbgtive Fheory. At this order .of app_roxi-
! of JHETDT-AJ=aq I(ET)™ 2] mation, the simple adiabatic result;= /2 remains satis-
(23 fied, provided that the director at surface 2 is set parallel to

wherea, is a suitable proportionality coefficient and sub- the magnetic field. With this choice the validity range of the
script | refers to method I. Substituting Eq48)—(20) into adiabatic theorem is greatly extended and the surface director

Eq. (23 and disregarding terms of the second order in thefZzimuthal angles, can be di_rectlytobtained from the mea-
perturbation parameter, we find: surement of phasg of intensitylP"'. However, also in this
case, some small residual corrections to the adiabatic theo-
19Ut— 2 T(EI")2+ 2 /n- /n.E"EIC sin 51. 24 rem are present, coming from the higher order perturbative
! ol (Ee™) orreTe o 1 @9 contributions. This means that the surface director angle,
: . : hich is obtained experimentally using the adiabatic expres-
In method I, the director at the second interface is parallel tcgon b.= BI2, is affected by a residual uncertainty. There-

the magnetic field. In this condition, it can be easily shown itis | ant 1 lculate th tributi . d
that the director derivative at surface 2 is zero and coefﬁcienftore' LIS Important to calculate these contributions in order

; ; - o to estimate the actual accuracy of the proposed method. The
g;zoErg'eéIG) vanishes. Then, the output intensity in E2) detailed analysis of these higher order contributions can be

also useful in finding suitable geometric conditions where
| they are minimized. This section is devoted to the numerical
|?ut: aO(ELHC)ZZ_O[lJFCOS Awt—¢q)]. (25) calculation of the “exact” behavior of the transmitted beam
2 in the twisted nematic layer. We will show that the higher
order contributions lead to an additional small dephasing of
Up to the second order in the perturbative parameier intensity 1°U(t), which mimics a small apparent rotation
=M (2mAng), the output intensity is modulated at angular ¢ of the director at the surface. Furthermore, we will
frequency 2 with phase coefficienB=24,. Then, in this  show thatA ¢,,, depends greatly on the director angle at
case, the surface director angle can be obtained in a verface 1 and vanishes if the director is orthogonal or parallel
direct way from the measurement of the phase coefficient ofy the magnetic field. This dependence suggests that the ac-
the transmitted beam intensity, using equaliti=p/2,  cyracy of the measurements can be greatly improved by set-

which corresponds to the prediction of the adiabatic theoremyjng the easy axis at surface 1 almost orthogonal to the mag-
Note that this important theoretical result holds for any thick-petic field.

ness and temperature of the NLC layer. It needs only that the The apparent rotation ¢, is calculated using the Ber-

director at surface 2 be parallel to the magnetic field. If this,eman Matrix approacft7]. The accuracy of the numerical

latter condition is not satisfiedy does not vanish and Eq. program is checked by comparing the numerical results with

(24) can be rewritten in the following equivalent forfap to  the exact expressions predicted in the limit cades0 and

the second order in): H—o. These limit cases are recovered with a relative accu-
racy better than 10°. As a further control, we calculate the

(26) sum of the transmitted and reflected intensities and we com-
pare this sum with the incident intensity. The relative differ-

B. Numerical calculations with the Berreman matrix

|
||0U‘:§°[1+COS Awt—d1—7v)],
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ence between these quantities is found always lower than
10°°. A ¢4pp is obtained using the numerical procedure dis-
cussed below. First we calculate the transmitted electric field
amplitudesk 2" and K2"!, which correspond to an incident
field of unitary amplitude polarized parallel or orthogonal to
the director field at surface 1, respectively. Due to the linear-
ity of the Berreman equations, the output field amplitude for
an incident field of amplitud&,, with a polarization which
rotates at angular frequenay is

Ad,,, (deg)

E°U'=E [K3" cog wt— ¢1) + KS " sin(wt— ) ].

(29

The output intensity of the transmitted beam after the ana-

lyzer is obtained by substituting°"t of Eq. (29) into Eq.
(23). After straightforward calculations we get

1ot 202 2 by P Ceos 2wt by )
(30)
where
1 C
v= Earctarﬁ o b|) (31
anda,, b, andc, are real numbers given by
2= (K" A)[(K")*-A], (32
by= (K" A)[(Kg")* - A, (33
and
=2 Re (K" A)[(KS")*-A]}. (34)
Re(- - -) denotes the real part of a complex humber Anid

the analyzer axis parallel to,. |, is the intensity of the
incident beam. Equatiof80) reduces to Eq.25) in the Mau-

FIG. 3. Apparent rotatior ¢, of the director at surface 1 vs
intensityH of the magnetic field. The full curves represent the re-
sults obtained using the numerical calculatigBerreman theory
when the director azimuthal angle at the first interfacedis
=45°, Different curves from the bottom to the top correspond to
$,=0°, $,=15°, $p,=30°, $p,=45°, p,=60°, ¢,=90°, respec-
tively. The broken lines represent the predictions of the first order
perturbative theonfEq. (28)]. The material parameters used to
make the numerical calculations are those of the nematic liquid
crystal 5CB at room temperaturd €25 °C): n,=1.717 andn,
=1.528[24], K,,=3.93x10"7 dynes[22], and y,=1.07x 10"’

[23]. The refractive index of the solid platesnis=1.51. The thick-
ness of the nematic layer &= 235 um which corresponds to the
optical dephasing= 1407+ =/2.

[v in Eq. (28)]. The numerical results accurately approach
the predictions of the perturbative theory for sufficiently
small magnetic fieldsH <2 kOe). This confirms the valid-
ity of the theoretical expressions obtained with the perturba-
tive approach. In the special case wherg=0°, the appar-
ent rotation is very small and is only due to the higher order
perturbative contributions. In such a case anddetr0.28,

the apparent rotation is described very accurat&lithin
0.001°) by the following simple formula:

guin regime sincdy, andc, vanish. Note that in the general Adapp= 32012+ aza’, (35
case, the twist distortion produces both a spurious phase shift
2 of the oscillating signal and a change of its amplitude.where a, and a, are adimensional numerical coefficients
The phase shift mimics an apparent rotatidg,,,=y of which depend on the director surface angle and on the
the director at the surface. This means that the actual surfacefractive indices of the NLC and of the substraie=0.28
director angleg, does not coincide witl8/2 but is given by  corresponds to the case where a magnetic field of 10 kOe is
¢1=PBI2— A,y Therefore,A gy, represents the uncer- applied to a 5CB sample at room temperature
tainty on the measurement of the director surface angle when Figure 4 shows the dependenceob,,, on « 2 for some
the adiabatic formulap, = B/2 is used. values of the director angleb; at surface 1 and fokp,
Figure 3 shows the typical dependence of the apparert0°. The full lines in Fig. 4 correspond to the best fits with
surface rotatiom ¢,,,= ¥ on the intensity of the magnetic equationA ¢;,,,= a,a’+a,a”. In this range of values of
field. The material parameters of the NLC used to make th@parameterr, the quadratic contribution is the dominant one
numerical calculations are those of the NLC 5CB at room(the best fit curves in Fig. 4 are very close to straight lines
temperatures that are given in the caption of Fig. 3. TheResults in Figs. 3 and 4 were obtained for a thicknésd
different full curves in Fig. 3 correspond to the apparentthe nematic layer, which corresponds to the optical dephas-
rotations obtained numerically for different values of the di-ing 6=1407+ 7/2. However, ford>6¢ and ¢,=0°, the
rector azimuthal angleb, at surface 2 and for a thickness apparent surface rotation is virtually independent of the
d=235um, giving an optical dephasing=1407+7/2  thickness of the nematic layer and thus, on the optical
(for this value of§, the first order nonadiabatic corrections dephasings. In particular, the maximum relative variations
have the maximum valgeThe broken straight lines corre- of A¢,,, due to changes of thickness are less than 1%. On
spond to the predictions of the first order perturbative theoryhe contrary, forp,+# 0°, the apparent surface rotation shows

026601-6



LIGHT TRANSMISSION FROM A TWISTED NEMATC . .. PHYSICAL REVIEW E 68, 026601 (2003

3 plate 1 1 H plate 2
_~ =15 =75 3 O
5 015 015 3 °
2 NN
.e? E — n,
3 3 incident NLC
30 3 beam
$,=60 3 rotiatipg extraordinary
olarizer
5 6 7 8 P o

FIG. 5. Schematic view of the geometry of method Il. A nematic
liquid crystal wedge is inserted between two solid plates. A mag-
FIG. 4. Agqpp vs the square power of the perturbative param-petic field can be applied along theaxis parallel to surface 1. The
etera=1/(Ak¢) defined in Eq(6). The director angle at surface 2 gjrector easy axis at surface 2 is parallel to the magnetic field. A
is ¢,=0°. The maximum value of* corresponds to magnetic monochromatic beam passes through a rotating polarizer and im-
field H=10 kOe. The points correspond to the numerical resultsyinges on surface 1 at normal incidence. Due to the birefringence of

obtained with the Berreman approach. The full curves represent thge NLC and to the presence of the wedge, the extraordinary and
best fits with Eq(35). Different curves correspond to the values of he ordinary beams are spatially separated.

A ¢a4pp Obtained when the director angles at surface 1 have the

values: ¢;=0°, ¢;=15° ¢;=30° ¢,=45° ¢;=60° ¢ IV. METHOD II: THEORETICAL ANALYSIS
=75°, and$,;=90°. The material and geometric parameters are
the same as in Fig. 3. A. The perturbative analysis

Equation (18) represents the perturbative expression of
the sins dependence predicted by the perturbative approac];he_output electric field amphtude for a monochromatic beam
[see Eq.(28)]. Looking at Fig. 4, it is evident tha ¢p, Whlch passes through a nematic layered sample. If the nem-
depends greatly on the director angle at surface 1 and atic sample f°”’.‘s a.vvedg.e W'th wedge an@w@.l rad(see
vanishes forg,=0° and ¢, =90°, respectively. In fact, a Fig. 5), Eq. (19) is still satisfied but the local thicknesisof

. . . o the nematic sample becomes a linear function ofxtlceor-
satisfactory approximated expression ¢, is given by dinate along the wedge axis
(see Appendix A

d=dy+ (tanfy)x~dy+ (O X. (37)

sin2¢, Then, the output field becomes
A ¢app: 321‘12 > (36)

E°U'=E" exfi2mne(dot OX)/\]

+E"exd i 27no(do+ BywX)/N]. (38)
wherea,, is a numerical coefficient which depends only on
refractive indicesn, and n, of the NLC and on refractive The wedge introduces two different phase modulations along
index n of the substrate. Fon,=1.717, n,=1.528, andn the x axis for t.he extraordinqry ano! the ordinary optical rays.
—1.51, we getay,= —57.3°. Equation(36) can be used to Then, according to the Eourler optick9], these two rays are
estimate the residual uncertainty on the measurements of tfigfracted at the two different anglesi-1)6y and 0,
surface director angled; when the simple adiabatic expres- 1)6w, respectlve_zly, as sh_own schematically in Fig. 5.
sion ¢, = B/2 is used. A more accurate analytical expression In such a case, It IS .posilble toomeasure_ sepa_rately the two
for A gy, can be found in Appendix A, correqundlng |nten§|t|eI§ andl;"". The intensity of the

In conclusion, the predictions of the first order perturba—extraordInary wave 1s

t@ve approach are fully cpnfirmed by the pumerica_l ca!cula- |0t g [ (EOU). (EQU*], (39)
tions. In particular, the first order corrections vanish if the
geometry of method | is usedpp=0°). A very important  whereES" is given in Eq.(19). By substituting in Eq(39)
result of the numerical calculations is that the small residuathe expression oES"! given in Eq.(19), taking into account
higher order contributions also vanish when the director aEgs. (21) and (22) and neglecting all contributions of the
surface 1 is orthogonal or parallel to the magnetic field.second order inv, we get
Therefore, in these special conditions, the adiabatic expres-
sion of phase shiff is virtually exact for any value of the lo
applied Fr)nagnetic frigeld. This Ia);ter results suégests that a fur- 12" = 5[1+ cos Awt—¢y)]. (40
ther great improvement of the accuracy on the measurement
of the surface director angle can be reached by setting th&hen, within the first order perturbative approach, the pres-
easy angle at surface 1 almost orthogonal to the magnetience of the director twist does not introduce any additional
field. phase shift in the oscillating signg]"!(t). This is analogous
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to what happened for method | in the special case0 0.0F ¥
(¢>=0°), but nowthis result remains satisfied fany value 05E 3
of b, that is, for any orientation of the director at the second = O F ]
interface. At this order of approximation, the phase shift in § -1.0F 4
Eq. (40) depends only on the director orientation at the first 8 F 3
interface and is completely independent of the director ori- ¢ -L5E E
entation at the other interface. < L0k 3
6,=90 deg——

B. Numerical calculations with the Berreman matrix '2'56 ' i : é ; :; ' éll : ; ; é ' ; : ;

In order to verify the theoretical predictions of the pertur- s 9
bative approach and to obtain the higher order corrections, 107 o
we have performed numerical calculations using the Berre- ) , .
man method. The procedure used here is a little more com- FIG. 6. Apparent rotatior ¢4 of the director at sur_face L in
plicated than in the previous case, because the amplitudes B €3¢ of method Il, vs the square power of perturbative parameter
the different wavegordinary and extraordinayyhave to be a=1/(Ak¢&) defined in Eq(6). The two curves in the figure from

separated from a prober numerical analvsis. as shown in A the bottom to the top represent the results obtained using the nu-
P . . p. P . YSIS, Rherical calculationgBerreman theornywhen the director azimuthal
pendix B. Using this numerical procedure, we were able t

. . . ; Oangle at the first interface ig,=45°, while ¢,=0° and ¢,
obtain the amplitude of the generalized extraordinary WaVE_ g0 respectively. For clarity, the curves corresponding to 0°

t t t H
S denot_e by Ke") and (Kgu o the num?ncauy < ¢,<90° are not represented because they are internal to the two
calculated amplitudes of the generalized extraordinary waveurves shown in the figure. Note that,,,, is poorly dependent on
that corrgsppnd to an incident electric field of unitary gmph—qsz and is always a quadratic function of parametetin agreement
tude, which is polarized parallel or orthogonal to the directorwith the predictions of the perturbative theory. The material param-
at the first surface, respectively. Due to the linearity of theeters are the same as in Fig. 3.
Berreman equations, the amplitude of the generalized ex-
traordinary wave, which corresponds to an incident field ofo curves in the figure. This means that the higher order
amplitudeE, with a polarization vector which rotates with correction terms are poorly sensitive to the value of the di-
the angular velocity», is given by rector angle at surface 2.
Figure 7 shows the dependencefap,,, on a? for some
out__ out _ - app ~
By =Eol(Ke e cogwt—¢y) values of¢, and with ¢,=0°. The predictions of the per-
+ (KUY, sin(wt— ¢by) ]exp(i S), (41) turbative procedure are entirely satisfied. In particqlar, the
apparent director rotatiod ¢,,,=y does not show linear
where suffix Il refers to method Il. Then, the intensity of the contributions inw for all values of the surface director angles

extraordinary wave in Eq41) is ¢, and ¢,. Furthermore, forx<<0.28 («?<0.078 in figure
b the apparent surface rotation is well represented by(&x).
atby g with coefficientsa, anda, that depend on the surface angle
out_ 2 Jay—by)2+c2 g 2 4 p g
e ~lom 5 T V(aimby)Hcicos Aot = ¢y —y), ¢, and on the refractive indices of the NLC and of the sub-

(42 strate, and are poorly sensitive to the value of the director
angle at surface 2. Furthermore, the leading contribution,

where
1 C|| 0.5 ?‘""'""I"""'"l""""'I'"'""'I""'""I""""'I'"'""'I"""""]_:
I EarCtaré Q- bII) (43) 0.0 ; _;
W 0SE E
and 3 E E
% 10F =
a;=(Kg"er (KQ"% (44) ?f -1.5 - —;
by = (K" (K5 (45 20F 0130 g0 3
R0 I TITTITITI FTTTIRTTI [TTTIITTTI FITTIITITA [TITI IRATY FITTI RITTITIITITNITI FITTIITIN: |
and o 1 2 3 4 5 6 7 8
t t 2 2
ci=2 Re (Kg")e- (KGUH3 1. (46) 10" o

FIG. 7. A,y Vs the square power of the perturbative param-

Equation (42) reduces to Eq(40) in the Mauguin regime etera— 1/(AKé) defined in Eq(6) for cased,=0°. Different sym-

sinceby andc, vanish. In this case 0o, the main effect of | correspond to the numerical “exact” values dp,p,, Ob-
the bulk director twist is an apparent rotatidmbapp= v- tained when the director angles at surface 1 have the valbies:

Figure 6 shows the dependence/of,,, on o for ¢,  =0°, ¢,=15°, ¢,=30°, b;=45°, ¢, =60°, ¢,=75, and ¢,
=0° and¢,=90°, and with¢; =45°. Curves corresponding =90°. The full lines correspond to the best fits with E85). The
to 0°< ¢,<<90° are not shown because they lie between thenaterial parameters are the same as in Fig. 3.
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which is quadratic inv, has the same functional dependencehas been calculated by solving the implicit equati@i)
as in Eq.(36). More details on the higher order contributions with £ given in Eq. (7). The material parameters used to

can be found in Appendix C. make calculations are those of the nematic liquid crystal 5CB
at temperaturdl =25 °C (see the figure caption in Fig.).3
V. MEASUREMENTS OF AZIMUTHAL ANCHORING The easy axis of surface 1 i5,=89°. The full curves cor-
ENERGY respond to the exact values of the surface director rotation

) ) ) _ — A ¢4, while the points correspond to the values of the ro-

In this section, the experimental procedure which we protation angle which is obtained using the first order approxi-
pose to obtain the azimuthal anchoring energy is discusseghated expression ¢, = A 5/2. According to Eq(49), all the
Some preliminary experimental results will be given in thefy|| curves are well represented by a straight line for small
final part of the section. To measure the azimuthal anchormgnough magnetic fields. For weak anchoring energjias
energy of the NLC, a magnetic field (or an electric fieldf) <1073 erg/cn? in Fig. 8a)], the discrepancy between the
is applied along the(_aX|s (see Figs. 2 and)5o generate a exact and the approximated-(A 8/2) results is completely
known surface elastic torque which changes the surface diegligible (below 1%) in the whole range of magnetic fields.
rector azimuthal angléb,. At equilibrium, the surface elastic gqr\W=3x10"3 erg/cn?, some discrepancy between exact
torque is balanced by the anchoring restoring torque. To Simyng approximated results appears in the high magnetic field
plify the theoretical analysis below, we assume that the Charregion. The difference between approximate resggtsnts
acteristic twist distortion lengtl§ [Eq. _(7)] is much smaller and exact resultgfull lines) is just equal ta ¢, . It has to
than the local thickness of the nematic layer so that the semjyg emphasized that a satisfactory agreement between ap-
infinite approximation can be uséd]. Furthermore, we as- proximate (points and exact resultsfull lines) is always
sume that the anchoring energy function is represented bypserved forH <2 kOe. It is also important to emphasize
the Rapini-Papoular expressif0]. Both these assumptions  nat the differences between the adiabatic results and the ex-
are not needed but allow us to simplify the theoretical analy st ones, which are somewhat small in Figa-8) will be
sis. In these conditions, rotatiaing, of the surface director extremely higher in a standard geometry where the linear
with respect to the easy axis satisfies the following boundaryonadiabatic contributions do not vani@ee Fig. 3. Let us

condition: consider, for instance, the case of cub in Fig. 8c). In
. this case, the maximum discrepancy between the true surface
_ Sin(ge + Ady) - w SiN(2A ¢,) (47) rotation and the approximated one is about 0.2°, which is
3 2K 22 v about 20% of the true rotation. In this same case, the linear

] ) o corrections can reach maximum values of about 8° that is
whereW is the anchoring energy coefficient arid the easy  5p0ut 800% of the true surface rotation. The broken lines in
azimuthal angle at surface (With respect to the magnetic Figs ga—d show the values that are obtained by subtracting
field). The left-hand side in Eq47) represents the surface from /2 the apparent rotatiof ¢, ,, calculated analytically
elast_lc torque while the rlg_ht_-hand side is the res_tonn_g anysing Egs.(A8) and (A9) with the numerical coefficients
choring torque. For sufficiently small magnetic fields giyen in Table I. The broken lines are virtually superimposed
[Kao/ (WE)<1], A¢py is very small and Eq(47) is reduced (g the full ones in Figs. @—d and small differences are
to visible only for somewhat strong anchoring enerdiégy.

8(d)]. Similar results have been obtained for method II.
(48) The more important feature of our geometry is related to
the fact that the spurious rotatidng,,, is a quadratic func-
. tion of the magnetic field 4%=<H?), while the true surface
Note that forA ¢, <1, Eq.(48) also holds in the case where rotation at small magnetic fields is a linear function of the
the surface anchoring energy is not represented by the Simp?ﬁagnetic field. This suggests a very simple way to measure
Rapini-Papoular form. Substituting the explicit expression ofthe anchoring energy coefficiew which consists in restrict-
& [Edg. (7)]in Eq. (48), we get the equivalent form ing the analysis of the data to the region of magnetic fields
where the experimentally measured phase shift shows a lin-

K22 .
Api=— W—gsm de.

Ady=— VKzz)(aH sing (49) ear dependence on the intensity of the magnetic fiegd
1_ w e gions belowH=2 kOe in Figs. 8—d]. The experimental

observation of a linear behavior ensures automatically that

In this regime, the surface director rotation is proportional tothe nonlinear spurious nonadiabatic contributit,,, is
intensityH of the magnetic field with a proportionality coef- completely negligiblgpoints and full lines are virtually co-
ficient which depends on the anchoring energy coeffidlént incident in Fig. 8 forH<2 kOe). Therefore, equalit /2
Then, a simple way to obtain the anchoring energy coeffi=A ¢; can be used to obtain the true surface director rota-
cient consists on measuring the rotation angjl¢é, versus tion. In these conditions, the anchoring energy coefficient
the intensityH of the applied magnetic fiel21]. can be obtained in a very simple way from the measurement

The full lines in Figs. 8a—d show the surface azimuthal of the proportionality coefficient betweelp,=A 8/2 andH
rotation —A ¢, = ¢o— ¢1 versus intensityH of the applied [see Eq(49)]. Some practical problem with this very simple
magnetic field for different values of the anchoring energyand direct method can only occur in the special case of very
coefficientW in the case of method I. The surface rotation strong anchoring energid®V~1 erg/cnt in Fig. 8d)]. In
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FIG. 8. Rotation anglé ¢, of the director at surface 1 as a function of intensitpf the magnetic field in the case of method I. On the
vertical axis of Figs. @—0d is shown the opposite df ¢;, which corresponds to differenek,— ¢, between the azimuthal easy angle and
the actual director azimuthal angle. Points represent the valukg pbbtained using the approximate relatitwgp, = A B/2. The full curves
correspond to the true surface director rotatlosi;, while the broken curves represent the surface rotation which is obtained using relation
Ap1=ABI12—Adyp,, WhereA,p, is the value of the apparent surface rotation calculated using the analytical expréAd§ipaad (A9)
given in Appendix A with the numerical coefficients in Table I. Apart from Figd)8very strong anchoring energieshe broken and full
curves appear to be superimposed. Different figlias (b), (c), and(d)] and different curves refer to the different values of the azimuthal
anchoring energy coefficientW,;=10"* erg/cnf, W,=3.16x10"* erg/cnf, W,=10"3 erg/cnf, W,=3.16x10 3 erglcnf, Wjs
=102 erglcnt, W= 23.16x10 2 erg/cn?, W,=10"1 erg/cnt, Wy=3.16x 10" erg/cnt andWy=1 erg/cnt. All the numerical data have
been obtained for the surface azimuthal angle at surfagg=%89° and for¢,=0°. The other parameters characterizing the NLC and the
substrate are the same as in Fig. 3.

fact, in a real experiment, the accuracy of the measuremeris possible to avoid errors due to the nonadiabatic contribu-
of the azimuthal anchoring energy coefficient depends alstions using the slightly more complicated procedure outlined
on the accuracy on the measurement of phase coeffigient below. In fact, in this region of still small surface rotations
Many accurate experimental techniques have been developgsee Fig. &)], A¢, is accurately represented by a linear
in the past to measure the phase coefficient of an oscillatinfunction ofH [Eq. (49)], while the spurious contributions are
signal. A maximum accuracy of the order of 0.01° can bequadratic inH. The main contribution to the spurious rota-
reached with these methods. If the anchoring is very strongon A ¢, is given in Eq.(36), which can be rewritten in
[W=W,y=1 erg/cn? in Fig. 8d)], the surface director rota- the compact form

tion in the linear portion of the\ ¢,(H) curve corresponds

to very small values of\ ¢; (A ¢;<0.02°) that are compa- A app=DboH?sin(2¢7), (50
rable to the experimental uncertainty on the measurement of

the optical phase shifi 8. In such a special case, it seems towhereb, is a constant coefficient. Leb, be the azimuthal

be convenient to extend the experimental measurements &asy angle at surface 1. For small surface director rotations
the high magnetic field region also, where the surface direcf|A ¢4|<1 rad), Eq.(50) becomes

tor rotations are large enough but the nonlinear contribution

A ¢4pp is N0 more completely negligible. Also, in this case, it Adapp~ b,H2siN(2¢e) + 2b,H% cog2pe) A by, (51)
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TABLE . a,y(i), as(i), as(i), andays(i) expressed in de- 10fF T
grees corresponding to the adimensional coefficients defined in Eq. 9 -
(A9) in the case of method I. s ]
. : . . = 7F ]
an(i) ag(i) ag(i) ag(i) L 6F ~
i=1 —-57.079 45.745 25.406 157.38 g_ i: :
i=2 —5.1174 42.335 —76.340 297.14 < L ]
i=3 12.148  —14356  262.82 —1008.5 ' 3r ]
i=4 6.3125 —-53.913 98.030  —375.15 2r g
i=5 161.93 —1423.2 2647.5 —10152 1 [ E
i=6 35.904 —623.86 1194.8 —4351.5 0 0 -
i=7 26.704 —424.33 796.62 —2889.6
i=8 36471  —17845  307.46  —12858 H (kOe)
i=9 —69.105 539.91 —1005.5 3907.7 FIG. 10. Preliminary experimental results obtained using
i=10 —19.767 243.27  —459.82 1711.8 method Il with the nematic liquid crystal 5CB at temperatte

=34.8 °C. The substrate is a thin obliquely evaporated SiO layer.
o . . . Full points correspond to the experimental values—af 8/2 ob-
SubstitutingA ¢, given in Eq.(49) into Eq.(51), we get tained with method I1. Open points are the surface rotation angle
—A ¢, as measured using the reflectometric method given in Ref.
~ 2 3 1
Aapy~BoH"+CoH", (52) [16]. The broken line is the linear fit made on the first three full

where B, and C, are constant coefficients. Then, the POInts. The full line represents the fit with EG3).

magnetic-field dependence of the experimental phase shift

—ABR=—=Ap1—Adappis simple relationW= \K,,xa/A,. The anchoring energy coef-
5 5 ficient, which is obtained from the best fit, i
—ABI2~AH—BH"—C,H", (53)  =1.0025 erg/crhin a very good agreement with the actual

value W=1 erg/cnf. In conclusion, very strong anchoring
) . - _energies can also be accurately measured using the transmis-
tion. Therefore, the true surface rotation and the anchorin ion light methods proposed in this paper. It is important to
energy coeff|c[ent can be obtained from a cubic polynor_ma mphasize here that no knowledge of the material parameters
fit of the experimental values of AB/2 versus the magnetic ¢ the nematic LC and of the substrate is needed to obtain
field intensity H. Coefficient A;= JK;pxo/W of the linear  cqefficientA,. The analysis above was focused on method I,
term provides a measurement of the anchoring energy coef; the same kind of results are also obtained in the case of
ficient. Note that also in this case, no knowlege of the matep,athod I1.
rial anql geometric parameters of the NLC is needed to obtain T, verify the theoretical results obtained in this paper, we
coefficientA,. _ , o __ have performed a preliminary experiméaee Fig. 1Dusing

_ An example of this procedure_ is shown in Fig. 9. P_omts INmethod II. The 5CB nematic sample was introduced by cap-
Fig. 9 corresp_ond to the numerical vaIuesAq@/Z_ obtained illarity (in the isotropic phagewithin a cell made of two
for an anchoring energw=1 erg/ent. The full line repre-  gjass plates. Then, the sample was cooled toward the aniso-
sents t.he bes.t fit with Eq53). The. ancholrlng energy coef- tropic phase. The glass plates were separated by two mylar
ficient is obtained from the best fit coefficieAt using the spacers having thicknesd,;=80 um and d,=200 xm,
placed at a distance of 5 mm to produce a wedge adgle
=1.4°. The surfaces of the plates in contact with the NLC
were treated by oblique evaporation of SiO at 60° to induce

where only coefficienf, is related to the true surface rota-

p'rrrrrtrrtrrrtrrrtrTry

o0 0.2 a planar homogeneous alignment along the same directions
3 K . on the two plates. A laser beam impinged at the center of the
g cell, where the local thickness was=140 um.

= 01 - Here, we are also interested in showing that the nonlinear
<|1 fitting procedure proposed aboveEig. 9 works well in the

. case where the spurious director rotation is not negligible.
For this reason, we have chosen experimental conditions

0.0 el L L L where the nonadiabatic contributions are appreciable. In par-
0123456738910 ticular, we have set the surface easy angle= 78° which is
H (kOe) far from the optimal conditiong,=90° where nonlinear

contributions vanish. Furthermore, we used temperaiure
FIG. 9. Points denote the optical phase shif\g/2 vs the =34.8 °C, which is close to the clearing temperatdie

magnetic field intensityd for an anchoring energy coefficieny ~ =35.3 °C, in order to have a small value dfi and thus, a
=1 erglcnt (strong anchoring The full line corresponds to the great value ofx. The maximum valuer=0.31 was reached
best fit with the cubic function in E(53). at the maximum magnetic field =6.14 kOe. Black points
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in Fig. 10 show the experimental phase shif\ /2 versus up to the second order in the perturbative parameter
the intensity of the applied magnetic field, while open points=1/(Ak¢). Furthermore, the small residual higher order
correspond to the values of the surface director rotation contributions vanish if the director at surface 1 is oriented
—A ¢, which is obtained with a reflectometric method de- orthogonal to the magnetic field. Then, the influence of these
veloped by our group in the pagt6]. This latter reflecto- spurious contributions can be greatly reduced by setting the
metric method is virtually insensitive to the effects of the easy axis at surface 1 almost orthogonal to the magnetic
bulk director twist[14] but it is more sensitive to external field. The experimental procedure is very simple and direct
noise sources as those caused by the light diffusion from thand needs only a standard measurement of phase shift of an
NLC. Within the experimental accuracy of the present meaoscillating signal. This procedure makes it possible to im-
surement £0.1°), the two measuremensansmitted light prove greatly the accuracy attainable with the classical trans-
and reflected lightlead to the same linear behavior in the mitted light methods. In particular, it is also possible to mea-
low magnetic field regiortfull and open points are virtually sure strong anchoring energiesW£&1 erg/cnf) with a
superimposed in Fig. 10 fad<1.5 kOe). The linear fit on satisfactory accuracy. The great simplicity and accuracy of
the first three full points in Fig. 10 leads to the broken linethese methods make them a valid alternative to the more
which corresponds to the anchoring energy coefficht complex reflectometric methods too.
=(5.5+0.3)10 2 erg/cnt, while the linear fit of the reflec- The two methods proposed here to measure the anchoring
tometric results (open points led to W=(5.7 energy are virtually equivalent, but method I is very sensitive
+0.3)10 % erg/cnt. The values oW are calculated using to the orientation of the easy axis on the second interface,
parameters<,,=1.92x 10 7 dyn [22] and x,=0.71x10" 7  which must bep,=0°. A small misalignment of the director
[23]. The full line in Fig. 10 represents the best fit with Eq. on the second interface introduces spurious contributions
(53). From coefficientA, of this nonlinear fit, we recover (see Fig. 3 that are indistinguishable from those due to the
value W= M/A2=(5-5i 0.3)10 2 erg/cnt which was anchoring mechanism, because they exhibit the same linear
obtained from the measurements restricted to the linear rélependence on the applied magnetic field. Furthermore, this
gion. Therefore, the validity of the nonlinear fitting proce- method uses an analyzer with the transmission axis which
dure is fully confirmed by the experiment. Of course, in themust be set parallel to the director at surface 2. Therefore, a
case of Fig. 10, the surface director rotation in the low magQgreat care must be devoted to the alignment procedures when
netic fields region is sufficiently high and the use of themethod I is used. On the contrary, method Il is virtually
nonlinear fitting procedure is not useful. According to theinsensitive to the orientation of the director field on the sec-
previous theoretical analysis, the nonlinear behavior, whictpnd interface and does not requires the use of an analyzer. In
is present in the transmission light, resultsll points) can  particular, method Il can also be applied successfully to a
be greatly reduced by setting the easy angle close to 90Symmetric cell having the same easy axes on both the inter-
This behavior is effectively confirmed in our experiment.  faces(the preliminary experimental results given above were
Before terminating this section we want to emphasize thatust obtained in this geometric conditipriThis latter tech-
most of expressions given in this paper have been obtaine@ique requires only that a nematic wedge is built with a
in the case of a semi-infinite nematic sample. However, thavedge angle,,>1°, sufficient to separate appreciably the
proposed experimental methods can also be applied to tHéfracted ordinary and extraordinary beams. For all these rea-
cases where the characteristic lengtbf the director distor- sons we think that method Il should be preferred.
tion is not much smaller than the local thicknes®f the
nematic sample. In such a case, the higher order perturbative ACKNOWLEDGMENT
contributions are usually negligible and the surface director , .
angle is accurately obtained using equality= /2. Now, a We acknowledge f.|nanC|aI support by the European Com-
little more complicated expressions have to be used to Camunlty(lNTAS Grant: 01-017D
culate the anchoring energy from the measured rotation of

the director at the surface. APPENDIX A: HIGHER ORDER CONTRIBUTIONS

IN METHOD |

VI. CONCLUSIONS In this appendix we will restrict our attention to the spe-
ial case of a semi-infinite nematic layer with,=0° and

e will disregard the small residual dependence of the ap-
arent surface director rotatiaig,,, on 6. In such a case,

The transmission of a monochromatic beam by a twiste
nematic liquid crystal subjected to a magnetic field has beeE

investigated in detail, using both a perturbative approach an ccording to the numerical results given in Sec. Il B, the

a numerical analysis. It has been shown that there exist twg . -
. . arent rotation\ is well represented by the expres-
special geometric arrangemer(method | and method )l si%% Papp P y P

that allow one to obtain an accurate measurement of the di-

rector orientation at the surface, from the measurement of AD = a,a’+aza? (A1)
phase coefficiens of the transmitted light intensity. In these

special geometries, the surface azimuthal arglés related wherea, anda, are the coefficients that depend only on the

to B by the simple relation azimuthal anglep, at surface 1 and on the refractive indices
of the NLC (ne andn,) and of the substraten]. According
$1=PI2, (54)  to the perturbative analysis given in Sec. lll A,y is
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F Y 1 Y1 T T YT YT YT T YT vTIrA4 20_|||||||||||||||||||||_
Un ay = -57.2697 deg N i a, =46.1116deg -
- i 1 10 a,,=25.1696 deg
g -lor T g o 2= 160472 deg
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30k i s -
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FIG. 11. Points represent the values of the adimensional coeffi- FiG. 12. Points represent the values of coefficiaptof Eq.
cienta, of Eq. (A1) versus theg;-angle for,=0° (method ). (A1) vs the ¢, angle for $,=0° (method ). Coefficienta, has
Coefficienta, has been obtained from the best fits in Fig. 4. Thepeen optained from the best fits in Fig. 4. The full line represents

full line represents the best fit with E¢A6). The material and  he pest it with Eq(A7). The material and geometric parameters of
geometric parameters of the NLC layer are the same as in Fig. 3ine nematic liquid crystal layer are the same as in Fig. 3.

expected to depend essentially on the values of the deriv%- nd 0n¢I1V AR ACARE X

; . . 1SS e 1 7, and (¢1)*. However,
tives of the director azimuthal angle at the first interface anq,, ,ymerical analysis shows that the first three contribu-
on 1/(Ak)=\/(27An) [see Eq.(10)]. For simplicity, we

. e ) tions are sufficient to describe accurately the observed be-
will denote here these surface derivatives with symlalls  pavior. Then,a, can be written in the general form as

1, ¢y, ¢}, and so on. For a semi-infinite NLQ1$ £),
the first four surface derivatives are: Sin4¢q Sif2¢,

1|t

a,= aM[ — 2 Sin 2, Sirf ¢, +

, sing,
+a4gTsm2¢1, (A7)
, 1 sin2¢,
=55 (A3)  whereay;, a,,, anda,; are adimensional coefficients that
§ depend only on the refractive indices of the NLC and of the
1 substrate. Figure 12 shows the dependenca,ain ¢, and
m_ _ — . the corresponding best fit with the function in E&7). In
1 §3COS 215Ny, (A4) this case too, coefficiers, reduces to zero ap;=0° and
¢1=90°. In conclusion, a satisfactory analytical approxima-
; tion to Ad,,, is given by:
1 sin app
V== —2sin2gy sirf gy + — 2 (A5) .
€ 1 sin(2¢y)
. o Adapp=az 2 2
According to the analysis given in Sec. IllA , the apparent (Ak¢§)
director rotationA ¢, is only due to the higher order per- _
turbative contributions inv. The quadratic correctioa,a? n 1 a sin(4¢1) — 2 SiN26,)sirPd
in Eq. (A1) is expected to be derived from the sum of con- (Akg) a4 L 1
tributions that are proportional t¢'? and to¢”. However, ) 5 )
we find that the contribution proportional t'? is com- ta sin(2¢;) L S 2¢1sin2¢> A8)
pletely negligible. Then, coefficierst, can be written as 24 ) -
Sin 2¢, Coefficientsay, . . . ,a43 in EQ. (A8) depend on the refrac-

ar,=ap; (A6)

tive indices of the NLC and of the substrate. To obtain a
suitable analytical approximate expression for this depen-
where a,; is an adimensional numerical coefficient which dence, we have repeated mai®25 calculations of coeffi-
depends only on the refractive indices of the NLC and of thecientsa, anda, in Eg. (Al), changing the ordinary refrac-
substrate. tive indexn,, the optical anisotroppsn=n.—n,, refractive
Points in Fig. 11 represent the numerical values of coefindex n of the substrate, and the surface angle Coeffi-
ficienta, versuse¢,. The full line in Fig. 11 is the best fit of cientsa, anda, were obtained from the best fits &f¢,,,
the numerical data with the function in EGA6). Then, the  with the function in Eq.(Al) for «<0.28 («@<0.28 corre-
second order corrections to the Mauguin regime are propoisponds toH<10 kOe for the NLC 5CB at room tempera-
tional to the second derivative of the director azimuthal anglgure). Oncea, anda, were known,a,;, as, as», andaus;
and vanish for¢;=0° and¢,=90°. The fourth order cor- were obtained from the best fits af anda, with the func-
rective contributionsa,a? in Eq. (A1) are expected to de- tions in Egs.(A6) and (A7). The investigated intervals of

2 1
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refractive indices were 14n,<1.6, 0.0KAn<0.28, and O0F g8 assssss 3 O s s s tames
1.4<n<1.7, which represent the typical values for standarc : ] : ]
liquid crystals and substrates. lgf=1.5,An™=0.175, and ~ *°[ 1~ %F E
n™=1.5 be the average values of, An, andn in each  w oof 3 W oof E
interval and Sny=n,—nY', SAn=An—An™, and én=n F | 1 E ¢ ]
—n™. We find that a satisfactory analytical approximated 03 E 0F E
form for functionsa;;(n,,An,n) in this restricted region of aof VEERIIFEES o f TREEVEITEN
material parameters is given by the following quadratic ex- 100 101 102 103 104 1000 1010 1020 103.0 1040
pression: d (um) d (um)
(a) (b)
ajj=aij(1)+a;j(2)dn,+aij(3) 5An+a;;(4) on FIG. 13. Points denote the rddtig. 13a)] and imaginaryFig.
+aij(5)5n05An+aij(6)5n06n+aij(7)6An5n 1%(}{))] parts of thex component of the com_plex output amplit_ude
E°" of the electromagnetic wave versus thickndss the nematic
+aij(8)§n§+ aij(g)éA nZ+ aij(lo) Sn2. (A9) layer for a magnetic field of amplitudé =10 kOe. The full curves

are obtained by substituting in EB1) the numerical values of

o ) ] o ESUY ESUT BN, andESY obtained with the procedure discussed
Coefficientsa;j(k), obtained by the best fits of the numerical i, s appendix. The surface director angles dse-=45° and ¢,

values ofay;, a4, 842, andayg with Eq. (A9), are reported  —qe The material parameters are the same as in Fig. 3. The maxi-

in Table I. _ _ mum relative difference between the two calculated values is
Then, a suitable approximated value &f,,, can be  0.02%.

obtained by using the analytical expression in &) with
ay1, @41, A4, andays given by Eq.(A9) and witha;;(k) in
Table I. We have verified that the values &th,,,, which
are obtained using this procedure, coincide within 0.1° with
the “exact” ones in the whole range of parameters (1.4
<n,<1.6, 0.0KAN<0.28, 1.4n<1.7, «<0.28, and 0
<¢$1<90). This uncertainty (0.1°) is greatly reduced for
low magnetic fields £<0.28). Note that the main contribu-
tion to A¢,,, comes from the first quadratic ternaj).
Neglecting the fourth order terms;, a,,, anda,s) pro-
duces a maximum error of 0.04° at the maximum magneti
field («~0.28) in the whole range of material parameters
investigated here.

ES' andES"! are the amplitudes of the beams that are never
reflected by the interfaces, whil’,! and E" are the am-
plitudes of the beams that are reflected two times at the in-
terfaces of the NLGQthe nematic wedge spatially separates
all these different termjsThe numerical Berreman procedure
allows us to directly calculate only the total output amplitude
E°U". In order to obtain amplitud&S"" of the extraordinary
beam which is not reflected from the interfaces, we calculate
mplitudesES"", ES, ES"!, andES"", which correspond to
our different valuesl,, d,, ds, andd, of thicknessd. Then,
by exploiting Eq.(B1) we obtain a linear system of four
equations in the four unknowrg"", ES", EY!, andEQY"

re ro
which is numerically solved. In Figs. &b, the thickness

APPENDIX B: NUMERICAL METHOD TO OBTAIN THE dependence of the real and imaginary parts ofxlcempo-
AMPLITUDE OF THE EXTRAORDINARY WAVE nent of E°' are shown. Points in Figs. (&b represent the

4 ut out :
In this appendix we describe briefly the numerical methoc{?umencal values of R&,") and ImE,"), while the ful

used to extract the amplitude of the generalized extraordin NS> correspond to the result obtained by substituting in Eq.

H out out out out
nary wave from the numerical results obtained using the Ber(Bl) the numerical values ok;™, E;", Ero', andEg

reman approach. obtained with the procedure discussed above. The very good
We consider a plane nematic layer of thicknesdf the

reflections at the interfaces are disregarded, the amplitude of TABLE Il @x(i), @4(i), asx(i), andasy(i) expressed in de-

the transmitted beam is expected to be given by the sum grrees corresponding to the adimensional coefficients defined in Eq.

the two waves that propagate with the ordinary and extraorA9) in the case of method Il.

dinary phase velocities. In this case, the amplitude of thé

transmitted beam is reduced to the simple form in @@®). 32(1) 2a(1) 2a1) 2aq(1)

In the more general case, where multiple reflections canngt- 1 —57.479 49.480 18.346 184.30
be disregarded, the output amplitude will be the superposi-= 2 —5.9545 36.895 —62.914 256.52

tion of a lot of different contributions. Here we consider only j — 3 —9.8385 79428  —156.43 565.55

two adjunctive contributions coming from the extraordinary;_ 4 0.92966 0.065852 —2.4163 5.3930

and ordinary beams, which are reflected two times from the_¢ 15.806 —350.81 697.82 24977

interfaces of the nematic sample. With this assumption, thﬁa‘:6

. . S —43.920 449.87  —838.72 3173.4
amplitude of the transmitted electric field is i—7 _64.450 666.72 12526 47483
i=8 ~62.567 338.32  —580.00 2440.6

E°U'=E" exp(i o) + ES" exp(i 6,) + ES expl(i36,) i=9 55.428 ~511.85 97655 —3673.8
i=10 9.9531  —86.703 161.90  —619.00

+E% exp(i36,). (B1)
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agreement between the two sets of data confirms that Eare poorly dependent on angde in the case of method Il

(B1) represents satisfactorily the actual optical behavior.

APPENDIX C: HIGHER ORDER CONTRIBUTIONS
IN METHOD I

Using the same procedure described in Appendix A , we can
obtain a satisfactory analytical approximated form of the
kind in Eq.(A8) for the apparent rotatioA ¢,,,. The values

of coefficientsa,q, a41, a4, anda,; are obtained using Eq.
(A9) in the same ranges of valuesmyf, An, n, anda, as in

In this appendix we report detailed results concerning theAppendix A. The numerical values of coefficierds (k),
dependence of the higher order corrections to the adiabatiwbtained with this procedure are given in Table II.

theorem in the case of method Il. To calculate the higher

order correction terms, we restrict our attention to case

The maximum uncertainty on the numerical values of
A ¢app, Which are obtained using the numerical coefficients

=0°. In such a case, the director orientation at interface 2n Table II, is lower than 0.15° in the whole range of inves-
does not change when the magnetic field is switched ortigated material parameters and reduces to less than 0.01° for
However, it has to be noted that the higher order correctionsagnetic fields lower than 3 kOe.
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