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Time-asymptotic wave propagation in collisionless plasmas
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We report the results of a new, systematic study of nonlinear longitudinal wave propagation in a collisionless
plasma. Based on the decomposition of the electric figltto a transient parf and a time-asymptotic pas,
we show thatA is given by a finite superposition of wave modes, whose frequencies obey a Vlasov dispersion
relation, and whose amplitudes satisfy a set of nonlinear algebraic equations. These time-asymptotic mode
amplitudes are calculated explicitly, based on approximate solutions for the particle distribution functions
obtained by linearizing only the term that containi the Vlasov equation for each particle species, and then
integrating the resulting equation along the nonlinear characteristics associatet] wiiich are obtained via
Hamiltonian perturbation theory. For “linearly stable” initial Vlasov equilibria, we obtainr#ical initial
amplitude(or threshold, separating the initial conditions that produce Landau damping to Zerc0( from
those that lead to nonzero multiple-traveling-wave time-asymptotic states via nonlinear particle trapping
(A#0). These theoretical results have important implications about the stability of spatially uniform plasma
equilibria, and they also explain why large-scale numerical simulations in some cases lead to zero-field final
states whereas in others they yield nonzero multiple-traveling-wave final states.
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[. INTRODUCTION when it has only one maximum, as indeed is the case for the
Maxwellian. Accordingly, the equilibria in this class are of-
One of the oldest and most fundamental problems irten called “linearly stable.”
plasma kinetic theory is that of small-amplitude longitudinal ~An unfortunate fact is that the linearization of the VP
wave propagation in a collisionless plasma described by theystem is, in general, not uniformly valid in tinhé] even for

Vlasov-Poisson(VP) equations small initial perturbations. Thus, the validity of most of the
linear results is limited to a relatively short time scale. This is

of, of, dq,_9df, the case, in particular, for Landau damping; as early as 1965

gt o X + m, E ET 0, (18 ONeil [8] argued that nonlinear effects can prevent the com-

plete damping of a sinusoidal wave and lead to a fixed-

JE amplitude time-asymptotic traveling-wave mode, sustained

— =47, qaf dv f,, (1) by the oscillations of the particles trapped in the wave’s po-

X a tential well very much like the well-known Bernstein-

Greene-KruskalBGK) [9] nonlinear traveling-wave solu-

wheref ,(x,v,t) is the distribution function for particle spe- tions. The time scale on which these nonlinear effects
ciesa, a=1,..Ng, andE is the self-consistent longitudinal become important can be estimated as the time scale on
electric field. This well-known model has played a major rolewhich a particle crosses the potential well and reaches a turn-
in the analysis of plasma instabilities and wave propagatiofing point. Close to the bottom of the well, the field is well
in a wide variety of settings, ranging from astrophysical,approximated by the harmonic fiell(x,t)=— (eke/m)x
solar, and magnetospheric plasmas to laboratory and fusidifor a plasma of electrons with chargand massn), so that
plasmas. However, due to the extreme analytical difficultiegshe “trapping” (or “bounce”) time is 7,=ym/eke. On the
associated with the nonlinear Vlasov equation, much of thether hand, Landau damping takes place on a different time
classic theory of plasma wavgs—4| has been based on the scale, which can be estimated as=1/y, wherey, is a
analysis of the linearized VP system. The most famous resutypical Landau damping coefficient. O’N¢B] observed that
of the linear theory is Landau damping: according to Land-there are two limiting cases.
au’s solution of the initial value problem, every small pertur- (1) If 7. <7, the field is damped before nonlinear effects
bation of a Maxwellian electron plasma with a fixed ion become relevant. The wave dies away before it can signifi-
background decays exponentially because of collisionlessantly distort the single-particle trajectorie@nd the
absorption of electric field energy by the resonant particlesbackground equilibrium and the linear theory is basically
i.e., the particles traveling at velocities close to the phaseccurate.
velocity of a wave mode. In the early 1960s, Landau’s result (2) If 7, > 7,, the reverse is true: the wave is not damped
was generalized by othef§—-7] who proved that the solu- before nonlinear effects become important; rather, these ef-
tions to the linearized VP system exhibit Landau dampindects appear quickly and modify the distribution function in
whenever the equilibrium distribution is single humped, i.e. the resonant region, invalidating the linear theory. This sec-
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ond case was the object of O’'Neil's study; since Landau af, of, q, df,
damping has very little time to affect the wave amplitude, he It +v X +—
argued that, to first order im,/7_, the constant-amplitude
field E(x,t) = sin(kx— wt) can be used to compute the particle whereF,(x,v) is the initial distribution functior(Sec. Il B).
trajectories. This can be done in terms of Jacobi elliptic func{c) The formal solution of Eq(2) in terms of the nonlinear
tions and leads to a wave amplitude that is initially damped:ha}racteristics corresponding A!o(Se(;. Q. (d)_The uti[i-
according to Landau, but later grows back as the trappegation of the solution of Eq2) to obtain algebraic equations
particles start transferring energy back to the wave. Therfor the mode amplitudes & (x,t) (Secs. IID and Il & Step
damping and growing alternate until the field settles to soméd) is somewhat laborious: it involves focusing on the time-
finite amplitude smallefin the case of initial dampinghan ~ @symptotic part of the problem and studying it as a bifurca-
its initial value but different from zero. The decrease of thefion problem for small-amplitude multiple-wave solutions
amplitude oscillations occurs because, as the trapped pdi€@r the basic soluticA=0 which corresponds to complete
ticles oscillate on orbits of different frequencies, they |Ose‘l‘_a_ndau da,fnplng. V\/_e find that‘,‘ if any nonzero solutionAor
phase coherence until there is no net density flux in phast 'f“f_‘f%tes_ from AI=(()j_(for ad crlgcal f.'n!t'al CO”O"“OF‘?' f
space across the wave phase velocity. en it is given, at leading order, by a finite superposition o
The limitation of O’Neil’s analysis, of course, is that the wave modes whose phase veI_ocmes satisfy a Viasov disper-
X . . ' ST sion relation and whose amplitudes can be obtained from a
particle trajectories are calculated by assignéngriori the fini . . : . .
o . ; . . . finite dimensional system of nonlinear algebraic equations
electric field to be a single sinusoidal wave of fixed ampli-

. . X . that depend orT and F,. It is crucial that the nonlinear
tude. However, in many practical cases amplitude variationgy - .- teristics for a fiel&(x,t) of this kind can be deter-

a_md the_ presgnce_of _multlple wave modes do affect_ the patyineq explicitly via Hamiltonian perturbation theof{5].

ticle trajectories significantly. To account for changing am-hg expiicit calculation of these characteristics, and thus the
plitudes, other§10—-13 have carried out semi-self-consistent development of the equations for the mode amplitudes of
computations, which apply O'Neil's general method to vari- o(xt) is carried out in Sec. Ill, in the case of a two-wave
ous more sophisticatednsaze for the field. This latter is  final state. Because the coefficients in these equations still
assumed, again, to be a monochromatic wave, but the amplifepend onT and F,,, in Sec. IV we have to complete the
tude is allowed a slow variation; the crucial point is then theanalysis by turning to the transient part of the problem and
solution of the resulting Newton equations via variousintroducing a standard perturbation technique to deterfine
asymptotic methodgaveraging, adiabatic invariants, @tc. near a bifurcation point of the time-asymptotic problem. This
These studies essentially confirm O’Neil’s basic result; how-approach to the determination ®fexploits the fact that its
ever, their value is also limited by the restrictifmsatzon  decay properties neutralize most of the secularities that in the
the field, which prevents a fully self-consistent treatment ofpast have plagued attempts at perturbative solutions for the
the VP initial value problem. In fact, no progress at all hascomplete fieldE.

been made toward a satisfactory self-consistent analysis of In this way, we obtain two main result&) the threshold

the nonlinear VP initial value problem in the general case(or “critical initial amplitude”) below which initial field am-
which includes7, and 7, being of the same order. In par- plitudes are damped to zero and above which they evolve to
ticular, nothing is known about the transition between thenonzero time-asymptotic solutions; agig) the dependence
initial conditions that lead to a zero electric field and thoseof the time-asymptotic field amplitude upon the initial field
that lead to nonzero time-asymptotic fields via particle trap-amplitude when the latter is above, but close to, the threshold
ping. Results for this transition are included in this paper. value. In particular, we analyze a case of very general inter-

Recently, rigorous nonlinear analysgist—16 based on est, a sinusoidal initial perturbatidi,10,11,13,26,2[7and
BGK representationf9] have shown that collisionless plas- obtain a complete picture of the time-asymptotic evolution of
mas can sustain small-amplitude waves near single-humpedis type initial condition for various initial distribution func-
equilibria, in spite of the predictions of the linear theory. Thetions. Interestingly, our analytical calculation of the critical
question is whether, and how, periodic traveling-wave soludnitial amplitude (as briefly summarized if18]) has been
tions of this kind[14,15 can be generated from various ini- confirmed by recent numerical simulatiof4].
tial conditions. Recently, this question has been the subject
of much work, both analyticdl17—21] and numerica[22— Il. TIME-ASYMPTOTIC ANALYSIS
24], and also of some controver$g5]. In order to clarify
some of the outstanding issues, in this paper we report t
results of a detailed analysis, some of which were summ
rized earlier in a brief communicatidri§g].

Our analysis is based on four key stef®. The decom-
position of the electric fieldE into a transient parT and a
time-asymptotic pariA such thatE(x,t)=A(x,t) + T(x,t).
This representation makes it possible to decompose the full
nonlinear VP problem itself into a transient part and a time-
asymptotic partSec. Il A). (b) The linearization of the Vla- As already discussed, a linearly stable spatially periodic
sov equation with respect only &(x,t) but notA(x,t), i.e., initial disturbance in a collisionless plasma will either un-

Mo a7
m, Jv m, dv’

2

VP equations, in this section we develop an approximation
scheme that yields the long-time electric field formally, in the
sense that the time-asymptotic solution depends on the de-
tails of the transient evolution of the field, which is deter-
mined later(in Sec. IV).

h\E} In order to obtain the long-time solution to the nonlinear
a

A. A-T decomposition
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dergo Landau damping to zero, before the trapping effectsespect toTl, keeping the nonlinearity in the term that con-
become important, or evolve to a nonzero time-asymptoti¢ains A. As long asT decays fast enougtbefore the distri-
state. In the second scenario, particle trapping will create aution function deviates substantially from the initial condi-
flat spot on the distribution function at the phase velocity oftion), we can expect the transiently linearized approximation
each wave mode that is not Landau damped. This impliefo the Vlasov equation to be uniformly valid in time, unlike
that, in the time-asymptotic limit, these modes will becomethe standard linearized problem. Moreover, if the character-
unable to exchange energy with the resonant particles, andtics associated with can be computed, the transiently lin-
will essentially travel with constant amplitude; thus, the elec-earized Vlasov equation can be solved analytically. Writing
tric field will tend asymptotically to a nonlinear superposi- Eq. (1a) in terms of A+T and introducing the “lineariza-
tion of traveling waves very much like the multiple “BGK- tion” of Taf ,/dv about the initial distribution yields
like” modes recently described by Buchanan and Dorning
[15]. This suggests that we look for solutions in which the Mo o o Il Ao 0Fa
electric field E(x,t) is an asymptotically almost periodic at ¢ ax m, dv m, v
(AAP) function of t [28]. For such solutions, we can write
E(x,t) as the sum of @ransient partand atime-asymptotic where F,(x,v)=f,(x,v,0)=F ,(v)+h,(x,v). Here, the
part initial condition 7, has been written as the sum of its spa-
tially uniform partF, (which will be taken to be a Vlasov
E(x,t) =T(x,t) +A(X,1), (3 equilibrium) and a perturbatiot,, which will play the role
of a running parameter in our analysis.
In the standard linear Vlasov equation the complete field
function oft, i.e., a general superposition of modes of theE interacts at all times ‘.Nith Fhe fixed bgckground .dist.ribution
F.. That approximation is not uniformly valid in the

— ikx—iwjt ;
form A(X,1)=2i.0,0,€ ", where the .frequenuesi asymptotic time limit, since the nonlinear distributiép be-
can take a countable set of real values, unlike the wave nuns,mes qualitatively different frorf,,. Conversely, the lin-
bersk, which are restricted to integer values by the require-arization in Eq.(6) involves only ‘the transient; hence, it
ment of exact(spatia) periodicity. The amplitudesy ., ar¢  goes not requireF,, to be a uniformly good approximation to
the Fourier-Bohr coefficient®f A(x,t), given by f, ast—, as long asT—0 “fast enough” in that limit. In

1 (o 1 (+n fgct, the full nonl_ingar i.nteractio.n bgtwee_n th_e asymptotic
im _f dt_f dx e kxtieitg(x 1), (4)  field A and the distribution function is maintained through
w0 Jo 2w -4 the termAdf,,/dv. Clearly, Eq.(6) can be solved exactly
_ _ _ _ _whenever the characteristifs’(x,v,t),v(x,v,t)] can be
which combines a standard Fourier transform in space with @atermined and leads to the number density in(@g.Inter-
Bohr transformin time, in which the averaging operator estingly, Eq.(6) includes as special cases both O'Neil's
lim,_..(1/0) fdt replaces the usual Fourier integfaldt. strong-trapping scenari@] and linear Landau dampir@].
This integral transform filters out the transient phenomenay, the first case, under O’Neil's assumption that the transient
and retains only the time-asymptotic behavior; thus, theyart of the field has negligible effects on particle trajectories,
Fourier-Bohr series of an AAP function is a “projectoP,  T=0 and Eq.(6) reduces to the nonlinear Vlasov equation
thgt separates it; transient and time-asymptotic parts. Whegith E=A, which O’'Neil solved analytically for a single-
E is of the form in Eq.(3), clearly P,E=A and ( —P2)E  mode sinusoidal wave. This case also includes all the exact
=T. Thus, applyingP, and (| —P,) to Eq.(1b) yields a set BGK [9,14,16 and BGK-like[15] solutions. At the opposite

, (6

where bothT(x,t) and A(x,t) are spatially periodic and
lim,_,..T(x,t)=0; and A(x,t) is an almost periodid29]

ak'wi: |
o

of coupled equations foh and T: extreme, whenever the electric field is damped to zero before
IA nonlinear effects become releva§=0 and Egq.(6) be-
(9_:477"332 q“f dv f (A+T), (589 comes a linearized Vlasov equation with=T, leading to
X «

Landau’s exponentially damped solution for the electric field
e [which he obtained under the even stronger assumption that
—=4n(I-Py) > qaf do f (A+T). (5b) f .(X,v,0) could be approximgted wa(v) [2]]_.
IX @ Whereas the traditional linearization relies on the as-
. ) sumed small amplitude of the electric field, the transient lin-
From the definition ofT(x,t), a solution to Eqs(5) must  e4rization introduced here is based on an assumption about
satisfy the additional condition lim..T(x,t)=0. Equation  {he decay rate of, not about its amplitude. Specifically, it
5(a) will be called thetime-asymptotic equatiorwhile Eq. requires thatrya«< g, Where ry.nis the time scale over
. . . . yn trans

5(b) will be the transient equationThe r)otat|onfa(A+T) which T becomes negligibly small, andy, is the time it
here emphasizes that tlig depend nonlinearly oA andT  (akes the nonlinear dynamics to make the distribution func-
via the Vlasov equation. tion f, significantly different from the initial distribution
F,. These time scales are defined more precisely in Appen-
dix A, where a detailed discussion of the error involved in

The A-T decomposition makes it possible to obtain anthe transient linearization is presented. It is interesting to
approximate solution fof ,(A+T) via transient lineariza- compare the conditiomns< 74y, Which involves the decay
tion, i.e., the linearization of the Vlasov equation only with rate of T only, with O’Neil's condition r <7, for the valid-

B. Transient linearization
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ity of the standard linear theory. Whereas O’Neil consideredhe h-A plane showing the time-asymptotic field vs the ini-
the damping rate of the whole field, here the asymptotic tial disturbance, the solutions witA(x,t)=0 constitute a
part A has been subtracted. Hence, this condition can be satrivial branch that coincides with the horizontal axis. These
isfied even when the complete fieltldoes not damp at all, solutions will be calledvanishing asymptotic statend do
e.g., for a BGK traveling mode of the Holloway-Dorning not necessarily correspond to solutions of the complete sys-
type [14], whereT=0 and thereforer,4ns=0. In this case tem of equations foA andT, Egs.(5a) and(5b). In fact, it is
Tirans< Tayn IS trivially satisfied, whereas, =«>r7,, i.e., it  not necessarily true that whek=0 is substituted into Eq.

is a trapping-dominated situation that is completely outsidg5b) the resulting equatiodT/dx=47X ,q,Jdv f (T) will

the domain of validity of the linear theory. possess a solution that tends to zero as—«. If this does
happen, we will call the corresponding “point” on the fun-
C. Critical initial conditions damental branch amaccessible vanishing asymptotic state

. . (AVAS). A trivial example is given by the origid=0, h,

Equathn_(G) %an be soAI\ved formally_ In terms of tm? =0 (from which T=0 follows). These states correspond to
characteristicx-(x,v,t),v7(x,v,1)], which a_ssoma/Ee ‘,’l"th initial conditions such that the field is completely Landau
every phase poind(v) at timet a “starting point”[x7,v7]  gdamped before trapping effects come into play. As discussed
at <t along the trajectory determined By Integrating inv  jn the Introduction, there are other initial conditiotisf

then gives larger amplitudgfor which we expect the trapping effects to
lead toA#0; in these cases, the solutidn=0 to the time-
dov fo(x,0,t)= | dv Fpu(x§,v8) asymptotic equation is not accessible and does not corre-
R R spond to the solution to the complete VP initial value prob-

. lem. The nonzero solutions can be imagined as a nontrivial
- &f dvf dr[T ] (7)  branch in theh,-A plane, which bifurcates from the trivial

My Jr Jo A solutionsA=0 at somecritical initial condition h,=h° as

the initial conditionh,, is changed. Physically)g marks the

for the number densities, which will be the foundation for transition between the two classes of initial conditions. The
our analysis of the nonlinear VP initial value problem. Sub-determination ohg will follow from the nonlinear analysis
stituting Eq.(7) into Eq.(5a and Fourier transforming gives below; we now proceed to show how the general form of the
(for k#0) solution forA can be determined for initial conditions near a
generic(given) critical initial stateA=0, T=Tg, h,=h°.

oF,
Jv

2 +m .
Adt)=— P dx e 'kx
() ik 20:4 e aj,w D. Time-asymptotic linearization

In order to study solutions foA nearA=0, T=T,, h,

Xf dv F,(xg(X,v,1),05(X,0,t)) =hY, we first consider the time-asymptotic equation linear-
i ized about this critical initial state. This linearization of Eq.
2 2 o (8) requires some mathematical cdsz=e Appendix Cand
__E &P f dx e Tkx yields
ik m, &)_,
‘ (9‘7__& ak’wiD(k,wi) :0, (9)
Xf dvf dn T (8)
R 0 du DXAX,0.0,02(%,0,0)] whereD(k, w;) is theVlasov dielectric function

(where here and below the in the limits of integration T U FZO'(U)

have units of length, i.e., the wavelength is taken as Wnity D(k,wj)=1- T% m_anRdU w—kv
This equation contains the characteristics for the fi&ld

which, of course, is still unknown. Our strategy is t0 Showere D(k, w;) is not determined by the Viasov equilibrium
that, at the transition between the initial conditions that lead F,(v) that appears in the initial distribution function; rather,
to complete Landau dampir{gA=0) and those that lead to

nonzero small-amplitude solutions for A, the general solutio : .
for A can be determined a prioriSuch a general solution r-{he effects of the transient fiel@, that evolves from the

. - : . critical initial state[see Eq(B4) in Appendix B for a precise
W|II_ depend on a f|n_|te set of unkpown amplltudes_ that will ofinition ofFTO] Of course T has to be obtained from the
satisfy certain nonlinear algebraic equations derived fronf! ol 110
Eq. (8). transient equation, E@5b), with A=0; however, there is an

A preliminary step toward determining the general formimportant case in whict(k, ;) turns out not to depend on
of small-amplitude solutions foh is to observe that Eq8) ~ To, hamely, when the problem igflection symmetrici.e.,
in isolation has the exact solutigk(x,t)=0 independent of €ven inx andv. Reflection-symmetric initial conditions oc-
the transient fieldT and of the initial distribution function cur in many interesting problem$l5,27 and lead to
F.(x,v). The proof of this result is somewhat tedious and isreflection-symmetric solutions at all times. In these cases, it
given in Appendix B. Schematically, if we draw a graph in easy to show33] thatFZO(v)=Fa(v). Here, we will only

(10

it contains a time-asymptotic equilibriuﬁﬂl0 which includes
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o Eq. (9) is not about the initial equilibriunf ,(v) but about
the “final” equilibrium on(v), and it is important for the
study of the nonlinear problem. Indeed, many nonlinear stud-
1 ies of the VP systerfB80—32 have been greatly hampered by
troublesome singularities that do not appear to be intrinsi-
cally related to the physical nature of the problem but only to
the nonuniformity in time of the standard linearization.

E. Dimensional reduction

These previous results make it possible to reduce the non-
linear time-asymptotic equation, Eq@8), to a finite-
dimensional system of nonlinear algebraic equations for the
N amplitudesay ,, in Eq. (11). This is done by simply sub-
stituting Eq.(11) in the right side of Eq(8),! and taking the
Bohr transform with respect ta»l(k),wz(k),...,ka(k) for
k=1,..p. This is equivalent, of course, to projecting the

FIG. 1. The Vlasov dispersion curve for a Maxwelligap ~ Nonlinear equation onto the null space of the linearized op-
plasma withT,=T,, and the rootso(k) of the corresponding dis- €rator given by Eq(9), and yieldsN equations:
persion relation for a basic wave numbigrand its harmonicsk is 2 1 (o i
in units of the inverse Debye lengkp=1/\p andw is in units of A, = __E q, lim _f dt eiwitf dx e ikx
the plasma frequency,, . ik g oow T J0 -

ko 2%, 3k, K

consider initial conditions of this kind. This also has the Xf dv F,(x6(x,v,t),v5(X,v,1))
advantage that we need to consider only spatial Fourier R
modes withk# 0 since, if the spatially uniformk=0) com-

2
ponent in the electric field is initially zero, it will remain zero _ 32 Ya im E fgdt eiwitJ'ﬂTdX o
for all times. ik m, . olo -
Equation(9) can be solved immediately: it requires that -
= . i )= t 0F,
ay,,, =0 except for allk and w; that satisfy D(k, ;) TO XJ’ va d’T[T : ] , (12)
which is theVlasov dispersion relatiometermined byF °. : 0 v [X2060,0,08(x,0,1)]

The properties of the Vlasov dispersion relation are well ) . ) )
known, especially for physically relevant Vlasov equilibria. Where the right side is determined by tNeamplitudesay,,

For instance, for a Maxwellian the Vlasov dispersion curvethrough the characteristics associated wéttin the next sec-
can be plotted easily. It showEig. 1) some qualitative fea- tion we show how, near a critical initial statesherea ,,
tures that hold in great generality, even though for a modified=0 V k,w;), these characteristics can be determined via

Vlasov equilibrium, likeF°, it may be necessary to com- Hamiltonian perturbation theory. .
pute the exact roots db numerically[14]. Specifically, the In summary,the time-asymptotic equation has been re-

dispersion curve showscaitoff wave numbergsuch that for ~duced 1o a finite-dimensional problem for the (small) ampli-
. ; tudes of a set of traveling-wave modes that satisfy a Vlasov
k>ky Eq. (10) has no solution. Moreover, given any wave

numberk=k,. Eq.(10) defines implicitly a finite numbe, dispersion relationBoth the dispersion relation and the am-

of simple real roots:ul(k),wz(k),.__,ka(k), which means By substituting the linear solution fok, Eq. (11), into the non-

that the general solution of the linearized time-asymptotidr:r]ear time-asymptotic equation, Ed8), we neglect E)g§3|9le
igher-order terms i\ corresponding to wave mode.ﬁwie @i

roblem will be given by a finite superposition of wave
P 9 y Perp such thatD(k,w;)#0. The validity (at leading order of this ap-

modes of the form e ) j !
proximation will become apparent in the course of our nonlinear
Ny analysis, in which we shall obtain the scalar equation for the am-
. iTkx— w: (Kt plitude a of a two-mode time-asymptotic field with equal mode
A(X’t)_k;kd 121 ak""je[ i, (1) amplitudes, Eq(24). That calculation could be extended to include
higher-order wave modes such thatk,w;) # 0. It is then easy to
see that these modes must®&a®?) and will generate terms of the

. - . . same order in the charge density. In principle, these terms are com-
there will be¢ =[ky] (the integer part oky) possible wave parable to other terms that we are going to keep in(Eg); how-

n_umbers before cutoff, leading to a tOtaNf:EE:lNk pos- ever, these latter terms are orthogonal to the wave modes corre-
sible modes. _ _ sponding taD(k, w;) =0, and will disappear under the action of the

A crucial fact about Eq(9) is that the Fourier-Bohr trans-  gqyrier-Bohr transform on the right side of E6L2). Thus, the
formation has introduced the lintit-c before the lineariza- |eading-order contribution to Eq12) from the modes such that
tion was carried out, so that the resulting linear equation i$(k,»;)#0 will turn out to be of order?, and negligible. This
uniformly valid in time, unlike the standard linearized VP specific result has been proved previously in a more general context
system. This is apparent in the fact that the linearization ir20].

More precisely, since the basic wave number herk=dl,
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plitudes depend on the initial condition and on the transient 8 1 (o +
field. In particular, nonzero small-amplitude solutions for the ~2a= k—OE 9o lim — fo dtCOSa’tJf dx coskox
wave modes may appear when the amplitude of the initial “ g T

disturbance is increased through certain critical values. In

other words, these nonzero undamped solutions may bifur- XJ dv F, (x5 (%,0,1),v5(X,v,1))

cate(as the initial condition is changgérom the trivial so- :

lution branch A=0, which corresponds to a completely 8 qi 1 (e +

Landau-damped electric field ds-o. In fact, analogous T ko< m, lim _fo dtcosmf_wdxcoskox

results have been established for the origimalt transiently 7

linearized VP system[20]. In that case, however, it is too t aF,

difficult to carry out an explicit calculation of the time- XJ dvf dr| T— } : (14)
R JO U pAow 0.8 x0.0]

asymptotic wave amplitudes, because of the complicated in-
t_eract|0n b_etween the transient electric fleI(_JI and the d's_t”bu\?vhereA is given by Eq.(13).
tion function. Conversely, for the transiently linearized e characteristic$x’;\,v’j] are determined by the dy-
equations developed here the complete calculation can Rgamics of particles moving in small-amplitude two-wave
carried out explicitly, as is done below. fields, which have been studied by Buchanan and Dorning
[15]. They constructed small-amplitude multiple-wave solu-
tions to the VP system by extending the invariants originally
IIl. THE TWO-WAVE TIME-ASYMPTOTIC PROBLEM used to generate BGK solutiof8]. The latter are based on
an exact invariant of the motion for the single-wave poten-
Let us now consider a sequence of physical problems itial, namely, the single-particle energy. Buchanan and Dorn-
which a transition occurs from the strongly Landau dampedng found approximate invariants for multiple-wave systems
regime A=0) to the O’Neil regime where the nonlinear and used them to obtain generalized BGK solutions. The

effects sustain small-amplitude wave propagation. We expe@mplest case is precisely the two-wave figkt). (13)]. In

that, as the amplitude of the initial disturbance is increase(IBhe upé)e;]hal;rphasfe hp|anf]- where Or?eIOf theht\’l‘:co Ivvaves is
(or dF,, /dv is decreased at the “right’ phase velodinat ~ ocated, the effect of the other wavtie the lower half plang

. A . ._can be viewed as a small perturbation of the unperturbed
some point a “first” undamped nonzero time-asymptotic

: i . ; : article motion driven by the first wave. Application of Lie
state will branch off the zero-field solution. It is logical to 'Pransforms shows that t);we energy invariaﬁffor makden
assume that this phenomenon will not take place for all th(?solation(“ +” and “ —” correspond to the upper and lower

wave numbers and frequencies at the same transition poinigif phase plangs &)= 3m, (v — v )%+ (q,a/Ko) COSKeX
Rather, according to the basic insights from the standard lin-_ ) is modified by the presence ofpmod.eto becomd15]
ear theory, the modes with the lowest wave number and

highest phase velocity damp most slowly. Hence, for a —+)_ +)+Mv_”p L ot) 4
single-humped(symmetrig equilibrium, the first nonzero g" 5(“ Ko v+up costkox +wt) +O
state should be a pair of Langmuir modes on the upper (19

branch of the Viasov dispersion relatidfrig. 1), with a wherev,= w/k,. The denominatos + v, makes this invari-
“fundamental” wave numbek =k, determined by the initial gt invalid in the phase region of the second wave; in this
condition; thus A has the two-wave form region, however, the same procedure yields the analogous
invariantga_), which is obtained by switching, to —v,
andw to —w in Eq. (15). By combiningggf) and?&’), it is
possible to construct a global first order invariant, whose
—aai _ ; level curves are shown in Fig(&, which gives all the in-
asintkox—wt) +asinkox+ wt), (13 formation we need about the particles’ motion. Of course,
this invariant is not exact, as should be expected since the
. . Hamiltonian system corresponding to E3d.3) is not inte-
whereko andwsatlsfyD(ko,w)fO.z For this two-wave case  yrapje |n fact),/ there are s?nall re?gions ?rn the phase plane
Egs. (12) reduce to one equation fay and[from Eq.(13)]  where no invariant curves exist, because the nonlinear reso-
the asymptotic field belongs to the one-dimensional spacfances between the particles and the waves generate chaotic
spanned by sikpxcoswt. Hence, the projection procedure trajectories. Thesestochastic layersare thin regions that
reduces to a cosine Fourier-Bohr transfofioy symmetry,  separate bounded and unbounded trajectdsies Fig. 2b)].
and Eq.(12) becomes By invoking the classic Kolmogorov-Arnold-MoséKAM )
theorem, though, Buchanan and Dornirid] showed that
these layers are exponentially small éahand can be ne-
2Without loss of generality we taka=0, since its sign can be 9lected in a study of the self-consistent VP system.
changed arbitrarily by introducing a constant phase shift Eq. Below we adapt Buchanan and Dorning’s technique and
(13). This phase will be left undetermined until later, when the explicitly calculate[x%,v%]. The restriction to a two-wave
analysis of the transient problem will determine the phase thafield is not essential, but the generalization to Nevave
“connects” A(x,t) to the initial condition. case, which is straightforward, becomes increasingly tedious

2
(U+vp)2)’

A(X,t)=2asinkyx coswt
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FIG. 2. (a) Buchanan and Dorningkl5] approximate invariant curves for a two-wave systéy.Level curves, stochastic layers, and
higher-order resonance islands for the same system.

asN grows. Hence, it will be omitted in order to make the A. O'Neil terms
analysis as clear as possible. For the same purpose, we shall 5, analysis of Eq(14) begins with the first term on the

focus our nonlinear analysis of EGL4) on one of the sim- (g side, which corresponds to the asymptotic evolution of
plest, yet most fundamental and widely studiedihe jnitial distribution as though it were forced by a field of
[8,10,11,13,26,2]f plasma-wave problems, the3evo|ut|on of fixed amplitude, with no transient part. This term and those
a sinusoidal initial perturbatioB(x,0)= &, Sinkox.” The cor-  that follow from it will be called “O’Neil” terms because
responding initial distributions are 7,(X,v) =F,(v) their structure is loosely analogous to that of quantities that
+ eh,(v)coskox, whereF , are (normalized initial Vlasov  arose in O’Neil’s calculatior8], although that work was
equilibria, h, are given(normalized even functions ofv restricted to a single sinusoidal wave of constant amplitude.
with strong-decay properties &s|—, ande is related to  Conversely, the second term on the right side of Baj)

4, via the Poisson equation. These initial distributionscorresponds to thédinearized effects of the transient field
clearly are reflection symmetric and the initial field has noT(x,t) on the distribution function; fom=0 this term is
spatially uniform part. Thus, as anticipated above, kked  essentially the quantity that arises in Landau’s soluf@h
spatial Fourier component & will be zero at all times, and  Thus, it and its descendants will be called “Landau” terms.
we can restrict our study to+0. For fixedF, andh,, the We evaluate the O'Neil terms '”Athrie stef. We cal-
complete initial condition can be parametrized éyHence, ~Culate explicitly the characteristi¢s,v7] in terms of Ja-
Eq. (14) becomes an algebraic equation for the scalar uncobi elliptic functions, via the Buchanan-Dorning technique
knowna in terms of the scalar parametefand the transient [15]. (2) Then, we take the limit as— o0 by extending an
field T, which will be determined later from Eq5b) for a  idea of O'Neil's, who noted8] that the distribution function
given a]. Notwithstanding these simplifications, this initial (corresponding, in his case, to the evolution along the trajec-
value problem includes all the essential features of the mortories in a single sinusoidal wavean be replaced in the
general caséi.e., a generic spatially periodic initial pertur- time-asymptotic limit by a coarse-grained version, which is
bation. The analysis can be extended to more general proRbtained by averaging on each energy level of the wave. In

lems, but only at the price of a considerable increase in th@ur case, we show that the limit as—c can be carried out
algebra. by averaging on each energy level of the time-asymptotic

field. In practice, we do this by transforming the integrations
to action-angle variables and replacing the time averages by
3This implies that we are taking the leading-order time-asymptotid®hase-space averages over the lines of constant a¢ipn.
field [Eq. (13)] to have the same wave number as the initial pertur-Finally, we expand the resulting expression asymptotically in

bation, which is fully justified based on the analysis of the transienfe€rms of half-integer powers of the small time-asymptotic
equation in the next section. All the higher harmonics will be in- amplitudea. The details of this fairly complicated calcula-

dexed byk=1ky with |=1,2,...(sincek, is the fundamental wave tion are given in Appendix D. The resulting expansion for
numbey. the first term on the right side of EqL4) is
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2[ x12%%+ ypea'?+ yzea®?+ aKy(ky, w)]+0(a?),

(16)
where
JPTMA AR, 1dF
XlE_UlEO; “(qo | } { (Up) (Up)
17
|qa|3 1/2
=-012 s ha(vp), (18
511/2
@Es|%w
2h, 1 dh, 1

X d—vz(vp)ﬂLv—pE(vaEﬁha(vp) , (19

E :

f F.(v)
P R vp—v’

and o,=20.67 ando,=0.53 are numerical constants.

Ko(ko, ) (20

B. Landau terms

Because of symmetry, we can writein the last term in
Eq. (14 as a Fourier sine series T(x,t)

=E§:1Tnk0(t)sinnk0x. Then, a calculation very similar to

the one that led to Eq16), also given in Appendix D, re-
duces the Landau terms to

al2T' (e, T)+a%23 (e, T)+0(a?), (21)
where
|q |5 1/2
F( T) E[kOmcj
F
{pl(T) (Up)+2P2(T) (vp)
(22)
|q |7 1/2 dSFa
S(eT)= E{ om?j {Zpsmmwp)
dsh,, 2(T) d’F,,
+epa(T) a3 (V) — do2 Ve
\4(T) d*h, A(T) dF,
"B, @? P B2 @ P
A3(T) dh,
T€ 67 o ] 23

The operatorsp;(T) and \;(T), i
spectively, in Eqs(D55) and(D57) and are linear irT.

1,...,4, are defined, re-

PHYSICAL REVIEW E68, 026406 (2003

C. The amplitude bifurcation problem
Combining Egs(14), (16), and(21) gives

— x2€a?— yzea®?—aKo(ko,w)

=—a¥T(e,T)—a%% (e, T)+0(a?),

a— y,a¥?
(24)

an explicit relationship between the “final” field amplitude

and the initial amplitudes. From it we easily determine the
nature of the transition between field solutions that are Lan-
dau damped to zero and those that approach two-wave time-
asymptotic states with amplitude By constructionk, and

o satisfy the time-asymptotic Vlasov dispersion relation 1
—Ko(kg,w)=0. Thus, Eq(24) reduces to

aY x,e—T(eT)]+a% x1+ x3e—3(€,T)]=0(a?).
(25

Near any accessible vanishing asymptotic statéical or

not), we write T as To+ 6T where T, is the transient field
corresponding to the AVAS itself. Since bothand X are

linear inT, Eq. (25 becomes

aY x,e—T(€,Tg)]—aY (€,6T)

+a¥ 1+ xse—2(€,To)]=0(a%,a%4 sT|).

(26)

The possible bifurcation values, i.e., values of the parameter
€ where nonzero solutions cro$&ranch off”) the trivial
solutiona?=0, can be found by “lifting” the brancha®?
=0 (here simply dividing bya'?) and settinga=6T=0 and
€=¢p, Wheregg is the amplitude of the initial perturbation
corresponding to the AVAS; sindé(ey,0)=0 this gives the
bifurcation condition
I'(e0,To), 27
which also will be called thehreshold equationsince e
= ¢y represents a critical initial amplitude, i.e., a valueeof
where the time-asymptotic behavior of the electric field may
change from that of a vanishing state to that of a nonzero
state (or vice versa This equation has a clear physical
meaning: it expresses the balance between the effects of the
initial transient [contained in I', which depends on
(dF,/dv)(v,) and @dh,/dv)(vp)], and the long-time
trapped-particle effects generated by the initial perturbation
[contained iny,, which depends oh,(vp)]. In the case of
single-humped unperturbed equilibrid, measures the
strength of the Landau damping rate, whylg expresses the
ability of the initial perturbation to generate a plateau at the
phase velocity via particle trapping.

Taking ¢, to be known from Eq(27), a local analysis can
be performed to determine the bifurcating solution branch.
Expansion of Eq(26) aboute= ¢, yields

X2€0~—

[x2— T €, To)]Ae—T'(€,6T)+al x1+ xz€0— 2
=0(a*?a|6T|,ale,|6T|Ae),

(€0,To)]
(28)

whereAe=e— ¢y and
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a 3). However,a itself ultimately depends oAg, so thatboth
T anda must be expanded iAe. Since the expansion of the
time-asymptotic equation generated half-integer powees of
half-integer powers ole may be needetht higher orderto
have consistent expansions @andT. Thus, our focus be-
ing on first order terms, we introduce the truncated expan-
sion for T:

a(Ae)

5 T(x,1)=TO(x,t) + AeTY(x,t) +O(Ae¥?). (31

Substituting Eq.(31) into Eq. (28) [with T,=T© and 6T
=AeT®+0(A¥?)] gives
[XZ_FE(GOlT(O))_F(601T(l))]

Ae+O(A€?).
[x1+ Xx3€0—2(&0, T)] ( )

(32

a=-—

FIG. 3. Local analysis at a critical initial amplitudg in the e-a . .
A. Small critical initial amplitudes

plane.
We first calculate the transient fieddongthe basic branch
ar 1 lg3| 12 dh, a=0, which providesT,=T(® and also is necessary to de-
I'(€0,To)=——(€0,To) = 5; ieme p2(To) = (Up)-  terminee, from Eq. (27). Even fora=0, the leading-order

(29) gxpansion of t_he transient equatio_n is rather tedious; hen.ce, it
is developed in Appendix E 1 which leads to the following

Equation(28) gives an explicit approximation to E¢6); ~ €duation for the Fourier-Laplace-transformed zeroth-order

thus it could be solved to provide an approximate solution tdransient electric field(*)(p):

Eqg. (14). In fact, it shows the qualitative dependenceaafn

e clearly,a undergoes a transcritical bifurcation at the criti- Dv(p) T (p) — foCk(p)[Tr(k@ko(p)+7r(k(1)k0(p)]
cal initial amplitude ey, with the nonzero solutions foa
crossing the basic brana=0 at a finite angle. In order to = €00k k,Nk(P), (33

have quantitative results, however, we have to calculate the
coefficients in Eqs(27) and (28), which depend o (x,t), whereN,(p) andD,(p) are the same quantities that appear,
treated thus far as a parameter; indeed, @4) must be respectively, in the numerator and the denominator in Land-
understood as part of a coupled system of equationsdmd  au’s solution to the standard linearized initial value problem
T, Egs.(5). Hence, we now turn to the transient part of the[2] (for the initial conditionF,),
VP problem.

A h,(v)
IV. TRANSIENT FIELD EXPANSION Ni(p) =~ F% qﬂfﬁd” v—ip/k’ (34

Substituting Eq.(7) into Eq. (5b) yields the transient
equation, which we solve via a perturbation expansion of T qi Fl(v)
T(x,t) in powers of the deviation of the initial condition Dk(p):1+W§a: m_J'Rdvm’ (39
from the AVAS under consideration. Becauséx,t) has o
been subtracted frof&(x,t) and its nonlinear effects on the
particle trajectories computed analytically, the perturbation
solution forT(x,t) will be spared the disruptive secularities 2

that arise in standard perturbation treatments of the VP sys- Cu(p)=-— 2_7272 &f do h“_(v) . (36)
tem which use the complete fiel(x,t). ke Z m,Jg  v—ip/k
Here we shall not assume priori [as in Eq.(13), see
footnote 3 that the time-asymptotic field has the same wave
numberk, as the initial condition; rather, we shall write “The sign ofa [taken to be positive after postulating an appropri-
ate phase shift in Eq13)] depends here on the signs&é and its
A(X,t)=2asink;x coswt coefficient. In turn Ae must have the same sign &g, when study-
) . ing the transition from completely Landau damped solutions to
=asin(kix+ wt) +asin(kx— t) (300 small-amplitude nonzero time-asymptotic solutions. Nevertheless,

if ain EqQ.(32) is negative, one can immediately find a solution with
and then prove that indeeki=k,. Below, the transient a>0 simply by considering a perturbatienAe to a critical ampli-
equation will be expanded in the neighborhood of a givenude —¢,. This is equivalent to applying the coordinate transfor-
critical amplitudee, in the small amplitudes and Ae (Fig. mationx— —X, v— —v, corresponding to the reflection symmetry.
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Equation(33) is very similar to the equation that results from  Clearly, there are initial conditions for which this solution
Landau’s solution to the linear VP systef]]. The main is not acceptable, because it does not vanish-as. For
difference is that, because of the spatially nonuniform part ofinearly stable initial equilibriaF,, the standard results for
the initial distribution, , the equations for different values 1o ,eros oD, (p) ensure thaﬁ(ko)(p) have no poles with

ofk are cqupled._Hence, E(B?’). IS an infinite system and 'FS real parts=0, so lim_, ., T<k°>(t):o. But for initial conditions
solution will require an approximation. In general, numerical h that the standard i th dicts t i
approximation could be used, which then would lead to &2U¢" that the standard linéar theory predicts traveling-wave

: s . ino- i i (0) is i -
solution of Eq.(27) for general(not smal) critical ampli- ~ ©F growing-wave solutions, lim... Ti(t) #0. This is per
tudes. Here, however, we are interested in small initial perfectly reasonable, because in these cases we expect that the

turbations, i.e.e<1; henceey<1. Thus, further expanding aSymptotic amplitude of the waves will be nonzero, no mat-
ter how small the initial amplitude is; thus, no solutions Tor
can be found along the axis=0 and the vanishing
asymptotic states are not accessible, which is consistent with
our earlier remark that the solutiok=0 for Eq. (5a does

substituting into Eq(33), and solving at each order i,  NOt necessarily correspond to a solution of the complete sys-

T(? in powers ofeq,

(O = €T+ ZTO2 4ot IO 4. (37)

straightforwardly yields tem Egs.(5) for bothA andT.

The perturbation solution fof(®), Eq.(38), enables us to
=(01) Nio(P) compute explicitly the quantities that appear in the threshold
T (P)= bk, D (p)’ equation(for ki=kg), Eq.(27). The details, given in Appen-

0 dix E 2, lead to the following equation for temall) critical
, Nic+ k,(P)Ci(P) amplitudeco:
T2(P)= Skikg kg =
“ "% Dyy i (P)DK(P)
(0,1) |qa|5 llzdFa
Ni—kg(P)Ck(P) Xo€0= €001 SIH 2 |13 5| o (vp)
+5k—k K o koma dU
0% Dy (P)Dk(P) 51172
2 (02)2 s [lqa| } dFa( )
_4 ’ o v
 Ny(PICu (P 0| 72522 & SaigmE| o
%% Dy (p)Daiy(P)’ 5112
0 0 02 |l @
R R IR
=03 5 Ni,(P)Cak,(P)Caxk,(P) 0
< (P)=%36 B, (D)D g (p)Dare(P) (39
Ni,(P)Ci,(P)Cox (P)

+ 38 Clearly, this equation has the fundamental zero-field solution
k|k0 D 2D . ( ) (0) . e . .

ko(P) D2k (P) el?=0, corresponding to a zero initial amplitude. In this
) om) ] ) ) case Eq(5b) has the trivial solutiolTy=0, and the threshold
The expressions fof ™™ can be obtained by inverting the equation is obviously satisfied, sindg0,0)=0. This just
Laplace transformdIn particular,T(kO'l)(p) yields Landau’s corresponds to the trivial solutioB=A=T=0, f =F,.
classic damped solutioh. More interestingly, Eq(39) also yields

W 130l [9al M1 ho(vp) + 018 S o[ | 0| M1V fdv) (0,)
€ = y
O 40,8023 5,105 mETYAdF, /dv) (vp) + 205S%57S 48, [ 4,/ M3 1 (dh, /dv) (v,)

(40

a nonzero critical amplitudeat which a nontrivial solution damping to zero. Of course, this does not preclude the pos-
branch fora crosses the axia=0 (Fig. 3). Since Eq.(40) sibility of a nonsmall critical amplitude.

was derived via an expansion for sma}J, consistency re-

quires thate§") be close tae{”’=0. Whenever the initial con- B. The critical amplitude ey”=0

dition is such thate{" in Eq. (40) doesnot satisfy | e§")| We next determine the transient field for solutions with
<1, there is ndnonzerg small-amplitude critical point cor- a#0. We begin from the “trivial” critical amplitudeego)
responding tk;=kg, and all small sinusoidal perturbations =0, and we seek small-amplitude time-asymptotic solutions
to a linearly stable Vlasov equilibrium undergo Landauclose to it, and look for a branch of time-asymptotic ampli-
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tudes that bifurcates frone,=0, a=0 in the ea plane. Applying Landau’s procedur¢2] to this equation, the

Whether such a branch exists is physically important becaus&ansient fieldT is obtained as a sum of exponential terms,
it determines the time-asymptotic stability of the plasma. In-each corresponding to a pole [dﬂ{o(p)/D,jO(p)]—A‘k?(p)

deed, such a branch would imply that there are arbitrarilx,\,hereN;0 and DIO are the analytic continuations bl and

small initial conditions that do not damp and lead to time- , . o
asymptotic multiple-mode traveling-wave solutions of theDko [2]. Under Landau's assumptiofig] on the analyticity

Buchanan-Dornindj15] type (in the coarse-grained sense de- of F, andh,, this function hasgwo kinds of pole:(a) the

scribed above If no branch bifurcates frone?, it will be ~ POles associated with the zeroslf , and(b) the poles of

necessary to consider the nonzero critical amplitagi in Nfé)(p) at p=*ikgv, [from Eq.(42)]. The crucial point is

Eq. (40) as another possible branching point for nonzeroy . yo exira poles, corresponding A4”)(p), lie on the

time-asymptotic solutions, since in this case initial condi- ] ] ) i o M ]
imaginary axis. But sincd is the transientfield, it cannot

tions with amplitudese< e{*) would have to be damped to ' e
P 0 P include undamped terms, and a necessary condition for the

zero. Even then, though, the analysisgt eg°> will be im- : : . X
portant, because it will provide the leading order term in theexIStence of solutions to Eq41) is that the residues of

+ + _a(0) _
expansion of the transient equationegt= egl) with respect [Nko(p)/Dko(p)] Ako (p) at p==ikoup, must be zerowe
to the small critical amplitude,= e{V<1. classify the situations that lead to this condition according to
For e,=0 andT,=0 several terms in the transient equa- the nature of the roots db, .
tion are zero, and a tedious but straightforward extension (1) First, all the roots ODIo have Reg)<0. Then, for the
[33] of the calculation that led to E¢33) yields[for Re()  (esidues ap=*ikqv, to be zerc, must equal zero. Hence,
=0] all time-asymptotic solutions with initial amplitudes in the
DuUD)TP(p)=6.. N —6..D AO(p), (41 neighborhood ok,=0 coincide with the branch=0 [with
PITIC(P) = dickgNiP) = Sk DI(PIAC(P), - (4D errors of ordeO(e*?)] and correspond to complete Landau
damping, notwithstanding the trapping effects. Then nonzero
solutions for the time-asymptotic electric field will be pos-
sible only for initial amplitudes greater than some nonzero
critical value, like e§") in Eq. (40). This situation will be
ik + T considered in the next subsection.
(p+ikevp)  (p=ikivp) (I1) Next, Dy has roots with Rg(>0. Then the solutions

(42 for T contain growing modes, which is not acceptable. Thus,
with for the choices of, that lead to this situation, there is no
small-amplitude time-asymptotic solution in the neighbor-
hood ofey=0, not evera= 0. This leads us to the conjecture
that in these linearly unstable cases the time-asymptotic field
amplitude tends to a nonzero value &s 0. This problem,
which follows from evaluating Eq(32) at ;=0 [where although interesting, will not be further pursued here.
T(®=0 and theAe has canceled witl’'s multiplying the first (Il1) Finally, D;O has poles with Rg)=<0. This includes

two terms in Eq(41)]. Equation(41) is similar to the equa- poles on the imaginary axis, corresponding to a pair of ei-
tion that arises in Landau’s analygi]. In fact, it could be  genvalues embedded in the Van Kampen—O&s4] con-
obtained formally from Landau’s solution by simply decom- tinuous spectrum for the linearized VP system. These poles
posing the field intdl + A, moving A to the right side, and  produce undamped terms that must cancel with those coming
assuming it to be of the form in EG30). However, Eq(41) o Al(p), in order to have a valid solution. Evaluating

is an equation fofl anda, not E and must be solved simul- he Landau di . lati he i . . d
taneously with Eq(25) in such a way that lim... T(x,t) the Landau dispersion relation on the imaginary axis an

whereAl%(p) is the Fourier-Laplace transform @fin Eq.
(30) for €y=0, i.e.,

Qp Qp

“A&O)(p)z jo dte” ptAk(t) = 5k,kf

= ! (1)
ap=— —[xo=T(0T®)], (43)

-0, separating the real and imaginary parts gives
If k#ko, for k=k; Eq. (41) gives T{)(p)=—A{(p), T 92 F'(v)
which is clearly unacceptable. Hence, the initial value prob- 1+ k_(z)za: m_apf]ﬂdv v—Nkg =0, (49
lem cannot have a nonzero time-asymptotic solution of the
form in Eq.(30) unlessk;=kg, as anticipated in the previous q>
section(see footnote B Thus, letki=Kkq; if k#ki=kq, EQ. 2 m—“ F!(Nkg)=0, (46)

(41) implies thatT{Y)(p)=0, so that the transient has no

leading-order component with th_at wave number.. We conwhere A=ip, \ e R. Equation(45) is the time-asymptotic
clude that the only relevant spatial Fourier modeTimust  vlasov dispersion relatioffor symmetric initial conditions

correspond tk=Kk;=Kko. Thus, the solution to Eq41) is and under the approximation of transient linearizatidhe
N residues afp=*ikq, can be zero only if(i) A=*kev,
FW(p)= k(P _AO(p) (44) satisfies Eqs(45) and (46), and(ii) the residues oNQO/D,j0
k, - K, . ~
° Di,(p) o atp= *ikov, are equal to those wf(kg)(p), i.e., equal tay.
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In the context of the two-wave case, we consider the situaa, and the imaginary part equal to zero yields the twofold
tion in which Eq.(45) has just one pairof simple roots on  condition
the imaginary axip= +ikov, or A= *Kkgv,, Which satisfy

3 1/2
4 Zozsal:|qcv| /ma] ha(v p)

2
qa ’ - n
2 EFL(*up)=0. (47) 2 [dal %/ m,JY3 (v )
A Taylor expansion6] of DQ’O about*ikgv, yields the resi- =3 E“;j"h“(lff)
dues at these poles: ol 4e/Ma)Fo(vp)
2. 9.Pfrdv h, (v)/(v—v
NZO _ 2q i ( ") ( p) 50
Re D_+!iikovp Ea(qa/ma)Pf]Rdv Fa(v)/(v_vp)
K
° where the sign of the left-most term must be chosen to be
: equal to the sign of the middle term to ensure that the non-
+p,)+
= kOEZ“q“[Pf R dv h”‘(:))/(v Up) IT_rh“(ffp)] . linear solution connects smoothly to the linearized initial so-
2(a5/my)[Pfrdv Fi(v)/ (v vy +imF(vy)] lution, from which it evolves after particle trapping becomes
significant.
(48) When both Eqgs(47) and (50) are satisfied, Eq41) has

(Here and below the symmetries Bf,, h,, F/,, etc., allow an acceptable solution fOT(k?, which goes to zero as

us to replacet v, by v, in their argument$.This expression . This solution is basically Landau’s solution for the
must be set equal tag, which is obtained from Eqg43),  given initial condition, minus the “undamped” terms that
(17), (18), and (22). The expression fom, can be made correspond to the poles on the imaginary axis. Indeed, the
somewhat simpler if Eq(47) is replaced by the slightly inverse Laplace transform of E¢4) yields a sum of expo-
stronger condition dF,/dv)(vp)=0 (a¢=1,2,..Ng). In nentials corresponding to all the roots of E§0). The “lin-
many physical situations the two will be equivaléatg., in  ear” contributions due to these two roots are replaced exactly
an ion-electron plasma, in which the charge-mass ratio foby the time-asymptotic field\, which is given by Eq(30)

the electrons is much larger than for all the other speciewith a=ajAe. Equation (50) ensures that the time-
combined. Then, Eq.(43) [with Egs.(17), (18), and (22)] asymptotic wave amplitude is equal to the amplitude of the

yields corresponding modes in the linear theory. Thus, as long as
kOZaSaHqa|3/ma]1/2ha(vp) Eq. (50) is satisfied the electric field solution from the non-
ap=— Y PERTA=T (49 linear theory is actually the santéor case Il) as that from
2 ol |Gl M F L (v ) the linear analysis, not only initially but at all times. Clearly,

this happens only because we are considering the special
case of initial Vlasov equilibria with zero derivatives at the
phase velocities. Nevertheless, the solution for the distribu-
tion function, inside the integrals in Eq(7), is completely
different from the solution to the linearized problem; in par-
ticular, it contains the trapping effects via the characteristics
s _ _ for the time-asymptotic field\. Thus, Eq.(50) gives anon-
~7In special cases E¢45) could haveN (>1) pairs of roots on the  |inear criterion that determines which small-amplitude initial
imaginary axis. Then, thénsatzwould be extended to include up conditions lead to time-asymptotic traveling-wave solutions.
to 2N waves. If conditionsi) and(ii) were satisfied at all[® poles, According to the standard linear theory, this happens when-
WE would agsocigte a timg-asymptotic wave mode with each root Oéver Egs.(45) and (46) hold. Unfortunately this is only an
Dy, on the imaginary axis. However, here we focus on the Wo-,iia| time result, and it is not at all clear from the linear
wave case, both because cases Wth1 are exceptional and be-  theory whether the Landau modes corresponding to poles on
cause the extension to those cases is straightforward, although vefyq imaginary axis can keep traveling unchanged in the non-
tedious. . linear regime, i.e., when the trapping effects become rel-
We rem.a.rked. in footnotes 2 and 4 teat aghe can always be g 5 Equatiori50), however, ensures precisely that the un-
made positive via an appropriate choice of the phag(aft), and damped modes generated by the pofes + ik are
that this might require us to replade: by —Ae if a;<0. However, p . 9 - y . P —%fUp
until this point it was not clear why the sign afshould be chosen canIStent with the nonlllnear. dynamlcs, and wil .ke(.ap.trav-
£ling at the same amplitude in the time-asymptotic limit.

positive or negative. Now, the transient analysis gives the natur. . L - .
criterion to determine the phase Afxt) (and the sign o) for a An important example of an initial condition that satisfies

given initial condition: the phase @(x,t) must be chosen so that Ed: (50) is provided by Buchanan and Dorning’s undamped

it is consistent with the phase of the corresponding linear modefWo-wave BGK-like solutiong 15] (see Appendix F heje
(with phase velocitiestv,,), whose amplitude is given by the real Thus, those solutions are a special case of the solutions de-

part of Eq.(48). Indeed, we know that these linear modes correctlyveloped here. What characterizes BGK and “BGK-like” so-

For [Nzo(p)/D,fo(p)]—ng)(p) to have zero residues at
*ikovp, Egs.(48) and(49) must be equal, up to a possible
change in the sign of, due to the choice of the phase of
A(x,t) in Eq.(13).° Setting the real part of Eq48) equal to

describe theinitial wave propagation, and that(x,t) must “re-  lutions is that the distribution function is constant along the
place” them in the nonlinear regime. Hence, the sigmgmust be  level curves of suitable invariants for single-particle motion
the same as the sign of the real part of ). (such as the energy in true BGK solutions or Buchanan and
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Dorning’s two-wave approximate invariants in BGK-like so- we are considering initial conditions near linearly stable
lutions), so that there is no energy exchange between thequilibria, the residue cannot be exactly zeragf 0, just as
plasma and the field. Equatid®0) provides a generalized in case | above. However, it can be approximately zero, with
BGK condition on thg initial Qistr!bution in the sense that, the same accuracy el asT(1? itself. The necessary con-
even when the resulting solution is not really BGK-like, the jition for this is that=ikov, must be roots of the Landau

resonant Wave-particle interactions are suf_ficiently ng”tle"dispersion relatiorD;” (p)=0 at zero order insgl). (They

that small-amplitude wave propagation still occurs. These tb ¢ f b in th bei idered
solutions provide the only nontrivial solution branch throughcﬁqﬂo eteﬁac roots t_ecauselz In Iﬂe case being considere
the origin in thee-a plane. all the roots have negative real partslence,

Interestingly, in the time-asymptotic limit the distribution
function becomes macroscopically equivalent to the coarsePi,(*iKovp)
grained BGK-like distribution obtained by averagifigover

) i invari ‘ ) 47 o Q2 F/(v)
the two wave_approzqmate invariant curves. By “macro :1+_2_2 Ha Pj B +imFL(To,)
scopically equivalent” we mean that, when integrated over kg & m, k. (v*vp) a

phase space, the two distribution functions produce the same
macroscopic quantitieee Appendix D, Proposition).1in =0(e"). (52
this coarse-grained sense, the solutions that we have obtained

evolve in time to reach BGK-like states as the outcome ofSince +v, satisfy the Vlasov dispersion relation, this is
the non-linear dynamics, whereas the undamped solutionsquivalent to
obtained by Buchanan and Dornifitf] have to be set up by

an initial distribution function that already has exactly the Qi

structure of a BGK-like solution. >

> m—aF;(:vp)=0(egl>). (53

C. The nonzero critical amplitude e(" _ o o o
Obviously, this is a generalization of E(47): it indicates

In case | above we established that whenever the initigfhat for there to be a small critical amplitude, the derivative
Vlasov equmb(g)um is linearly stable the only solution branch of the initial Viasov equilibrium at the phase velocity must
through eo=¢;"=0 is the basic branck=0. Hence, we pe small, so that Landau damping is weak and even a small
must raise the question whether there are nonzero timenitial disturbance has the possibility of trapping particles. In

asymptotic solutions that branch from=0 at anonzero what follows, Eq.(53) will be taken to be a consequence of
critical initial amplitude. Equatiori40) gives the small non-  the stronger condition

zero critical initial amplitudee("), which is a possible

threshold separating the initial conditions that result in Lan- dF,
dau damping to zero from those that lead to traveling-wave d
solutions witha# 0. To find such nonzero time-asymptotic v
solutions, we now study the transient equation in the neigh-

borhood Ofegl). This is also done via a perturbatio(q)expan—Then, the residue calculation fN;O/DQ'O is the same as in
sion, firstin powers o& andAe, and then in powersg™ [t caqe 11, since Eq(47) holds at zeroth order and leads to the

invert the linear operator on the left side of E§3)]. Fortu-  ¢5me expression as in EG8). Similarly, a, has the same

nately, all the leading-order information can be Obtai“edexpression at zeroth order in E@9). Hence, the same ar-
from a simple extension of the analysis carried out in Secgument as in the casey=0 shows that the initial distribu-
IVB for the “trivial” critical initial amplitude €{”’=0. tion must satisfynow at leading orderthe conditions in Eq.

At zeroth order inAe, of course, we have the purely tran- (50), in order for small-amplitude nonlinear wave propaga-
sient field To=T(%, which was already computed in Ed. tion to be possible in the neighborhood of the small critical
(38), but now withe,= €. At first order inAe we expand  amplitudee(”) . Then, the solution foff is

the first order termi (") in powers ofel?, in the form

(xv,)=0(ey") @=1,2,...N;. (54)

— = - T(x,1)=eNTOY(x, 1)+ AeTHO(x, 1)+ O(elVA€),
T =T+ eNTH0+- - (51) (55)

The equation foif(*? is identical to Eq(41) (which corre-  \paraT00) is Landau’s damping solution for the given ini-
sponds to the limitef)—0). Hence, the same arguments tia| condition andT? is the same Landau solution minus
used before show that solutions wah+ 0 are possible only  the contributions from the poles that correspdatl zeroth

if k=ko=ki, and thatT{?(p) must be obtained from the ordej to the time-asymptotic phase velocities .

0 0 in Eg. (30), with k;=k, and amplitudea obtained from Eq.

A0 i A0 ; ;
—Af(O)(p). Again, A(ko)(p) has polestikovp, whose resi- (32) (see Appendix E 3 for the detailed calculatiofo first
dues must be zero to have a valid solutionT{g]gO)(t). Since  order in bothAe and ¢
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ko2 uSal|Aal¥Ma] P, (vp)  ZLlaal/komET A 28,657 05815 i (0p) — 01 ST F i (vp)]
S 10l M3 1MF (v ) 012 o[ 10 7kgm1 2R (v )
N X2X3€6" + X2Z ol |0l KGMETYH (01120 ) F (v ) — €67 (|aalIm)[ 028 F 1 () — 01 S%" (L o) F (v ) T} A
[012 L1 Gl kom Y (v ) 12 ’
(56)

where theSi(f}"“) are given by Eqs(E9), (E10), and (E14). zero, whereas initial conditions of larger amplitude evolve to

Equation(56) gives the nonzero final amplitude theat A nonzero multiple-wave final stat¢26,27]. In this article we

+T reaches via particle trapping after slow initial Landauhave developed analytical expressions both for the threshold
damping. In the limite{")— 0 this branch reduces to E@9  and for the amplitude of the time-asymptotic superimposed
[recall F;(up)=0(egl))], i.e., a solution branch coming traveling waves that evolve from initial conditions with am-

from the origin in thee-a plane and corresponding to a Plitudes just above the threshold.
(possibly infinitesimal “flat spot” on the initial Vlasov equi- In the first part of the papefSec. 1) we developed a
librium. The corresponding distribution function is again general technique for studying self-consistent wave-particle
given by the integrand in Eq47) and is equivalent to a BGK- dynamics. This technique, which has wider applicability, is
like distribution in the sense discussed in the previous sedased on two essential ideas. The first follows from the ob-
tion; namely, as—o f, generates the same macroscopicservation that, for initial conditions with amplitude just
quantities as the coarse-grained function which is obtainedbove the threshold, the time-asymptotic electric field is
by averagingdf, in phase space along the “invariant curves” given by a superposition of small-amplitude BGK-like wave
for the fieldA. In this sense, these time-asymptotic solutionsmodes, each of which satisfies a Vlasov dispersion relation.
to the VP system can be viewed as a generalization of thghys, the problem of solving the Vlasov-Poisson equation at
multiple-traveling-wave BGK-like solutions of Buchanan |ong times can be reduced to the determination of a finite
and Dorning[15]. The solutions obtained here, of course, \ymper of time-asymptotic amplitudésne for a symmetric
exist only for initial field amphtude; above the 'threshqld pair of waves. The second essential idea is that, since the
value given by Eq(40) and have time-asymptotic ampli- general form of the time-asymptotic field is a discrete super-
tudes given by Eq(56). position of small-amplitude waves, the long-time solutions to
the Vlasov-Poisson equations can be approximated via “tran-
sient linearization,” i.e., by linearizing only the interaction
between the distribution function and the transient part of the
Particle trapping effects are ubiquitous in plasma physicselectric field, while keeping the full nonlinear wave-particle
Even in simple situations, however, the theoretical underinteraction in the limitt—c. Under this approximation, the
standing of these effects is severely limited by our inabilityequations can be solved exactly via Hamiltonian perturbation
to analyze(except possibly by large-scale numerical simula-theory.
tions) the nonlinear equations that model self-consistent The detailed solution, given in Sec. Ill for the important
field-particle interactions. In this article we have studiedcase of a sinusoidal initial disturbani&, shows that, as the
what is possibly the most fundamental example of nonlineamitial amplitude e of the perturbation is increased through a
wave-particle dynamics, the one associated with longitudinatertain threshold, the time-asymptotic wave amplituae
waves in a collisionless plasma. This classic problem, oftemhangestranscritically (i.e., at a finite angle from zero
referred to as “nonlinear Landau damping,” is fairly well (complete Landau dampihdo a nonzero valuétraveling-
understood in the two limiting cases of strong Landau dampwave propagation the dependence of the final amplitude
ing [2] and weakly damped trapping-dominated wave propaen the initial amplitudee near the threshold is given by Eg.
gation[8,9]. Conversely, there is very little understanding of (32). The threshold itself satisfies a scalar equation,(Ed),
the difficult “intermediate” regime in which the two time which depends on the details of the initial distribution func-
scales associated with linear Landau damping and with pation. Naturally, the equations for the threshold and the time-
ticle trapping are of the same order of magnitude; hence, ousymptotic field amplitude have coefficients that depend on
goal has been to study this intermediate regime. The fact thahe transient part of the electric field; hence, these general
the same type of initial disturbanc¢e.g., a single-mode sine equations must be combined with analysis of the transient
wave can, depending on its amplitude, be Landau damped tbehavior. That analysis was presented in the last part of the
zero or evolve to traveling-wave behavi@] suggests that paper(Sec. V) for the more restricted but very important
there must be a threshol@ “critical initial amplitude”) case in which the critical initial amplituder thresholdl it-
separating the initial conditions that lead to these two veryself is small. Physically, this occurs when linear Landau
different time-asymptotic states. The existence of such a@amping is weak, so that even a small initial perturbation
threshold is strongly supported by numerical simulationsfrom zero is sufficient to cause particle trapping and evolu-
showing that small-amplitude electric fields are damped tdion to self-sustained traveling-wave modes. In this case, the

V. CONCLUSION
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transient behavior could be analyzed via straightforward per¢ax”/dv) (x,v,t) =d4(X,v,t)t where d2(X,v,t) is a uni-
turbation expansions, which led to two types of long-timeformly bounded function whose detailed expression is not
solutions. important here.

The solutions of the first typ¢Sec. IV B) are those in To estimate the order of magnitude Bf, ., we restrict
which the threshold in the initial amplitude is actually zero. the domain of the integration to a finite interva® C R that
These solutions, for arbitrarily small perturbations of linearlyrepresents the “width” of the distribution functior{se., the
stable equilibria, are non-BGK-like solutions that are nottemperature of the plasméaSinceF, andf, are assumed to
Landau damped to zero; rather, they evolve to undampeHave strong decay propertie®, can be chosen so that the
multiple traveling waves(They include as a special case error introduced by the restriction of the domain is of higher

undamped small-amplitude multiple-wave BGK:-like solu- order. Likewise, assumingl (x,t) to be integrable i, there
tions reported previouslj15].) The solutions of the second must be a positiveS such thatv x

type (Sec. IVQ branch from the ftrivial zero-field time-
asymptotic solution at a nonzero threshold and lead to non- s +o0
zero final electric field states given by a nonlinear superpo- f |tT(X,t)|dt>f [tT(x,t)|dt. (A3)
sition of traveling-wave modes. The analysis yielded 0 ?

completely explicit results for the threshold E¢0) and for . . .

the final amplitude of the time-asymptotic field generated byCIearIy, ols _smaller if the rate 9f decay dtis greater. When
initial perturbations just above the threshold Es6). Inter- t>4, replacingR by 6, and uilng Eq(A3) and the uniform
estingly, recent large-scale numerical simulatig24] have ~Poundedness of,—F, andd;, Eq. (A2) can be well ap-
already confirmed these results, which were summarized eaPfoximated as

lier in a brief communication18].

R Ao K rd jﬂd_f & v
a_k(t)~m—am . T - X o Ua—U—(X,U,T)
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APPENDIX A: RANGE OF VALIDITY Here f,(X0,t)— F.(X;0) = Fo(XE ,vE) — F,(X;0) where
OF THE TRANSIENT LINEARIZATION [x5(X,0),v5(X,v)] are the inverse trajectorigéor the spe-

To establish the range of validity of the transiently linear-¢i€S @ With index omitted associated with the total electric
ized Vlasov equation, Eq6), we consider the error intro- field E. From the Newton equations it follows immediately
duced in replacind , by F, in Eq. (7): that, for 7& (0,6),

t
Ra(x,t)zﬁf dvf dT[T
My Jr 0
. o . where|E|=sup|E(x,t)|. Then, from the mean value theo-
The Fourier coefficients of the “residual” become, after ex- rem

changing the order of integration, performing the area-

of, IF,
Jv Jv

] | XE—X]=ofo]+ A= S7[E], |o§—o]= = olE],
[x’j(x,u,t),u’;\<x,u(,tA)]l) “ “ (A5)

preserving transformation of thex,p) integration variables s
to (X,v) =[x2(x,v,t),07(x,v,t)], and integrating by parts, IfQ(Y.v_,T)—fa(YE)KBX,a( Sv]+ m—52|EI)
Ry ()= Ju K ftd j”d—f 2 % Qe
a,k(t)_m_aﬁ A7) dx| Ua_v_(X’U’T) +Bv,am_a5|E|' (A6)
x e DT (X D[ f (X0, 1)~ Fo(%0) . where B, ,=SUB[0.2,1SUR c 0] (0F 1 d7) (X,0)], 7=X,v.

(A2) Hence, the order of magnitude Bf,  is

Herex?(x,v,7) is the “direct” trajectory, i.e., the position at Ko A

ime : : e IRa k()] ~ —=&°O[T||dy]
7 of a particle starting from the point,v at time zero. m,,

For the multiple-wave time-asymptotic fields that we con-

sider, the function®(X,v,t) can be computed explicitly via +8 Aa 5|E|} (A7)

the Buchanan-Dorning perturbation methjdd], in which omy '

the phase plane is divided into separate regions so that the

problem in each region can be reduced to motion in an auwhere|T|=sup | T(x,t)| and|d5|=sup,, |da(x,v,1)|.

tonomous, integrable system. Then the functidncan be The same procedure applied to the approximate expres-

obtained explicitly in terms of elliptic functions and sion in Eq.(7)

Oa
el d01+ 22 sl
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QD( t &fa T QO( t afa

Qa(x,t)Em—f dvf dri T 3 fa(x,v,t)=.7-"a(x—vt,v)——f dri T 5 .
aJR - JO U ) iAo, t),0A000.0)] Ma Jo V) x—vit-n.0]

(A8) (B1)

Under the assumption thaf(x,t) is integrable at infinity, by
leads, for the Fourier coefficients, to writing the interval of integration af),+) minus|t,+ )
kg Eqg. (B1) can be written as
[Qu(®l~ 7= &0 Tl . (A9) fL(X,0,0) = Fo(x—0t,0) +gL(X,0,1), (B2)

whereg(x,v,t)—0 uniformly ast—o and

T Qo [~ &fa
Fxu)=F (Xv)—— | driT )
m [x+v7v]

Clearly, for Eq.(7) to be a good approximation to the full
Vlasov equation|R,|<|Q,|, or, from Egs.(A7) and (A9),

Ao Ao a’o 7w
IBX,a5|®|+Bx,a52m_|E|+Bv,a5m_|E|<l (AlO) (B?’)
“ “ From Eq. (B2) it follows that, in the time-asymptotic

(a=1,...Ng). Physically,5 is the time scale for the decay of limit, fl is macroscopically equivalent to a spatially uniform
the transientT, whereas B, |0, (q,/m,)Bx./El, and  Vlasov equilibrium, in the sense that there is an equilibrium
(d4/m,) B, «|E| measure the various effects that make FI(v) such thatf] andF] generate the same macroscopic
drift away from the initial conditionF,. In particular, quantities. To be precise, consider any integral of the form
Bx.«|®| corresponds to the zero-field advecti@amspacg of [ zdu Q(v,u)fl(x,u,t), which could be a charge or current
the spatially nonuniform part of the initial distribution, which density [G(v,u)=1,u], or any higher momen{G(v,u)
becomes relevant on the time scalg ,~1/8,,/©®|. The  =u"], or a filtered distribution functiof26]. Substitutingf |
term (q,/m,) By .|E| measures the action of the fiegflon  from Eq.(B2) and taking the spatial Fourier transform, it is
the position of the particles and corresponds to the trappingasy to see that, fok+0, f“dug(v,u)fl (u,t)—0 ast
time scalery, o~ VM, /q.Bx .|El. Finally, (@./m.)B, «|El o by the Riemann-Lebesgue lemrflaecausef? (u,t)
expresses the deviation imposedByn the velocity of the  — T (y)efkut plus terms derived from the transient func-
particles(i.e., the advect|on. in velocityon .the time scale tions'ga, which vanish in the time-asymptotic lirfitHence,
Tov,a™=MalUaBy o|E[.  Defining  ro=min,my o, Tox JrAuG(o,u)fI(x,ut)— frduGv,u)F (u) as t—oo,

=MiN,Thyq, AN 7, =MiN, 7y, o, EQ. (A10) can be broken  yhere we have introduced the time-asymptotic equilibrium
into the three conditions
Fa(v)=Fov)=Fu(v)

0<Tay, O<Tpy, O<Ty, (A11)
Qe 1 [*7 [~ aF,
for the validity of the transient linearization. They have been “m. 2 J_ dxfo dT[ T v ] :
derived fort> &, but the development can be adapted tfor “ " [x+vro]
< 8. One obtains conditions just like those in Eg&11), but (B4)

with & replaced byt; sincet<4, it follows that Eqs.(A11)  |n particular, the charge density féf, on the right side of
provide a sufficient condition for the accuracy of the tran-gq_(g) is now equal to the charge density .. By defi-
sient linearizatiorat all times Finally, 7yans< 7gyn follows by - nition, the initial Viasov equilibriunF ,(v) has zero charge
defining 7ané= 6 and 7qyn=MiN(7ay, 7o, 7hy)- _ density, as does the other term in EB4) (this follows from
In practice, 7ax, 7px, andy, (and thusryy) will usually — sing spatial periodicity to eliminate the shift that arises
be detgrmmed by_the electrons. Intere_stmgly, the definition$, the limits of integration irdx and an integration by pajts
of the field-effect time scales,, and ,, include the param- Hence,FT(v) is a charge-neutral equilibrium and E@) is
etersgBy , and g, ,, which depend, respectively, on the spa- identicall?/ satisfied byA=0
tial and velocity gradients of the initial distribution, whereas '

O'Neil's 7, contains the typical wave numbleand therefore
depends only on the spatial gradient. In most physical situa-
tions, B, ,~1 andp, ,~Kk|E[; thus, all three time scales on
the right sides of Egs(All) are proportional to 1E|. To develop the linearization of the time-asymptotic equa-
Hence, in the small-amplitude casey, is larger than tion aboutA=0, we substitute into Eq5a) for f,

O’'Neil's trapping timer, , which is proportional to 1E|Y2

APPENDIX C: LINEARIZATION OF THE
TIME-ASYMPTOTIC EQUATION

d, [t of
f.(Xv,t)=F (x—vt,v)— m—af dT[A_“

APPENDIX B: VANISHING TIME-ASYMPTOTIC aJ0 [X=v(t=7),v]
FIELD SOLUTIONS

To prove tha®=0 is a solution to Eq(8), whether or not S m, fo " (o] €D

it can be reached from a given initial condition, we note that ‘
for A(x,t)=0 the [x?,0%] are x%(x,u,t)=x—v(t—7),  which is obtained by integrating the transiently linearized
v?(x,v,t)=u, and the solution to E(6) is Vlasov equation along straight line trajectoriegs0). The
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first and third terms on the right side generate vanishingvhich can be linearized abo=0 by simply replacing
quantities by the Riemann-Lebesgue lemma; hence(d&y. f/(A+T) by its value atA=0. This gives the linearized

becomes time-asymptotic equation
2 2
_ k 2 P
A(t)= |k§a: . J dx e~ ikx Rdv ak'wi:E q_ lim _f dtf dx e kxHioita(x t)
t afa ‘
% f dT(A&—] . (C2) £ro
0 v [X—=v(t—7),v] xXP YF{dv a)i_kl) ’ (07)

By periodicity, the integrand can be shifted dft — 7) in the
X variable; then, taking the Bohr transform of both S|deswheref 0 is the distribution function at the critical state, Eq.

yields (B1) (with T=Ty).
2 Substitutingfz0 from Eg. (B2) into Eq. (C7) yields Eq.
Qo= T m_ lim j dte'“"J dxf dv (9) as the linearized equation since the term containing the

a g—o0

transientgl0 gives no contribution to the time average and
all the spatial Fourier componentsﬁii0 with k# 0 generate

oscillatory terms in the principal value integral, which go to
zero ast—o by the Riemann-Lebesgue lemrf{20]. Thus,

Integrating by parts irt, introducing principal value inte- the only nonzero contribution comes from the spatially uni-

t o af,
XJ dre ik nA(x 7) —2(x,0,7). (C3
0 v

grals, and noting the cancellation of the associated half resform part off , i.e., the time-asymptotic equilibriuﬂﬁl0
dues gives in Eq. (B4).
2 iwio
2 o 1 I 7 —ikv(o—t)
Q= T & lim —P| dv P dte APPENDIX D: EXPANSION OF THE TIME-ASYMPTOTIC
@ e g oo 0 EQUATION
+m . of, i i i
XJ dx e A D) =2 (x,0.1) The details of the _anaIyS|s that results in EQ4), the _
o leading-order expansion of the two-wave time-asymptotic
5 . equation, Eq(14), in terms ofa, are given here.
2 qa ) o | wj
+-> — lim —Pfdv dt
kS m,, .o Jr o wi—kv 1. O'Neil terms

+ar . of We start from the first term on the right side in E44)
XJ dx e *A(x,t) a—“(x,v,t). (C4  (O'Neil terms. To calculate the characteristits) ,v5], fol-

o v lowing Ref.[15], we divide the phase plane into two halves,
one for each wave mode, and perform a sequence of canoni-
cal transformations that transform the dynamics in each half
plane into those for a single sinusoidal wave, which can be
calculated in terms of elliptic integrals. Instead of computing

The first term on the right side can be simplified by noting
that it containgexcept for vanishing termshe right side of
Eqg. (C1) evaluated at=o. Hence,

e'wio [xg,v5] directly, we shall use these canonical transforma-
A0, = _z 9, lim _P ‘hdv “ ko fax(v,0) tions to change the integration variables, working our way
7 backward. All such changes of variables will have Jacobian
2 1 - gloit determinants equal to (at least to first order im) because
+ = 2 — lim —PfRva' dt the corresponding coordinate transformations (@m@proxi-
a g— 0

mately canonical, i.e., area preserving. We first consider the
e _ of half planev=0 that corresponds to the wave wi
X f dx e *A(X,t) —=(X,v,t). (C5) + wlky. [We shall not explicitly indicate all the infinitesimal
- Jv transformations in the lower limit of integration in as the
integration variables are transformed, because in the end all
the contributions will combine into integrals on the whole
axis. We shall simply write a plus sign on top of the integra-
tion symbol, to indicate a domain of integration that corre-
sponds to a positive semiaxis in the X,v) coordinates.

The first term on the right side is zero, sincer hultiplies
bounded functions oé. Finally, another change in integra-
tion order yields

= —E — lim = f dtf dx e xFieitp(x t) The first change of variables moves the problem to the
@ o= wave frame p=m,v, and thea is suppressed
frk 1
XPJRdU m, (C6) GZkOX_wt, J=k—0(p—mavp). (Dl)
1
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Correspondingly, the “backward” valuepx?,v%] will be _ a.kod 1
transformed td ¢°,J%], where 6=6— m, [(KJm)J+ 20 ]23|r{0+2wt]+0( a%),
62(6,3,1) =kox(x,v,t) — w7, 1
Jeg- B o404 20t]+O(ad)
m, Ko [(k§/my)Jd+2w] '
Jﬁ(e,J,t)=k—o[v’:<x,v,t>—vp] (D2) (D4)

For cos# andJ?, the analog of Eq(D2) is found by evalu-

(a suppressed Hence, the first term on the right side of Eq. ating the inverse equations & r,

(14) becomes

8 o 1 (o +Kkom g.a 1
— q_ lim —f dtcosmf do cost;=cosé] s
Ko@ My, .o 0 Jo —kom KoMa [20,+ (ko /m,)J7]
+ k A i A 2
><cos{0+wt)f dJ[Fa(vp+m—oJ§(9,J,t)) Xsingsin 67+ 2w7]+0(a%), (D5)
1
Ko _a A Aoy I cog 02+ 2w 7]+ 0(a?).
+eha(vp+ m—aJO(e,J,t))cosao(e,J,t)), (D3) ké [2vp+(k0/ma)J 1
where the shift—wt in the 6 integration limits has been (D6)
eliminated by periodicity.
The second coordinate changd 15] Then Eq.(D3) becomegwith error O(a?)]
|
| sin 0+ 2wt
_2 — lim —f dtCOSth daJ dJco{ 0+ wt+ d il ® ]_ )
Ko @ My oo o kom KoMy [ 20+ (ko/m,) ]2
L€a Sirn 64
X1 Fa(vpt(ko/my)Jd O)+6h (vpt(Ko/m, )Jo)coseO ha(vp+(k0/ma)J0)
kom, [20,+ (Ko/m,) 57
L€adh, cog 6 LA dF, cos6
4 2a2 /m)3) R R ONE SN .
kom, dv [20,+ (Ko/my)Jdh] KoM, dv [20,+ (Ko /M) 5]
(D7)

Here, (5@ ) (W|th subscripts corresponding to=0) have only the casey,<0, and transformy to 6+  in the g,>0

arguments ¢,J,t); we have also ignored the effect of Eq. terms in Eq (D7). For q,<O0 the trajectories
(D4) on the limits of the integration in spa¢gince there also [5@(0 J,0),J8 (9 J,t)] that correspond to the Hamiltonian in

is periodicity in 6). Eq. (D8) can be obtained explicitlj33] as
In (5\]_) the Hamiltonian i15] 5 ¢
05(0,3,)=2 an{FHm)——,m}, (D9)
K, ga 27 e
H(J,0)= J2+ cosf=E, (D8)
2m, ko
p—— 2m, 1 t 0
0(0,J,t)=— —dn——F 5m[.mi, (D10)
which corresponds to particle motion in a single sinusoidal ko 7ok [ KT

wave with amplitudeA=q,a. When q,<0 this is the . . T .
Hamiltonian for a nonlinear pendulum. Whap=>0 it is the whereF(y|m) is the incomplete elliptic integral of the first

Hamiltonian for an upside-down pendulum, corresponding td“nd and
the fact that the positive particles oscillate in the downward

trough of the wave. Clearly, the Hamiltonian with>0is - =</m_/|q,|kea, m=«?= a _
transformed into the Hamiltonian witlg, <0 simply by (k8/4|qa|ma)\]_2+asin2§/2
shifting the spatial variabl® by 7. Hence, we shall study (D11)
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By definition, « takes the same sign ds The inverse trajectories depend on the particle speciesyvia, andm; however,
we have suppressed theindices. Usingd— 0+ = whenq,>0 in Eq. (D7) yields

s,q, . 1 (e thom [+ | Se.a  Sif6+2wt
E a fdtcosmf odef dJcos{0+wt+ a il | ]
0

ko o ma oo O —k07T koma [2Up+(k0/ma)j]2

L€a sir? 65
X4 Fo(vpt (Ko/My)JR) + €S,ho(vp+ (Ko/m,) Ig)costh— ha(vp+ (Ko /My)J3) 0
oMe [20,+ (ko/m,) 35712
L€a dh, cog ¢ s,0.a dF, coséh
a Im)JP) 0 4 2 (0p+ (Ko/My) JD) 0
kom, dv [20,+(ko/m,) 5] KoM du [2v,+(Ko/m,) 5]

(D12)

wheres,=—q,/|q,| mark the terms whose sign changes foring a straightforward expansion of the trigonometric terms
g,>0 and the shifted quantities are still denoteddyyy. ~ @ppearing in the first line, EqD12) can be written as a
When we substitute Eq$D9) and (D10) into Eq.(D12) we  linear combination of terms of the form
obtain a completely explicit expression.

Even though it appears quite complicated, H12) can 1 (o +kom __
be simplified by exploiting the time-asymptotic properties of lim — J;) dt W(t)J ) de
the inverse phase flofy(6,J,t),Jo(6,J,t)]. Since the po- . or
tential well in Eq.(D8) is not harmonic, particles with dif- +
ferent energies oscillate at different frequencies and “mix x| dIK(6,9)Gol 0o(6,,1),30(6,3,1)],
up” the initial distribution. At long times, as filamentation
grows, we can expect the-J integration in Eq.(D12) to (D13
average away all the high-frequency terms and leave On|yvherew and K are continuous, bounded, and periodictin
some coarse-grained component. In practice, after perfornand 6, respectively, and

T - — — (Q,€a — sir? 6
Go(0,3)=F o(vp+ (Ko /M) ) + €5, (v p+ (Ko /M) )OS~ ———h (v, + (Ko /M) ) -
KoMg [20,+ (Ko/m,)J]?
g.e€a dh, _ cos 6 s,q,a dF, _ cosf
+ /m,)J) — + (vt (Ko/mg)J) —. (D14)
kom, dv [2v,+(ko/m,)J] KoM, dv [2v,+ (Ko/m,)J]
|
Then the following general result applies. whereQ is an interval inR and go(a J) is the average in

Ii)rloposn%n 1'G'Vir} andautonor‘?ous, fiﬁ”c’d'c and Ante phase space of the functigh(4,J) along the curves of con-
grable one-degree-of-freedom system with “inverse characgi,t energy of the system.

teristics” [6,(6,3,1),3,(6,3,1)], and two functionsC andgy This is shown easily33] by transforming to action-angle
as in Eq.(D13), variables and invoking the Riemann-Lebesgue lemma. Equa-
tion (D15) and Frehet's lemma[28] imply that Eq.(D13)
can be rewritten as
lim f daf dIK(0.9)Go[ O 6,3.1),30(0.9:1)]
o0 ko
‘ 0 tkom _(+ — 1 (o
f def dIK(6,3)Go(6,3) lim —f dt w(wt).
=f def dIK(6.9)Go(6,9), (D15) ~kom o 0 o
kom (D16)
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Then, tedious manipulations reduce ER12) to For m>1 we define such that sig=«sin& then the
action-angle variables af@3] =[ w/2K (1/m)]F(£|1/m),
+kom [+ __ T— 2 (1 —
2 aan 0 def 43 J=(8/7)(m,/ 1p,k?)[ E(1/m)—(1—1/m)K(1/m)]. Hence,
kO a m, —kom ~
B K 11260 1
— Saqaa 1 _— g_a m ?’E ’
X { cosf— — 1 Go(6,J).
2kom, [ 20 ,+ (ko /m,)J]?
P _ 2 26 1
(D17) COSf=Cos %= —Fsngz sn2 ==
The terms in Eq.(D17) that depend on the asymptotic (D23)
field amplitudea only through the averaging process are  gp
4 Sala +kom [+ __ I . 2m 1
— —J d0J’ dJcostHy(6,J), (D18 J=—"—J1-«?sir &
ko @ Mo Jigr @ oK
whereH,(6,J) is obtained by averaging 2m, 1
=—% ——C0S{
K K ki 7ok
— 0— o—| —
=F +—J|+es,h +— ~
Ho(6,d) a(vp maJ €S, a(vp maJ)cose Com, 1 ) 1\ 9% 1 o
(D19) > ac =l (D24)
on the pendulum energy levels. These expressions corre]_h
spond to particle dynamidas a single sinusoidal wavavhile
the other terms in EqD17), temporarily set aside, represent 1 ron 1 1129 1
the effects of the second wave, with phase veloe€ity/kg. Ho(6,3)= _f dTg{ Fol vpt+i———cCn K(_)_’_D
To compute t the phase-plane averages in(Bd8), we trans- 27 Jo Ko Tpx mj m m

form from (0 J) to the action-angle variable®,J) for the
nonlinear pendulum, where the averaging can be performed +es,h,
more easily. Fom<1 (untrapped particles we defineé

|

2 1 20 1
vpt - —cn Kl —|—,—
ko TpK m/ 7 'm

=0/2; then §=[=/K(m)]F(£&lm) and I=(4/m)(m,/k?) 5 1\ 9% 1
X (1/ryx)E(m), whereK and E are the complete elliptic X|1——5sr? K(— D] (D25)
integrals of the first and second kinds, respectively. Hence, K m/ @ 'm

BK(m) BK(m) Rescaling the integration variables in E¢522) and (D25)
= )= =1— 7 and substituting into EqD18) yields
é=a ——.m|, cosf=cos%=1 2 srf ——.m
4 Sala +kom [+ _ _
(D20) > _qf ’ daj __ dJcosé
and k0 « Mg, —kom m(J,0)<1
— 2m, - 2m, 1 : 2K(m) 2
=S b= TS E <o fa 2 o v g etz
_2m, idn oK (m) (D21) +esaha(u +— dr[z m])(l—z sn’-[z,m])]
ki ThK T
. (D26)
where m, x, and 7, were defined in Eq.(D1l) and ¢ for m<1. and form>1
= (1/7,x) V1 — k? sir? & follows from the conservation of en- '
ergy. Then, 4 S tkom [+ _
L 2 . 1 k_E r;q”f ’ def __ dJcosé
N — T ~ 0 @ o J—kom m(J,0)>1
H 0,J=—J' dBrFav+——d oK m/w,m)
o(0.9)=5— . "t ko Tox n 6K (m) ] 4K(1/m L L
2 1 4K(1/m>f APl oot i 7 2 m
+es,h,| v +k——dr'[0K(m)/7r,m])
0 ToK 2 1 1 2 1
+es,h,|v +k :cm Z’E —FSHZ Z,a .
x{1-2 sr?[EK(m)/w,m]}}. (D22) 0P
(D27)
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in 7,, k, andm [Eq. (D11)], we shall break the velocity
integrals into regions that correspond to different types of
wave-patrticle interactions, distinguishing between resonant

To expand these quantities in powersapfvhich appears 4 2 S0, [ ko
D

_ 1 2K(m
do| dJcosb=——— ) f dz

koS My Jokgm iy 2K(m

* i j
and nonresonant particles based on the size of the coefficient X D [ 1| d FJ (vp)dnl[z m]
(mpx) "t in the arguments of , and h,,. Here 1k, is of 1=0 Ko 7| j1 dv
order+/a, whereas 14| can vary from 0 at the bottom of the 2 1 i1 dih,
wave’s potential well to 1 on the separatrixstdfar from the +€s, =T (vp)dnl[z m]
wave in the phase plane. Forl&/<1, we perform “reso- “lko 7or] 1 dv

nant” expansions ofF, and h, aroundv, (resonant par-

ticles. But when 1Jk| becomes larger, the coefficient X(1-2 sn’-[z,m])], (D28)
(7ox) "1 is no longer small and we must find a way to ex-

pand the functions around the free-streaming particle velooyhere

ity instead ofv,. This will be the case of nonresonant par-

ticles. om 0
—| _/l4 _ a -
Il—( a’”, kgrb cosJ U

2m, 0
2 Cos5, + al 4,

koTb
a. Resonant particles L . - .
All terms with j odd are odd functions af, since they are
. ) o ) odd in k, and k has the same sign as Hence, sincé is
The resonant region will be further divided into two sub- sy mmetric, these terms vanish. Foreven both theA,(m)
regions, corresponding to the untrappea(1) and trapped and theB,(m) can be calculated via standard recursive for-
(m>1) resonant particles. mulas[33]. In Eqg. (D28) the small parametea appears not
al. Resonant untrapped particlés<<1). We shall con-  only in 1/, but also ink andm (in the productrgJZ)_. To
sider as resonant the phase region such thad>a"",  geal with this we rescai@ by 2m, /k27, (and still useJ, «,

i.e., 1/ r,k|<a'% Then Taylor expanding, andh, about andm for the transformed quantitiggnd arrive[33] at the
vp in Eqg. (D26) gives leading-order terms in EqD28) as

82 +kom 2 1 E(m)d’F, €S, 2<E(m) )
22 S“q“fkoﬂda I1dJcos K2 23 K(m) dv —— (v p)+T—b + m—l h,(vp)
2 1 1 (2 )(E(m) ) d?h,,
Fesig s M kY [ar o) 029

where E(m) is the complete elliptic integral of the second kind, now=x2=[J%+siré(6/2)] ! and T,=(—a ¥4
—cos(@l2))U (+cos@2),+a~ 4. Now, x andm do not depend om, and the integrand in E4D26) has been written as a
series expansion in powers of %, i.e., powers oR'?2

The only inconvenience is the poweas ¥/ that appear i ;. Let us add and subtract two terms and add a term that
integrates to zero i to rewrite Eq.(D29) as

82 +ko7T— 11 Z(E(m) d’F 1 1(2 )dZF

k—g - S, Ao f on dJCOS ko e 1+E K(m)_l) du? (Up) k_é’T_g E_l do? (Up)

Z(E(m) ) 11[2 (2 )(E(m) ) 1] d?h,,

E W_l ha(vp)-i-esak—gT—g % 1+ a—l m—l _Zd_vz(vp) . (D30)

All the functions in the square brackets are integrableJhs =, i.e.,|m|—0, sincem~J~2 [see[34], 17.3.11 and 17.3.12
in the last term integrability was obtained by subtracting the spatially uniform tefi(4kj Tﬁ)](d h /dvz)(vp) which
vanishes under thé integratior]. These terms will combine with corresponding terms from the nonresonant particle region,
allowing us to extend the domain of integration for these functions froto Il—( 0 —cos(0/2))U(+ cos(0/2) + ), For

LS
Th
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the remaining term in E¢D30), if we rescale) back to its original definition and substitute the original expressiomférom
Eqg. (D11), the part depending od cancels under thgintegration andnoting thats,q,|d,|= —qi) we have

4 o d’F,
—a—z q dJcosF(Zsmz——l) 5 (vp)
k01T Iy dov
Ar o« 02 _1|dF, d?F, ko— 1d°F, Ko—
=a — a di= +—(0p) — I+ = ——(vp)| —J
Ko Ea: m?2 Il d 102 P E '1 J_[ dv °) dv? (vp) m, 2 dvd (vp) m,
1 Ko— ,
—a—Z dI=F.| v+ —J|+0(a", (D31)
0 a m, Il J m
|
where the first and third terms in the bradesch of which 1) dh,,
integrates to zepohave been added to form the truncated 1 d—vz—(vp) : (D33

Taylor series oti’Y(var(kO/ma)j). The last line yields, at

leading order, the Vlasov dispersion integtal the wave where we have introduced the same constant factor in the last
frame restricted to the resonant region. As such, it will com-term that was added to the corresponding term in(BG0)

bine naturally with corresponding integrals from the othery make it integrable i. This spatially uniform correction,

regions in the phase plane.
a2. Trapped particle{m>1). All the trapped particles gggovl;rri?g vanishes under thintegration. In Eq(D34) we

are resonant and for theft/7,x|<1 always. Thus, we can

expandF , andh, in Eq.(D27) aboutv,, just as in case al. 2 1[E(Um) m—1
The analog of Eq(D28) then is k—% — (1/m) T}
Sela J'+kowd~ i cos6 J4K<1/m> 1 1] E(1/m) Jort 2 .
ko™ My Joigr TRV ‘ TR AlTK@m g im )
- i1 diF, . (D34)
X2 [ — 7 (vp)en|z . . .
<6 [Lko 7ox] 1 dv where the first term connects continuously with the corre-
i1 dih, sponding quantity in Eq.D30), and the second generates the
+es, 2 1 1 vo)en| z i trapped particle contribution to the Vlasov dispersion inte-
Ky o) j! dol \OP 'm gral[as in Eq.(D31)].
x| 1— % srf Z,% )]’ (D32) b. Nonresonant particles

We also must consider the cape|<a' i.e., 1]m«]
. _ , _ >a'™ Since 1Jr,«| can become arbitrarily large as the dis-
wherel;=(—(2m,/kgr,)cos@2),+(2m, /Ky7p)cOS@2)).  tance from the wave in phase space increases, Taylor expan-
As in case al, all the terms with o¢icl'anish, and the others sions around) are not appropnate Instead, singe= K2
can be calculated following the same steps. Rescalibhy < ./a, we expand the elliptic function dn, which enables us
2ma/kgrb, redefiningm as in case al, and introducing the to expandF, andh, around the free-streaming velocity,

modified domairl ,= (- cos@?2),+ cos@?2)) yields at lead-  + (ko/m,)J [33] to obtain

ing order
477 a2 _1 dF, Ko —
o —> = vyt —J| (D35
o = 4T 21 @ mgJ do | " m
32 Syl 0 |- dicost) 7 — kS 3 J a
I<o7T I 07b
B 2 as the leading-order approximation to E§26). Equation
X[K(l/m)_ m 1} d°F, + Sa E(1/m)_ } (D35) is the contribution from the nonresonant particles to
2 (Up . L
K(l/m) m |dv ™ | K(1/m) the Vlasov dispersion integral.
11 (271 2 E(1/m) Combining Egs.(D30), (D34), and (D35) yields the
% h +es ) Y leading-order terms in the expansion of the single-mode
a(v p) a2 3 .
kg 75 13[M \m K(1/m) O'Neil terms:
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d’F,

dv?

| | 1/2
+ea1’202qa{ ] ha(vp)

Iqal5

—a%r, 2,

(Up)

k3m,
—> = v+ —1J
%; m, f J dv P m, )
12
|a.*]“d?n,
+ead 022 q“{k 2 “(vp), (D36

where o, =8/ " "d 6 dJ cosdg,(6,J) and the integrals i
over[ —kqy, + ko] have been written ag, times integrals
over[—m,+]. The functionsy, andg, are

PHYSICAL REVIEW E68, 026406 (2003

2 (E(m)
— —— m<1,
__ m\ K(m) '
91(6,d)= E(Lm) (D37)
—1 m>1,
K(Lm) ™
1 2 1 E(m) 1 ! m<1
I T R P A I N !
92(0,9)= o (BN
am| 1Tl km Y| 3 !
(D38)
and m=x2=[J?+sird(6/2)]"L. Numerical integration
yields o, =8X 2.58=20.67 ando,=8x 0.066=0.53.

We still must consider the terms in E@17) that corre-
spond to the interaction between the wave under consider-
ation and the “other” wave:

Sela *k ™ S.0.a dF, ko— cosé
E d ’ def 43 cosg| >4 ch ) —
Ko @ my J-kom kom, dv My /[2v0p+ (Ko/mM,)J]
L€a dh, Ko— cos 6 €2 Ko— si 6
+q (vp - ) _—q ha(vp—F—OJ) —
kom, dv Mo/ [2v,+(ko/m,)J]  KoMa [2v,+ (ko/m,)J]?
Sad.2 1 ko— Ko—| — )
- — | Fo|l vpt —J | tes,h,| vp+ —J|cosd|+0(a%), (D39)
Zkoma [20p+(k0/ma)\]]2 m, «

where the terms with overbars must be averaged on the pegariable J back to v
dulum energy levels. This averaging can be carried out, andymmetry ofF ,(v).
the resulting quantities expanded in powersaplusing the

above techniques, which entails some tedious algebra but no

new ideas. Actually, we need to compute only terms through  SubstitutingT (x,t)=3/_ 1-rnk (t)sinnkyx into the second

/
ordera®, to be consistent with EqD18); we obtain term on the right side in Eq14) (Landau termsand trans-
forming to the wave frame via EqéD1) and (D2) gives

, integrating by parts, and using the

2. Landau terms

1/2

|q |5 dFa 8 q +kom
a¥— —_— — i —f dt tf d6 cog 6+ wt
zva ey R, (vp) kOZq iglinoo COoSw o cog 6+ wt)
o2 la.°] ™ f o
; [k a 1 [ a(vp)+2vp (Up)l xf deOdTEn: Tak,(7)SINN[G7(6,3,1) + w7]
4T 9 F o (vpt (ko/m,)J) x(dF“(v +@JA(0,J,t))
—a— 2, — . (D40) dv \"P" m™"
ko @ mZ [20 +(ko/my)J1? dh ‘
o 0
teg up+m—aJ’;‘(a,J,t))cos{aﬁ(a,J,t)mr] :

Equations(D36) and (D40) provide the leading-order terms
in the expansion of EqD17) in the upper half plane. Since (D41
the initial condition is reflection symmetric, the lower half- Where— wt in the ¢ integration limits has been eliminated by
plane contribution will be identical. Thus, the O'Neil term Pperiodicity. Then, using E¢(D4), the inverse relations Egs.
becomes Eq.(16), where the Vlasov dispersion term (D5) and (D6), and §— 6+ = whenq,>0, Eq. (D41) be-
Ko(ko,w) is obtained by transforming the integration comes, with orde©(a?) error,
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s,0,a  Sin6+2wt
_E — lim —f dtcosmf ’ dﬁf dJcos( 0+ wt+ e il wt] )jdrE Taky(7)San
071'

ko @ M2 goe O KoMa [20,+ (ko/m,)J]2

aqaasm( +2wr)cosn( Ttor)

dh ko —
+ €S —( +—OJA)

Ko
X|sinn(2+w7)+n —Jh o A
(#r+w7) kom, [20,+ (ko/m,)J2]2 [ dv ( m d m,
— S,0,a sza< kO_A) cog 02+ 2wT) eq,a d?h,, Ko—p
Xcog P+ wr)+ —— — vyt — —
Wt ont Yom, do? |7 m, " [20,+ (ko/mg) %] KoMy do? %P7 m, ™7

(D42)

[e3

COS( +2w7')00i Ttwr) €q,a dha( ko A) sm( +2wT)S|n( Ttor)
X ——|vpt —
[20,+ (Ko /M) 3R] kom, dv M ") [20,+ (ko/m,) 3072

wheres,  is s, for n even and unity fon odd. Since the variables with overbars satisfy &), the[0 (0 J, 1),J (0 J, 1]
in Eq. (D42) are easily obtained in terms of elliptic functions.

A straightforward extensiof33] of the arguments that led from E¢D12) to Eq. (D17) shows that Eq(D42) can be
rewritten as

+komr __ [+ . 1
4s % o o daf dj[ oS 2“q“ ]2 Gon(0:9), (D43)

ko @ m2 J—kom KoMy [20,+ (Ko /m,)J]2

where the?oyn(g,\]_) are obtained triviallybut tediously by applying standard sum formulas to the trigonometric functions in

- s,q,a sin(6+2w7r)cosn(6+ ) | | dF, Ko— dh, Ko—| —
TnkO(T)Sa,n sinn(0+w7)+n — vpt—J|+es,—/ | v+ —J|cog O+ wT)
KoMa  [2v,+(Ko/m,)J]? dv Mg dv m,
s,q,a d2F Ko—| cog6+2 a d?h Ko—| cog 0+ 2wr)cog 6+
N oY Za( p+_0‘]) g wr)_ N €q, ;(vp+ —OJ> g »T)COY _wT)
kom, dv [2v,+(Ko/m,)J]  KoMa du m, [2v,+ (ko/m,)J]
eq,a dh, ko—| sin(6+2w7)sin( 6+
e (U +_0J) n(+ 207)sin(6+ w7) (044
kom, dv m, [2v,+ (Ko/m,)J]?

and then(a) integrating the factors depending arfrom zero to infinity, andb) averaging the terms depending ofyJ) on
the energy levels of the pendulum.

In Eq. (D43) the single-mode terms, i.e., the terms that do not have an explicit dependeaceming from multiple-mode
effects, are given by

4

+kom

+ -
def dJcosez Hon(6,J), (D45)
n

2%

@ —kom

where theH,,,(6,J) are obtained from the terms
dF, N koj
do [YPT m,

via the procedure described above. Standard trigonometric forrfanas,, ,,;=s,S, ) lead to

dh,
+e€S,——

Kg— —
“dy vpt m—aJ>cos(0+wr)} (D46)

Tky(7)Sen SINN(O+ @7)

— — dF, Ko — € — —
Ho,n(H,J)Esa,n[cn,nsinnavLSn,ncosnﬁ]w vpt m—OJ +sa,n+1§[Cn,n_1sin(n—1)6'+Sn,n_1cos{n—1)0
. — — dh, Kg—
+Cn,n+15|n(n+1)0+snyn+1cos{n+1)0]E vp+m—J , (D47)
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where Cn,jzfg’drTnko(r)cosjwr and Sn,jzfgcdrTnko(r)sinjwr. For reference in Appendix E, these coefficients can be
expressed in terms of the Laplace transfarpip) of Th(t) as

1. - ~ .. 1 - . ~ .
an_E[Tnko(_IJw)+Tnk0(|Jw)]1 Sn,j:E[Tnko(_”w)_TnkO(”w)]- (D48)
Now, each™,,, must be averaged on the energy levels of the nonlinear pendulum via the techniques above. First, the

trigonometric functions ofg are expressed in terms of girand cos, where é= 0/2:  sinn6= n(smg cosé) and cod
=PS(sin¢,cosé), whereP;, and PS are (1+ 1)th degree polynomials. Then E@45) becomes

4 2 ikom [+ 1 2K(m)
E q ko defm(”KldJcosﬁZK( )f dz; SanlCnnPS(sn,cn+S, ,PS(sn,cn]
@ 0T )
dF, 2 1 s
XE ko ——dn +San+12{Cnn 1Py 1(SN,eN+ Sy - 1Py 1(sn,en +Cy n 1Py 1 (SN,CH
c dh, 2 1
+Sn’n+1Pn+1(sn,cr)}E Up+k—oﬂdn (D49)

for m<<1, where the elliptic functions sn, cn, and dn are understood to take the argyments Similarly, we find

4 2 kg [+ _ 4K (1/m)
E q ko defm(m)>ld\]cosa 2K (Tm )f dz; SanlCrnPS(k tsn,dn+S, ,PS(x tsn,dn]
a 0T )
dF, 2 1
XE kO Cn +Sa+1n2{cnn an 1(K 'sn dr)—"Snn 1Pn 1(K sn dr)+Cnn+an+1(K sn ,dn
- dh, 2 1
+San+1Prra(x sn,dn}w +k ™ Kcn (D50)

for m>1, where now the elliptic functions take the argumdrzd/m].
These expressions have the same general structure adDRgsand(D27) and can be similarly expanded. In the resonant

region we simply expandF,/dv anddh, /dv in Taylor series about,, eliminate the odd terms id, and rescald to obtain

8 a2 [+kom — JAzj(m) d?tiE, 2 1 2By (m) d?*th,
Q2 m, _kowd‘gﬁlu.zd”b COSE { o) 2T G P B kg mon aD ot  8)
(D51)
wherel;, T,, andm are defined above, and
2K(m) q c
~ WJO dZd [Zym]g Sa,nSn,nPn(Sdzym]ycr[z1m])y m<11
A(m)= acam 1 1 L (D52)
4K(1/m)f dzc Z—ESMSn P( snz,—|.d Z,E), m>1,
( 2K(m) c
T(m)jo dzdn'[z,m]; Sa,n+1{Sh,n-1Pr-1(sMz,m],c{z,m])
+Snnt1Prsa(sizml. ez m])}, m<i,
B,(m)={ 4K (L/m) 1 c . 1 1 (D53
4K(1/m)f dzen z,— En: smnﬂ(sn,annl « sz, —ldnz,—
+S,0+1PC ( ‘1sr{z 1 dr{z 1 ) m>1
L nN+1" n+1 K lm ’ ;m y .
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Here we have used the fact that thategrals containing where
Pﬁ’ are zero, as follows from the symmetries of the elliptic
functions (see[34], Fig. 16.1. Indeed,P‘:’ and Pﬁ are, re-
spectively, odd and even functions of each of their argu-
ments, as can be seen by using the standard trigonometric
multiple-angle formulas and mathematical induction. In prin-
ciple, the z integrals can be computed analytically by the
methods introduced above; in practice,ragrows this be- e ~
comes very burdensome. Fortunately, in many concretgnd theRi(m), i=1,....4, are, respectivelyio(m), Bo(m),
cases, e.g., those discussed in Sec. IV, only very few spati&2(m)/m, andB (m)/m The functional dependence pf
Fourier moded , are non-negligible. As abovsee the com- on the fieldT has been indicated explicitly, affc=0 implies
ments that follow Eq(D30)], the J integration in Eq(D51) ~ Cp;=S,;=A=B,=0, so thatp;(0)=0,i=1,...,4.
is extended td&k by combining the appropriate resonant and The same methods can be used to compute the multiple-
nonresonant quantities, after eliminating from the resonantnode effects in EqtD43). The result to leading order [83]
terms certain spatially uniform quantities that are not inte-
grable at infinity inJ but vanish under th@ integration.

In the nonresonant .region. E(DA_fQ) is expanded about 19,7142 N 4(T) dF, No(T) d?F,,
the free-streaming particle trajectories, exactly as for the cor- — 3/22 [ } [ 2 vp)t —— =7 (vp
responding O’Neil terms. However, here the Landau terms 807 dv 4vp  dv

pi(T)=8 f j”dﬁf dJcosoR(m)  (D55)

give no contribution at leading ord€i33]. Hence, the exg(T) dh Aa(T) d2h,
leading-order single-mode Landau terms from 1) are SRl T e 64_()
g g Elﬁ ) 161)5 dU Up + 8vp d 7 (Up) (D56)
112 q.l° 1Y dF, € dh,
2 k3 3 pa(T )E(Up)_{—sz(T)E(Up)
| |7 P where
d, d3F
+ 3’22 { 5} [2.03(1-) F(vp)
d3h M I
+€p4(T) —dvg,“(vp) , (D54) 7\i(T)=8f_7TdﬁfRdJcoseMi(m), (D57)
2K(m) 2
B 2K(m)f Z n Mi,n(sr[zvm]1cr[zvm])a m<11
M;(m)= (D598)
1 f4|<(1/m) 2 . q 1
ZKwm Jo dZn M; n(k *sfz,m],dr{z,m]), m>1,
I
and —(N+1)(Cpp_1PrtSyn-1PO], (D599

M1n=S4[Cnns2Pns 1+ Shns+2Pri1—Con-2Ph 1
_ c
S”'”_zpnfl]’ (D593) M4,nESa,n+1[Cn,nf3P§—2+Sn,nf3p(n:—2+cn,n+3pﬁ+2
+ PC »+(Chns1+Cnn_1)Ps
MZ,nESa,n[Cn,n+2P§+1+Sn,n+zpﬁ+1+cn,nfzpﬁfl Sn,n+3 n+2t ot nn ) n

C
+Shn—2Pro1l, (D59h) +(Spn+1t San-1) PRl (D590)

M n+1)C PS. ,+(n+1 pc
3n=Sansil (NFD)CrnssPriot (N+1)Shne3Pr EquationgD54) and(D56) can be summed and extendéy

—(N=1)Cppn-sPy_2—(N=1)S, 3P, symmetry to the other half phase plane, yielding the total-
s c Landau contribution to the nonlinear Poisson equation given
+(n_1)(cn,n+lpn+sn,n+1pn) in Eq. (21).
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APPENDIX E: TRANSIENT FIELD EXPANSIONS t
. . J dvf dTi , (ED
Here we present the more tedious calculations needed for A0 1) 0 0 1]

the transient analysis in Sec. IV. Substituting Ef).into Eq. 7 7
(5b) and Fourier and Laplace transforming gives
~ 4 2 o pt +
T == dte P(I-P f dx coskx

«P) K“Z q“fo ( 2 -7 where k=1kq, 1=1,2,...,F,(X,v)=F ,(v) + €h(v)coskgx,

andA is given by Eq(30). It is assumed thak, and the right

side of Eq.(5b) are integrable. To obtain a more explicit
do F,(xo(X,0,1),06(X,0,1)) expression, we apply the procedure developed for the time-
K asymptotic equation to the two integral terms on the right

side. We carry out the same sequence of transformations in

4E qa nt +m the integration variables that led to EqR17) and (D43),
"k dte (1=Pa) . dxcoskx with ko in Eq. (D1) replaced byk;. The result is
" k [— LA sino+2wt
2 d J dte P{(1— a)j d6 dJcosk— 6+wt+kq i ? ]_2
f My [20,+ (Kg/my)J]
A ko—y  Gad [FiL(Wp)costy _ha(wp)sindg sin (ko/k) 0p)
X a(w0)+e a(wo)cosk 0o+ ke, [vp+wé] € [vp+Wo]2
h.,(wp)cosdp cog (Ko /kr) 0] r nky —
+€ [vp+W'8] —deT; Tnko(T) Slnk—f(OT-i-wT)
g,a sm( “+2wT)cog ( nkO/kf)( “tor)] dF dh, . Ko —
+ +e— — (60 +
nky kf ~ [vp+W¢]2 ) €4 (WT)COSkf (0;+w7)
9.2 [Fl(0™cod P +2w7) i (WHsin(62+2w7)sin (ko/Ke) (02 + w7)]
k;m, A € [0yt WAT2
h”(w )cog 62+ 2w 7)cod (Ko /ke) (6 +w7’)])
[vp-l—wﬁ]
+ (corresponding terms from the other half phase plane (E2
|
Wherewi\(ﬁj—,t)Evp+(kf/maﬁj\(§,‘]_,t) and asymptotic expansions of the various terms in Ep) in
powers ofAe. We now substitute the perturbative expansion
t— . 0 for T, Eq. (31), into Eq.(E2) and solve the resulting hierar-
(0,3,0)=—2 an{——F(—‘m) ,m} (E3)  chy equations for thad®(x,t). We illustrate the simplest
KTp 2 situation, when the time-asymptotic field is zero.
= 2m, 1 |t-7 _[6 _ .
J7(6,3,t)= —% ——dn —F|{z|m|,m|. (E4 1. Transient expansion alonga=0
ki 7ok | kT 2

Along the basic branch=0, the equation for (°)(p) can
The arguments of the trigonometric functions in Eg2) be obtained by setting=0 in Eqg.(E2) and noting from Eq.
must be corrected to include a shift efin @ and 6* when  (E3) that 6°(6,J,t) = 6— (k?/m,)J(t— 7) andJ%(6,J,t)=J,
g,>0. These corrections will be introduced in the where the superscripts correspondAte:0. We find
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kf ko [— K?
—J cos— 0——Jt
ma kf ma

Ki —
vpt m—J +egh,| v

o

~ 4 q Ed +kem _(+ k

O p)= — @ —pt -

T (p) k; o), dte f_kfvdej dIcos - (0+wt)| F
tkem [+ k — K

——2 —zf dte” p‘f def dJcos,—(6+wt) fdrE T T)sm—ko[a— —mf Jt—7)+wr

kg f a

dF, i
X W vp+ m—a

+(corresponding terms from the other half phase plane (E5)

kz
r= —J(t— T+t
m

a

dh,
Tergy

+ kf? o
Up m, COSk—f

The projectoil — P, in Eq. (E2) becomes unnecessary in Eg5) because all the time-asymptotic parts vanishafer0. Also,
no modifications are necessary in Eg5) for q,>0, since the straight line trajectori@ andjg do not depend on the sign
of q,. Carrying out thef integrations yields

= 47ka q * + kf— kf— 47ka q2 ®
(0) — _ 1 _a —pt _ LT T D « - pt
Ty (p)—5k,k0€o " % 1 dte pJ dJcosk| v,t+ maJt holvpt maJ K ; —gma Odte p
(0) kf— . kf
dJ d7' Up +—J +—[Tk+k (7)+ Ty ko(r)]ha vpt m—aJ sink m—aJ(t—T)-i-vp(t—T)
+ (corresponding terms from the other half phase plane (E6)

Transforming back tcw:vp+(kf/ma)J_, calculating the Laplace transform, and carrying out an identical calculation in the
other half phase plane gives

h,(v) 4m qz kUF;(v)
T(p)= 5kk0€o K ; W T(O( )E m
o 4w qa kvh,(v)
~ % TN T2 (= | do i, (ED)
SinceF, andh, are even, this becomes
4 qa F. (U) €0 4 0) =(0)
0|14 S [ gy PO 94T s B (o070 o1 [ o
Ai h,(v)
- 6k,k0€0T§ qafRdU kU_|p (E8)
and Eq.(33) follows.
|
2. The threshold equation 0 1 r Nljo(_ij w)C;kO(_ij w) N;ro(ij ‘U)C2+k0(ij w)
Next we derive the threshold equation, E9), for a S T D (=il DL (—ii D (ilw)DL. (ii
small critical initial amplitude. IfT(®), Eq. (38), is substi- | Di( i1 @)D~ @) Dig(ij @)Dy (ij )
tuted into Eq.(27), this threshold equation becomes explicit. _
From Eq.(38), T{) =O(eg), and we shall need to keep only N (—ij @) Co (—ij @)
T(g'l) and T(O*OZ), which generate, respectively, the coeffi- =Im Dljo(—ijw)D;ko(—ijw) ’ (E10
cientsS{}") and S%? according to Eq(D48) (with errors of )
orderEO) By symmetry, where Ny (p), D(p), and C(p) are defined in Eqs(34),
(35), and (36), and the superscript+” indicates analytic
_ N (i N (—ii continuation. These expressions, in conjunction with
01 Niy(—ij @) kf(i].w) i ?( )  Egs. (D58), yield py(To)=eory S 4eds, 0,
! Dko(_”w) Dy, (ij @) Dy (—ijw) +0(€) and py(To) = —4eps,0,S% )+ O(ed). Thus, to

(B9 leading order,
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19/ “ZdF 04/°]¥*dF.,
I'(eo, To)—foalsll)E e (vp) 463 o, (?éz)g S, End| o (U

5
2 (0,1 [lq | (Ell)

1/2
and Eq.(27) becomes Eq(39).

3. Time-asymptotic field amplitude near the threshold

Finally, we present the details that lead from the general formula for the time-asymptotic amplitu¢e?)Em the value
of a near the threshold, E¢56). From Eq.(32), to first order in botha andAe, a= uA e where

kOE asa[ | qal S/ma] llzha( v p)

3 L1a3)/kgmE1YT 3 €5 po(TOV+TEOR! (v )+ py (TEOF L (v,)]

S a2 (v )

N X2X3€5" + X22 o[ |00l 5/kgM

0-12 a[|qa|5/k0
31V (04120 ) F (v ) — €57 (]qlIm,) [ 2p4( T

SV (vy)
OYE" (1) — (Lldv ) A o( TOV)F2(v) 1}

[o12 L] aol/kgmi 1 2R (v ) 12

From the definitions of; and \;, Egs.(D55) and (D57),
simple integrations lead to

po(THO)= U'ls(l%iO) ,

po(THO+TOD) = —40,s,(Si'P+S%Y),

1
pa(T °1>)——as°1>, No(TOY) =0, 8%, (E13

whereg;, i=1,2, are given below EqD38), S{:? are zero
for j# 1 since the only nonzero Fourier componentl’Fﬁ 0)
corresponds tk=ko, S{'i” is obtained by inserting "

into Eq. (D48), and theS(0 D j=1,2,..., were already ob-
tained in Eq.(E9). Here, howeverNk /Dk in Eq. (E9) is

replaced by the modified functlon[Nko(p)/Dko(p)]
—"Af(g)(p). This has a significant effect, becausg/D; has

a

1,0 _
Sii’=

(E12)

a singularity atp=*ikov,, ases”—0, which causes{’;"

to be of order le‘(l) This can be seen from E¢E9) for ]
=1, since atw= +k0v the denominator reduces to a term
proportional toX (g2 /ma)F L (vp)=O(efM). Thus, the sec-
ond term in the numerator of E@40) is non-negligible at
leading order, whereas the first term in the denominator is
negligible at leading order due to E(p4) [because there is
no singularity atp= * 2ikqv, and Si2=0(1)]. However,
the coefficientS'{” in Egs. (E13 and therefore(E12) is
O(1) [and the term that contains it '@(egl)) due to Eq.
(54)], because the singularities ir[N;o(p)/D;O(p)]

AlJ(p) at p==ikov, are removable, due to Eq50).
Indeed, Taylor expanding;0 andD,fo in this modified func-

tion about*ikov, shows that the singular terms cancel, at
leading order |ne(1) Taking the limit5z— 0 in that expan-
sion and explomng the symmetries yields

12,00 Pfrdv h(v)/(v—vp) +imh(vy)]

2k0Up_

whereagy was given in Eq(49). According to Eq(E13), Eq.
(E12) then becomes Ed56).

Equation(56) is accurate to ordeu‘(ol)A €, even though we
did not calculate the terms of orde(e{”A¢) in the solu-
tion for the transient field, Eq55). This follows from Eq.
(54); in principle, the solution fom, Eq.(32), contains a term
of the form e{VA €= [|q3|/kgm31*2 p,(TEY)F/(v,), but

2 (%M ) [Pl gdv Fi(0)/ (v —vp)+imF (o)1)

(E14

this term is “pushed” to ordelO(e°A€) by Eq. (54). In
cases in which only Egq.(53) is satisfied (and

3 [103/kgm3 12 F (v,) #0), one must add to E456) the
contribution due toT(1 D, by carrying out the perturbation
analysis of the tranS|ent equation through first order in both
Ae andel" . This calculation, which is quite tedious, will be
omitted here.
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APPENDIX F: BUCHANAN-DORNING SOLUTIONS k 2 F’(v) F’(v)
ho(v)= 5= Fi(v)= -

In this appendix we verify that the two-wave BGK-like vtu,
solutions discovered by Buchanan and Dornjti§] satisfy
the nonlinear condition Eq50), and thus are a special case D_ividing by v+v, and taking the principal value integral
of the solutions developed in this paper. 4t 0 the distri-  9IVeS
bution function corresponding to the approximate invariants

(F3)
~u,

&*) [see Eq(15)] is kom, Pf (v)
e U"‘Up
G (m N d, ot Qo VFUp ‘ F' ()
(v+vp) ek coskgX ekovivpcos oX —Pf o 2dv f v o
(v+ ) (vtvp)(v—up)
Ja 2v ) "
- 4 e Kk Fo(v
=G ( “(vFvp)? I Uivpcos oX :PJ’ _( )dv, 4
v+vp
m,, q., 2v ) . .
=G, _(U:vp) te s — where the first term was integrated by parts, the second is
2 ko v*vp zero because the integrand is odd, and
’ m, — 2 Kk 2
XG. 7(v+vp) coskox+O(€7), (F1

" 2 — 2 1 m“ — 2
Fa(v)=mi(v+v,) ga(7(0+vp) )
whereG, must satisfy certain criterigl5] which in fact en-
sure that Eqs(45) and (46) are satisfied. Clearly, the initial SAMe
condition in Eq.(F1) is of the form Fa(v)+eha(v)coskox +mﬂga<7(v+vp) ) (F9)
(at leading order ine) with F_(v)=G,[(m, /2)(v+vp) ] _ .
and  h,(v)=(d./kKo)[20/(v*v)]1GL[(M/2) (v Fvp)?].  Which atv=*u, gives
DifferentiatingF , yields

Fa(*vp)=m,G,(0)= q ha(Evp). (F6)
Fo(v)=m,(vFvp)G, ( (v+vp) ) “
From Eqgs.(F4) and(F6) it follows that Eq.(50) is satisfied.
B Kom, (v=v,)(vFvp) h E2 Then, substituting Eq(F6) into Eq. (49) givesay=1, i.e.,
T q, 20 o), (F2 a=e¢, which is what we should expect since we know that
these undamped “BGK-like” waves travel without changing
so that amplitude.
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