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The calculations of the electron distribution functi@DF) in striationlike, sinusoidally modulated electric
fields were performed to determine the dependence on spatial period length. The calculations were done for a
discharge in neon gtR=2 Torrcm, i/R=5 mA/cm, and electric field/p=1.9 Vcm * Torr 1. The pres-
ence of the resonances in the EDF and macroscopic parameters has been demonstrated. These resonances
correspond t& andP striations observed in experiments. An interpretation of the results is proposed based on
an analytical approximation of the numerical solution. Decomposition of EDF into two factors—amplitude and
body—is carried out. The amplitude of the EDF is shown to be resonantly dependent on the value of the spatial
period. One maximum in the EDF is formed at the value of the spatial period corresponding3tsttiation,
and two maxima at the value which corresponds toRlIstriation. The experimental measurements of the EDF
in S andP striations with high spatial resolution showed agreement between the theoretical and the experi-
mental results. Resonance effects in the EDF formation are considered based on the linear theory in the weakly
modulated electric fields.
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[. INTRODUCTION mechanisms of striations’ occurrence and propagation.
Starting from Ref[3], a kinetic approach is applied for
The description of the electron component behavior in thehe description of stratification phenomena. A series of pa-
spatially periodic electric fields is much needed in the probpers have been devoted to investigation of the resonance be-
lems of plasma stratification, i.e., the existence of plasma itavior of the EDF. Tsendif4] obtained an analytical solu-
the form of standing or moving ionization waves. tion of the Boltzmann kinetic equation in the homogeneous
Electron distribution functiofEDF) resonance formation and inhomogeneous fields for the case of inelastic energy
in spatially periodic electric fields occurs if the electron en-balance. It was shown that the relaxation process of an arbi-
ergy balance is governed by the inelastic processes, and etmary initial EDF in the homogeneous electric field has a
ergy losses in elastic collisions over the length of the spatiaform of damped oscillations with the energy perid{f°® and
period are small. This situation occurs in the inert gas disspatial period_ .. It is possible to consider the electrons as
charges at small currents and low pressures, when large vajeing accelerated in the electric field with approximate con-
ues of reduced electric fiel#/p are present. servation of their total energy=U + e (x) [kinetic energy
With increasing pressure, when values of the reduced) plus potential energge(x)] until they acquire a kinetic
electric field become small, the picture of the movement ofenergy equal to the excitation threshold. Then they undergo
electrons differs essentially. The electron energy relaxatiomelastic collisions with simultaneous loss of a quantum of
lengthA ., =X M/m (\ is the electron mean free patl,and  energy equal to the excitation threshold, and continue their
m are the masses of an atom and an electron, respegtivelynotion with a smaller value of the total energy. This stepwise
becomes much smaller than the minimum length required fomechanism determines the characteristic periodicity scale in
an electron to obtain energy exceeding the excitation threstenergy spacel[**=U.+ AU (U, is the excitation energy
old Ugy, Lo=Ug,/eE,. In this case, elastic collisions play a andAU is the small energy losses in elastic collisipasd
remarkable role in the electrons’ energy balance, and resdahe spatial period .= U[*YE, (E, is the period-averaged
nance effects do not influence the formation of the EDF. Aelectric field. The spatial scalde. s fixes the resonance
hydrodynamic description of the electrons’ behavior is thenlength of the periodic fieldE(x) (the resonance field
applicable. Namely, the resonance field is formed self-consistently in the
In numerous papers, which were reviewed in REfs2],  stratified positive column and defines the fundamental mode
a hydrodynamic approach was used for the description off the wave.
Different kinds of striations are discovered experimentally
in inert gases under low pressures and small currents. In Ref.
*Email address: rouslan.kozakov@ipp.mpg.de [1], a detailed nomenclature of the observed waves according
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to their dispersion properties and to the potential fall over gesonance length was found to be equal IQep
wavelength is given. In particular, Reff5] shows that in =9.67 cm Torr. The distribution functions were shown for
different inert gases there exists a wave with a potential droghe values ofL=0.9L ., L=1.0L,,, andL=1.1 ., and

of the order of magnitude of the first excitation threshold.the strong variation of the EDF appearance in the given
This wave was called striation. Along with theS striation,  range ofL was noted.

a wave was observed with the potential drop two times |tis possible to obtain sharper resonances if one increases
smaller than that il striation. This wave was calle®@stria-  strongly the frequency of inelastic collisions. This leads to a
tion. much steeper reduction of the EDF in the inelastic region at

The fall in potential over the length @& striation is equal  energies exceeding the excitation threshold. The deformation
to U{*®. The potential fall over the length d? striation is  of the EDF at small energies caused by the backscattering
equal toU;®72, as long as the wavelength Bfstriation is  processes is also reduced. Consequently, the numerical solu-
two times smaller than that &striation. The electrons in the tion of the kinetic equation will strive to the “black wall”

P striations should travel two spatial periods in order to ac-approximation, which is the solution with the zero boundary
quire an energy equal to the excitation threshold. condition at the excitation threshold.

Relaxation of an initial EDF in the spatially periodic elec- In the present paper, calculations are performed for a si-
tric field with small modulation degree leads to an establishusoidally modulated electric field with modulation degree
ment of the periodic EDF with an amplitude depending resow=0.9 and a period-averaged value ofg,/p
nantly on the spatial period of the field]. In electric fields =1.9 Vcm ' Torr 1, which corresponds to a discharge in
with a large degree of modulation, a bunching efféddtwas  neon at a pressure=1 Torr, currenti=10 mA, andR
observed, which is the constriction of the EDF towards the=2 cm.
resonance trajectories on the plarrgx). The amplitude of The Boltzmann kinetic equation for the isotropic part of
the EDF has, in this case, the form of a narrow Gaussian. the EDF, fy(e,X), in terms of the variables total energy

Relaxation processes of arbitrary initial EDFs injectedand coordinatex can be written as
into the homogeneous and sinusoidally modulated electric

fields are illustrated in Ref.6] on the basis of a numerical 9 Ifo(e,%)

solution of the kinetic equation, accounting for elastic colli- —D, (v) ———+ —V.(v)fy(e,X)

sions and excitation of several levels. The electric field was dx X de

strongly modulated and the spatial period was taken equal to =% (0)fo(e,X) =0 v* (v)Fo(e+ Uy, X),
the resonance lengilcorresponding to a striation and to

the half of that(corresponding to & striation. Similar re- @

sults have been obtained in RET] on the basis of solving

analytically the kinetic equation. The EDFs obtained in thesavhere D,=v33v(v) is the diffusion coefficient, V,
fields demonstrate the bunching effect that is caused both by 2m?/ M v(v)v? is the drift coefficient in energy space due
small energy losses in elastic collisions and by the presende elastic collisionsm andM are the masses of an electron
of the several excited levels. In R¢8], the EDFs formed in  and an atomyp* (v) is the total frequency of inelastic pro-
the resonance electric fields and also in the fields with smaltesses, and(v) is the frequency of elastic collisions. Ve-
deviations of the spatial period towards smaller and largelocitiesv andv’ are related by the energy conservation law,
values are discussed. mo ' 2/2=mu?/2+ U o.

The objective of the present work is to analyze the EDFs We shall consider the spatial relaxation of an arbitrary
in spatially periodic electric fields to determine the depen-initial EDF, fi'"(&)|4_o=fi"(U), in the homogeneous elec-
dence on the period of the field. Scanning over a wide ranggic field E, and in the spatially modulated electric fields of
of the field periods will permit us to elucidate the essence othe form
the resonance formation of the EDF and its influence on the

macroscopic quantities. The origin of the resonances is 2.mx
pointed out by the decomposition of the EDF into two fac- E(X)=Eq| 1+« cos( _> , 2)
tors with help of numerically solving the Boltzmann kinetic L

equation in strongly modulated fields and by applying linear

analysis for weakly modulated fields. The measurements ofiith the potentiakee(x) = [§E(x)dx, whereL is the spatial
distribution functions with high spatial resolution $andP  period. The kinetic equatiofil) has to be supplemented by
striations confirm the resonant character of the EDF formathe appropriate boundary conditions:

tion.

(9f0(8,X)

Il. THE EDF AND MACROSCOPIC QUANTITIES foe,X)[u—==0, P
IN THE SPATIALLY PERIODIC ELECTRIC FIELDS

=0. 3

Uu=0

In Ref.[8], the EDF behavior was analyzed in the vicinity The Crank-Nickolson algorithif8] was used for the numeri-
of the resonance length. The calculations were per- cal analysis of Eq(1l) with the boundary condition&). The
formed for the discharge in neon atEy/p distribution function was normalized using the constant
=2 Vem ! Torrt and field modulation degree=0.9. The  value of the electron current density
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FIG. 2. Contour plot of the resonance EDF on the plane).
eedX) Is the resonance trajectory. At the curugge) andxg,(e),
the kinetic energy of the electrons equals zero &hg, respec-
tively.

The resonance dt=L ., the EDF is compressed into a
peak which moves on the plan& (x) as, it is seen in Fig.
1(b). In the coordinatesgx), this maximum moves along
the trajectorye {X) shown in Fig. 2, where the contour plot
of the distribution function{Fig. 1(b)] is given. At smaller
[Fig. 1(a)] or larger[Fig. 1(c)] values ofL, the modulation in
the EDF is significantly decreased.

In order to illustrate the resonance behavior of the mac-
roscopic quantities, the modulation degrees of the electron

FIG. 1. Electron distribution function in the sinusoidally modu- densityn and the mean electron energ_}ywere calculated:
lated electric field Eqg. (2)] in the vicinity of the resonancéa) L

=09 e, (B) L=Lygs, (€ L=1.1 . my(L)= r'|max_nmin(y0,
Nmax®™ Nmin
- \F f Uty (U)dU U U,
173V, V1Al mJ(L):M%,
Umax+Um|n
wheref,(U) is the directed part of the distribution function. where n(x)=Jg\Ufo(U,x)dU and U(x)

The frequencies of inelastic collisions were taken two orders= n*1f5°U3’2fo(U,x)dU. Indices max and min correspond
of magnitude higher than those in RE8] in order to dem-  to the maximal and the minimal values of these parameters at
onstrate more sharp resonance behavior of the EDF formahe period.

tion. In Fig. 3, the results of calculation for the modulation

At first Eqg. (1) was solved for the case of the homoge- degrees of electron density and mean energy are represented
neous electric fieldgy in order to obtain the value of the as the functions of the spatial peridd This figure reveals
resonance spatial peridd,.s. The resonance length deter- the presence of two resonanceslatLl s and L=L,.J2
mined as the period of damped oscillations in the EDF wasvhich corresponds t& and P striations observed in the ex-
found to bel ,.s~9.8 cm. In the second step, E@) was periments. It is also seen that the resonances on the curve for
solved in the inhomogeneous electric fi¢R] for the differ-  the mean energfcurveB) are more pronounced than for the
ent values of the spatial peridd belonging to the range 4 density (curve A). Transition to the “black wall” approxi-
—12 cm. It was found that dt=L sandL=L42 the pro- mation results in sharper resonance on the mean energy,
nounced structures in the EDF appear which correspond tahich can be seen from the comparison of the cilBweith
the two resonances at these values of the data of Ref[8].

The three-dimensiondBD) plots for the EDF in the vi- It is seen from Fig. 1 that the EDF dependence on the
cinity of the resonance are shown in Fig. 1 by analogy tospatial period. is highly complicated. It is necessary to se-
Ref.[8]. It is seen that a small detuning in the period lengthlect a parameter which will characterize the form of the EDF
changes significantly the form of the EDF. and be sensitive to the alteration of the spatial petio@his
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FIG. 3. Degrees of modulation of the electron denéiiyrveA)
and mean electron enerdgurve B) versus spatial period length.
Comparison with the data of R€#] for the modulation degree of
the mean energfcurve C).
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FIG. 4. The functiorF(e,x) [Eq. (5)] which depends weakly on
the spatial period. of the field.

F(e,x/L,e9 is shown in Fig. 4 on the plarfe ,x—Xq(&)] for
the case wheh =L . For other values of, the function
F(e,x/L) has almost the same appearance. The scale of the
spatial decrease is the only parameter that is varied.

It is seen from Fig. 5 tha®(e,L) depends resonantly on
the value of the spatial peridd A sharp Gaussian maximum
in ® (&) is formed in the vicinity ofL =L .. This maximum

parameter can be chosen on the basis of the following cordefines the final form of the EDF. The procedure of the EDF

siderations. An analytical solution of Ed1) under the
“black wall” approximation, i.e., with the boundary condi-
tions fo(s,x)luzuexzo, can be obtainef4] in the form of

the series expansion relative to the small parameier
=6m?1%(v1) U/ M(eEy)? [v1=(2U,/m)*?] as follows:

fo(e.x)=2 f§)(s,%)8'. @
i=0
The leading ternf{")(¢,x) can be written as
(0) Xex(€) A X
fo = (&) 5 =%(e)F(ex), (5
X &

wherexg,(¢e) is the curve on the planes(x), at which the
kinetic energy of the electrons is equallip,, ® (&) is the
amplitude of the distribution function, ar€{ e,x) is the dis-
tribution function which is formed in the electric fiel®)

when the energy losses in elastic collisions are neglected.

decomposition into two factors is a sort of approximation
which leads to a small shift of the maximum value®(te)
relative toL =L An analysis of the 3D plots shows that
the peak of®d(e) corresponding to the resonance EDF is
placed atL=L,, and e=0.6U*°>. The valuee=0.6U*®
gives the position of the resonance trajectory on the plane
(e,x) along which the total energy losses in elastic and in-
elastic collisions U+ AU) are equal to the fall of potential
eEyL s Over the period. It is also seen in Fig. 5 that two
maxima are formed inb(e) at a value ofL=L,.4J2 and
energiese =0.3U*° and e =0.8U*°. These maxima define
two resonance trajectories on the plasex{. The electrons
in an electric field with spatial period,.J2 are bunching to
these trajectories.

This procedure describes bunching in spatially periodic,
strongly modulated resonance fields.

IIl. EXPERIMENTAL MEASUREMENTS OF THE EDF
IN SAND P STRIATIONS

This function can be easily calculated according to its defi-

nition.

Accurate numerical solution of Eql) can be approxi-
mated by expressiofd). In this case, the amplitud® (&)
can be obtained from the relation

_ fo(e,X)

®(e)= Flex)

(6)

where fy(e,X) is the strict numerical solution of Eq1) in
the electric fields with different spatial periodsandF (e,x)

is given by expression5) and depends on the spatial

periodL.

This approach gives a representation of the EDF as a

product of two factors, one of whiclk(e,x), is almost in-
sensitive to the alteration of the spatial peribdand the
other,® (&), reacts strongly on the variations lin Function

The EDF formation mechanism described above is con-

firmed by the experimental data giving the EDF measure-

FIG. 5. The amplitudeb(¢) [Eq. (6)] versus spatial period of

the electric field.
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FIG. 6. Experimental setup for the measurements of the EDF in
striations. 1 is the discharge tube with movable anode and cathode,
2 is the current stabilizer and modulator, 3 is the high voltage sup-
ply, 4 is the current-voltage convertor, 5 is the function generator, 6
is the stepwise voltage source, 7 is the analog-to-digital converter,
and 8 is the personal computer.

ments inS and P striations, carried out with high spatial
resolution.

The measurements were conducted in a discharge tube
with inner diameter 40 mm and distance between electrodes
55 cm. The electrodes were supplied with screw displace-
ment units that allowed the discharge to be moved relative to FIG. 7. Comparison of the measur¢d) and calculatedb)
the stationary probe in steps of 0.7 mm at one full screwEDFs inSstriation. NeonpR=3.0 Torr cm,i/R=5 mA/cm.
rotation. The resulting spatial resolution in the axial direction i o )
was limited by the probe length of 1.5 mm. The experimentthe instrumental widening effects encountered in the mea-
setup is shown in Fig. 6. The EDF was measured by th&urement.
well-known technique of double differentiation of current-
voltage characteristics of the probe. The time resolution was  IV. LINEAR THEORY OF THE EDF FORMATION
24 us. IN THE SPATIALLY PERIODIC WEAKLY MODULATED

The measurements were conducted as follows. The step- ELECTRIC FIELDS

wise potential in steps of 0.1 V was supplied to the probe at The previous sections were devoted to the analysis of the

one fixed probe position. For each step of the potential, th‘lz"dnetic equation in electric fields with an arbitrary degree of
dependence of the probe current on time was measured. The

total measurement procedure for a given spatial position took
120 S. The time evolution of the EDF at a given spatial
position was thus obtained.

Assuming that the plasma potential is defined by the zero
of the second derivative, it is possible also to determine the
spatiotemporal distribution of the plasma potential in the ion-
ization wave.

The measurements were performed in a neon discharge at
a pressure op=1.5 Torr for S striation andp= 1.0 Torr for
P striation. The discharge current was equal to 10 mA in both
cases. The fall of the potential i8 striation was equal to
FLg=19 Von the period_g=10.15 cm, and irP striation it

was equal toFLP:9.5 V on the periodLp=5.1 cm. The

period-averaged value of the electric field wds,
=1.9 V/icm in both cases.

The measurements and calculations of the EDFs in the
experimentally measured electric fieE(x) are shown in
Figs. Ma,b for Sstriation and in Figs. @&,b for P striation.

It is seen from the figures that these measured and calcu-
lated EDFs correlate well. The form of EDF in striations is
defined by the formation of one resonance peakbdr) at
£=0.6U*in Sstriation and two peaks at=0.3U{**ande
=0.8U;* in P striation. The experimental EDFs are  FIG. 8. Comparison of the measuréd) and calculated(b)
smoother than the calculated ones, which can be attributed ®DFs inP striation. NeonpR=2.0 Torr cm,i/R=5 mA/cm.
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modulation based on the approximation of the numerical so- The relaxation process of an EDF injected in the weakly
lution by an analytical expression. It was thus possible tanodulated electric field is described by the inhomogeneous
observe the dependence of the EDF resonance behavior equation(7) with the right-hand side being treated as the
the spatial period of the electric field. periodic external force with the periodn2k. If we write the

In weakly modulated electric fields, a strict analytical ap-unknown solution of the equation in the form
proach to the kinetic equation is possible. This approach il- _
lustrates the resonance nature of the distribution function for- Dyale)=DPpon(e) + 6P (e), (10
mation, proposed by Tsendjd]. 5

The distribution functionf{’(z,x) can be represented in We come to the following expression fdr(e):

form (5) where the amplitudeb(z) satisfies the equation

(see the Appendix D(e,k)=2> DM(K)expl[i(ky—k)+ynle},
- - P J - - -
CD(s—l—5A)—<D(e)—528ﬁ=5x[?—~¢>(s)exr(—lks), DM (k) =D (i (ky— k) + ya ]} 6°B(ky— k)2~ 1
t] &
7 +exp{—[i(k,—K) +y,J(1+6A)} 1 (1D

wherez is the dimensionless total energy measured in thdt is seen from Eq(11) that at values, satisfying the ex-
Uy Units. Equation(7) describes the evolution of the initial Pression k,—k)(1+6A)=2mm, the resonances are
distribution function injected in the homogeneous figid ~ formed. In this case only the terms connected with the non-
a=0 and y=0) or periodic field with the periodL zero Q factor are retained in the denominator of the right-

= (27/K)(Uey/Ey). hand side of Eq(11),

The potential energy in the spatially periodic electric 2 2
~~ - — Y1+ 8A)]— 1+ 6°B(ky—K)“~ Ym— ¥n -
fields with a small degree of modulation &p(X)=—x eXH~ v )] (kn=k)"~ym= 7

+ (a/2m)exp(kx), where the dimensionless variables  Given that all harmonics with+#0 are damp, the final result

=xX/L,es and ¢=¢/U,, are used. In what follows the tilde is
sign will be omitted. In this field, the relative energy losses

in elastic collisions can be expressed as a function of the ~ —iky
ol P DO(k) =D — —. (12
otal energye, exgik(1+ 6A)]—1+ 6Bk

W(e)=A+ y exp—ike). 8 Expression(12) describes the amplitude of the EDF es-

. ] tablished in a spatially periodic electric field with an arbi-
The weakly modulated functioB(e) can be considered trary valuek. The EDF in this case can be written as
approximately as a constafgee the Appendjx The relax-

ation of a distribution function injected in the homogeneous fole,x,k)=[DQ +5DO(k)exp(ike)|Fo(e,X,k).
electric field (@=0,y=0) is described by the homogeneous (13
equation(7) with the right-hand side equal to zero.

The solution of the homogeneous equation can be repre- When k takes on the value&=2mn/(1+ 6A) corre-

sented as a Fourier series, sponding to the energy periods- U{*n and spatial periods
L=L /N, the exponential term in Eg11) becomes equal to
. unity which describes the resonances on the function
Phonfe) = 2 PhomexH (iKn+ ya)e], 9) aa<0>y(k)
Figure 9 shows the dependence of the fundamental har-
2mn monics®(®) on the spatial periotl. The figure demonstrates

n=m, yn=(277n5)28,

the resonant nature of the harmoniclatL,.¢/n. The de-
pendence of the real part @f(¢), which describes the form
of the EDF in the spatially periodic electric field$3), is
shown in Fig. 10. It is seen from Fig. 10 thatlat L sand
£=0.58U{°° one sinusoidal maximum is formed, and lat

It is seen from Eq(9) that all harmonics witm#0 are =L, J2 and e=0.28J;*°, £=0.79J°° two maxima are
damp (negative values of the total energyare assumed formed.
Relaxation has the form of damped oscillations with period The presented theory qualitatively describes the peculiari-
defined by the first modenE1), i.e., with the resonance ties of the EDF formation which can be seen from the com-
lengthL .= (1+ 6A)U.,/eE,, as it is can be seen from ex- parison of Figs. 10 and 5. It is also seen from expressions
pression(9). The final result of the relaxation is the estab- (11) and(13) that the alternating addition to the amplitude of
lishment of the EDF independent of the initial condition andthe EDF has a very small value of the order & and
homogeneous in space, which is the solution of kinetic equatherefore results in a very weak modulation of the solution in
tion (1) in the homogeneous electric field. the homogeneous field.

T
cbﬂom=f P& )exp —ik,e)de.
0
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good agreement between the experimental and theoretical
data. The calculations of the resonant behavior of the EDF
based on the linear theory proposed in Réf.are shown.

6 - S-striation
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O_MJlL _ JL : APPENDIX

T T
0.5 L/L, 1.0

P-striation

According to Ref[4], the kinetic equation with appropri-
FIG. 9. Real part of the alternating undamped part of the ampli-2te boundary conditions can be written in dimensionless

tude DO (k) [Eq. (12)] versus spatial period length variables as

In Ref. [4], the case of the moderately modulated field d - fg(e,X)
was also considered. It was shown that in this case the am- 5'387
plitude of the EDF has the form of a Gaussian with a maxi-
mum similar to that shown in Fig. 5.

.
+6- V. (U)fo(e,0=0,  (AD)

fo(S’X)|u:ueX: 0,
V. CONCLUSION

In this paper, the calculations of the EDF in spatially pe- ~ dfp(e,Xx) ~ dfp(e,Xx)
riodic, sinusoidally modulated electric fields with a large e gy =DsT . (A2
modulation degree have been performed. The dependence on X=%(#) X=Xex(®)

the spatial period length was investigated. The calculations
were done for the conditions which correspond to the neofvhere the energy and potential are measured in hits

discharge at pressurepR=2 Torrcm, current i/R length is measured in units U, /eE,, D,(U)
=5 mA/cm, and the period-averaged electric field strength < _ o
E=1.9 V/cm. The inelastic collisions dominate in the en-_DS(U)/Ds(UeX)’ Ve(U)=V,(U)/V,(Uey. The solution

ergy balance of the electrons under the chosen conditiorr:f.f Eq. (A1) can'be written in the series expansion up to the
This fact results in a resonant behavior of the EDF. The form "> squared in paramety

of the EDF in the vicinity of the resonance is shown. The

calculations of the EDF and the macroscopic parameters of fole,x)=f0(e,x)+ 8f(e,x) + 2P (e,%).

the plasma have shown the presence of two resonances

which correspond t& and P striations observed in experi- _— L .
ments. An interpretation of the results based on the analyticéﬁ‘fter SUbSt'FUt'On of the expansion in EC]Al)'and making
approximation of the numerical solution is proposed. Thes€ of the first boundary condition, we obtain
amplitude of the EDFp (&), dependent on the total energy
and spatial period. has been introduced. It is shown that at fgo)(s,x):(I)(s)F(s,x),
L=L,.s0ne Gaussian maximum andlat L 42 two Gauss-

ian maxima are formed on the amplitud€¢). The experi-

mental measurements of the EDFSandP striations reveal Fle.x)= fxex(s) dx

x D)

Xex(€) dx’ Jd .,
fg”(s,x):—f V(WO (e, x)dx,

X f)s(U/) de Xo(&)

Xex(€) dx’ d o
féz)(s,x)=—f V(W ED(e,x)dx.

X D.(U") 9e Jxy(e)

In order to satisfy the second boundary conditig®), it
FIG. 10. Amplitude® (&) [Eq. (10)] versus total energy and IS necessary to calculate the derivativefgfe,x) at upper
spatial period of the electric field. and lower limits,
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- dfg(e,%) Xex(8) - xex(e) dx’
D—ox cto)= [0, ax [
X=Xg,(#) Xo(€) X DE(U/)
d Xex(®) o "~
=0(g)+6—D(¢e) ) V. F(e,x)dx X fx V (U")F(e,x")dx". (A4)
de Xo(€) Xo(e)
, 0 Xex(8) xex(e) dX' 9 L .
+6 . dx ~—£<I>(s) In the homogeneous electric field, the functiobi$s) and
Xo(#) X D, C(eg) are constants. In the weakly modulated electric fields

o o= —Xx+pexp(kx), the function¥ can be represented as
X f V. F(e,x")dx". W (e)=A+ x exp(—ike) and the weakly modulated function
Xo(#) C(e) can be considered as constant, since after triple inte-
Taking into account thaty(s — 1)=Xe(£), we obtain 8;?1?;? (A4), required for its calculation, inhomogeneities
~ dfg(e,x) To solve Eq.(A3), it is expedient to shift the argumeat
De—0— =P(e—1), by the valuesA. Taking into account the terms squaredsin
x=Xo(#) Eqg. (A3) can be written as
and according to the second boundary conditig2) we
obtain an equation for the amplitude(e), Pd(g)
D(e—1-6A)—D(s)— 6°B——;
d 92 de
D(e—1)=P(e)+6—D(e)¥(e)+ 82— DP(g)C(e),
de de? J )
(A3) =5X£<I)(s)exr(—|kg), (A5)
where

Yerl®) where B=C—A?/2. This equation can be used for solving
\]f(s):f ¢ V. (U)F(g,x)dx, the electron kinetics problems in inhomogeneous electric
Xo(e fields of arbitrary configuration.

[1] L. Pekarek, Sov. Phys. Usp4, 463(1968. Winkler, Plasma Chem. Plasma Proceks;. 153 (1998.

[2] N.L. Oleson and A.W. Cooper, Adv. Electron. Electron Phys. [7] Yu.B. Golubovskii, I.A. Pororkhova, J. Behnke, and V.O.
24, 155(1968. Nekutchaeyv, J. Phys. B1, 2447(1998.

[3] T. Ruzicka and K. Rohlena, Czech. J. Phg2, 906 (1972. [8] F. Sigeneger and R. Winkler, Plasma Chem. Plasma Protess.

[4] L.D. Tsendin, Sov. J. Plasma Phy;.96 (1982. 429 (2001).

[5] M. Novak, Czech. J. Phy4.0, 954 (1960. [9] R. Winkler, G. Petrov, F. Sigeneger, and D. Uhrlandt, Plasma

[6] F. Sigeneger, Yu.B. Golubovskii, I.A. Porokhova, and R. Sources Sci. Techno6, 118(1997).

026404-8



