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Localization of harmonics generated in nonlinear shallow water waves
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The propagation of nonlinear shallow water waves over a random seabed is studied. A bathymetry which
fluctuates randomly from a constant mean adds multiple scattering to resonant interactions and harmonic
generation. By the method of multiple scales, nonlinear evolution equations for the harmonic amplitudes are
derived. Effects of multiple scattering are shown to be represented by certain linear damping terms with
complex coefficients related to the correlation function of the seabed disorder. For any finite number of
harmonics, an equation governing the total wave energy is derived. By numerical solution of the amplitude
equations, the effects of spatial attenuatifmtalizatio) on harmonic generation are studied.
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I. INTRODUCTION and Papanicolaol?7]. For intermediate depth, the perturba-
tion method of multiple scales, also known as the theory of
Several characteristics of long waves in shallow water arélomogenization in some contexts, has been shown to be an
of general interest to wave physics in many different con-effective tool for analyzing weakly nonlinear waves in a
texts. The interplay between nonlinearity and dispersion hadveakly disordered medium of large spatial extent. The basic
on one hand, led to impressive advances in soliton dynamic'éjeas were _f|rst expl.alned for th? simple case of a taut string
and the inve’rse scattering thedy]. On the other hand, in- embedded in a nonlinearly elastic surrounding, whose elastic

dependent discoveries in wave-wave interactions ushered ﬂp%opert![ﬁs t(;ﬁntaln a randlom (_:omponéﬁz].blt hasbbegnh
new age of oceanographg,3] and nonlinear optic§4]. In shown that the wave enveliope 1S governed by a cubic Schro

particular, the mechanism of harmonic generation, first foundlinger equation modified by a linear term with a complex

in optics, is known to have a close cousin in shalIow—waterda.'m)mg cqefﬁment, which is related to the statistical corre-
waves][5.6]. lation function of the random perturbations. Effects of local-

Anderson localization, originated in the study of transport!Zatlon on the evolution of soliton envelopes and side-band

in disordered quantum systenig], is still an expanding instability have been examined. Similar analysis has l:_)een
topic in wave propagation in rar,1d0m media,9]. Many reported for small-amplitude water waves of intermediate
mathematical studies on nonlinear waves in random medigla(\j’?'\lﬁn%t.h over a sleabelc_i ek évfi?k disorder tl'n dept_rgr.] One-
have also appeared. In particular, Devillard and Souillar AN o-dimensional noniinéar Scamger equations with a

[10] have studied the one-dimensional nonlinear Sdimger inear damping term havg been denvgd for.the envelope O.f a
equation with a random potential. Extensions of this workharrow-banded wave train. In one dimension, complex dif-

for incident solitons and other types of random potentials]‘ractlon is found after a bisoliton passes over a finite strip of

have been advanced by many othésse e.g., Refg11l— random seabef@9]. When the random bathymetry is two

15]). For extensive reviews, see Refd6,17]. Relevant to dimensional and confined in an elongated area of large width

long waves in shallow water, a theory for the Korteweg—deand length, the envelope of a uniform wave train is found to

Vries equation 18] with a weak random potential has also turln t;)hg number of dtarclj< slohtons n th? shhad”m@]. ¢

been studied by Garni¢f9]. In these mathematical models, n q IS pap%r, ;v_e S ud y tong W?]ves r;n shallow wa ertpveL

a common feature is that the final differential equation had andom seabed in order to see how harmonic generation by

one or more stochastic coefficients. nqnllnearlty is f:ounteracteq by Ioca!lzatlon. We shall begin
In the past few decades, great efforts have been devoted Yﬁ'th the Boussinesq equatiofi81] which account for weak

oceanography to wave prediction. For deep seas, focus hggnlmeanty and dispersion to the leading order. Evolution

been directed to wind forcing, nonlinear energy transfer pefguations for ‘T"" harmomp amplitudes will be derlve(_j. The
ffects of multiple scattering due to weakly random irregu-

tween different wavelengths and frequencies, and dissipation " : ‘ . .

by wave breaking. For shallow seas, it is important to aclarities on the seabed will be shown to give rise to linear

count in addition for dissipation from the seabed due to friC_dampmg_ terms who;e coeff|c_|ents are four_1d analytically for
a prescribed correlation function. An equation for the evolu-

tion, as well as the effects of depth variation. Existing treat-

ments of the latter aspect have largely been limited tot|on of the wave energy will be derived for any finite number

deterministic modeling of refraction and/or scattering. Since®! armonics and used to verify numerical results. Physical

some complex bathymetries can be best described as a ra plications will be examined through numerical solutions
dom function of space, it is of practical value to see how® these evolution equations.

multiple scattering by random bathymetry can cause spatialy go55iNESQ APPROXIMATION FOR LONG WATER
attenuation, i.e., localization by radiation damping. Only a WAVES

few papers on the linearized aspects have appeared in the

literature[20—25. For nonlinear long waves in shallow wa-  Consider one-dimensional long waves in shallow water.

ter, the only known theories are of Ho26] and Rosales Using primes to distinguish quantities with physical dimen-
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sions, leth’(x’,t") denote the local depth beneath the still By retaining terms only up t®(e) and O(x?), Eq. (2.5
water level, 7’ (x’,t") the free surface displacement above,reduces to
andu’(x’,t") the depth-averaged horizontal velocity of the

water. It is well known that, to the leading order of nonlin- au au dn wp? du
earity and dispersion, the laws of mass and momentum con- e teu— = (2.9
¢ i at ax  IX 3 sxlat
servation are approximated by
s g which can be used to combine with EQ.8) to yield
n
—+ —[(h"+7")u’']=0, 2.1
o’ ox’ Lt m)u’] @ Pn Py an\ €U U §%y?
———=—\elb—|+3 + +
a2 ax? x| 2\ gx2 a2 at?
au’ au'  ap’ h' & au"\ h'?2 gu’
—+u'—4+g—=5—|h'—| —— . 2 44
at' o oax! T ax! 2 ax'2\ 0 at') 6 ax'2at wm (2.10
(2.2) 3 ox*

The accuracy of these quation; can be made exp_IiCit bwe next seek approximations for the propagation of a wave
employing the following dimensionless variables withouttrain which is a simple harmonic at some station to the left of
primes: the region of disorder.

!

x=Kx', t=t'K /gH, n= %, . ASYMPTOTIC EXPANSIONS

As is readily shown in Eq(2.10), without bed roughness
h’ u’ and nonlinearity and sinc,ez<1, the dispersion relation of
. u= , (2.3 a progressive wavesf,u)xe”®*~¢V is nearly a straight

H avg/H line. With weak nonlinearity the lowest few harmonics

_ . e*imkx—et) withm=1,2,3 ..., canresonate each other via
wherekK, a, andH are, respectively, the typical wave number, qguadratic interaction. Interactions with and among higher

wave amplitude, and mean depth. Equati@®d) and (2.2 harmonics are weak because of the increasing phase mis-
can then be normalized in the following form: match.

3 P For a plane seabedh€&0), Mei and Lhluata[5] have
o, —[(h+en)u]=0, (2.4y  shown that both nonlinearity and dispersion become impor-
gt ox tant after a physical distance @i(1/eK). For a randomly
rough seabed, it can also be estimated that the localization
Ju gu dny wp?h ¢*>( ou\ w?h? u distance is inversely proportional to the root-mean-square
ST T o E( E) "6 oot height of the random perturbations, i.@(1/eK) under the
(2.5) assumption of Eq(2.7). We therefore introduce the multiple
scale coordinatex and X=ex, and expandy andu in as-
where cending powers of/e:

a n=1no+ €y ten+ -,
e=—<1, u=KH<L. (2.6)
H 1/2

U=uUp+e'U;+euyt---, (3.1

Tgese equations are accurate to the leading order and .where each unknown function dependstcemd on the fast
w<, which are small but independent parameters characteriz-

: , : ! . . . ?nd slow variables in space and X=ex. For successive
ing, respectively, nonlinearity and dispersion. Since terms o

higher order in both effects are excluded, the accuracy of thigrders, perturbation equations are found from €10

Boussinesq approximation is limited @(e)=0(u?)<1.

2 2
We assume that the sea depth deviates only slightly from 9770 _ 9770 =0, (3.2
a constant mean value, by an amount somewhat larger than a2 ax?
the typical wave amplitude. In dimensionless terimgluc-
tuates from the constant 1 byjeb(x), i.e., &, - P, _ i( %> 63
2 2 ax\ "~ ox )’ '
h(x)=1-eb(x), (2.7 o
whereb is a statio_nary random function &fwith zero mean,  #°7, B 827, _ i % o § 5? 77(2) v *no
(b(x))=0. Equation(2.4) becomes at2 X2 ax | 7 ax aXax 2 g2 3 gyt
P (3.9
—0 (- Jeb+en)u]=0. 28 | iore
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v=pu’le=0(1) (3.5 eikmx=x'|
measures the relative importance of dispersion vs nonlinear- Km
ity and is the reciprocal of Ursell’s parameter. The right-hand
side of Eq.(3.4 has been simplified by using the leading the solution forz, is easily found to be
order approximation.
We now solve the perturbation problems sequentially. nlzm;w eiiwmtJ’, ik Gl [X—X'])
A. Equation and solution at O(€°)
. . . . An(X o,
Consider the evolution of a train of progressive waves %)%[b(x’)e'kmx 1dx’, (3.19
X

whose harmonics have the amplitudeg, the frequencies

wn=Mo, and the wave numbelis,, with m=1,2, .. .: ] . o ]
which behaves as outgoing waves at infinities. Using angular

1 = , brackets to denote the ensemble average, we see readily that
i 6 i 0,
m=5 2 An(X)e’™ Uo— 2 Bm(X)e'’m, (71)=0.

m7 — 00
(3.6
C. Problem at O(€) and amplitude evolution equations

where 6, denotes the wave phase,
m P Let us take the ensemble average of E34),

Om=KmX— omt, (3.7

| ) Xm0 [ am\ Pne 3w

with k_,=—-k,andw_,,= — w,,, and a2 92 T IX IXIX 2 g2
A_,=A% and B_,=B¥. (3.9 v o 16
Here A* denotes the complex conjugate Af In order that 3 o ’
the normalized mean depth is unity, we A8gt=0. It follows
from Eq. (3.2 that The forcing terms on the right-hand side are calculated be-
low.
w=K, on=Kn(=mk), (3.9 Using the known solution for{™ , the first forcing term

which are the first-order dispersion relations. The following®" the right-hand side can be decomposed into
normalized wave numbers and frequencies are imphked:

e _ ani™ A
=kn/K andon=on/K\gH. <b 7 >=—f KASOIX—X")Gum([x=X']) "

B. Equation and solution at O(eY?)

d o
The forcing terms in Eq(3.3) can be expanded and sepa- ><—,[<b(x)b(x’)>e"‘mX dx']. (3.17
rated into time harmonics, dx

9 077]0 We now add the assumption thitis a stationary random
—iw t .
~ X ) mZ_w Frne™'om (3.10  function ofx on the fast scale so that
NN\ — 2 ’
where the coefficients, are random functions of, (bO)b(X")) = y(|x=x"]), (3.18

. d . whereo(X) is the root-mean-square height of the roughness
2 KmAm(X) > [b(x) e ] (31D  and y(x—x’') is the autocorrelation function of the bed
roughness. It then follows that
andF,=0. The solution of Eq(3.10 can be written in the
form b any
ox

(m)

> ikmATelkmxfOc dx’ Sgr(x_x/)eikm(\x—x/l)

©

m= 2 piMeiont, p=o0. (3.12 d o
mZ X—[)/(X—X’)e'km(x *X)]
dx’

For everyn(m) wherem#0, the governing equation is

2 o0
d277(1 ) 2 (3.13 = _ikmAm%eikaf dé sgr(£)e'knlél
+ k&7 =Fu(X). 3.1 o
dx? "
d _
. —ikmé
By using the Green function ng[y(g)e ik (319
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Note that Eq.(3.19 is zero form=0 and the result fom
<0 is equal to the complex conjugate of the result fior
>0, hence

(m)
2 e—lwmt< 7]1 >

m=— X

oo

= Z ikmAm(X)/Bmei fm
1

m=

ox

(3.20

where the coefficienp,,=ReB8,+i ImB,, is complex and
defined by

+c.c.,

_ Ika) eikm(‘g‘f‘f)dé‘_
(3.2)

By following the procedure in Ref31], the nonlinear forc-
ing term in EQ.(3.16 can be shown to be

o (= dy
ﬁm:T”(mJ'mSgr(g)(d_g

3 (?27]0 i 3 e'e
= = — S w
2 atZ m=1

8 E 2AF A m+|+2 aAAN-|

[m/2] }

(3.22

where[ m/2] is the integer part ai/2, ande, is a coefficient
equal to 1 forl=[m/2] and equal to 2 otherwise. The last
forcing term is

+c.c.,

oo

=2

v * Mo —k4
3 x4

5 Ane 'm+c.c.
=1

(3.23

In summary Eq(3.16 can be rewritten as

J* '92 i0 dAn i0
F Ix2 <772> E IKmAmBme m+2 kmd_Xe m
—Z —w 2 gl fm .2’1 2AF A
[m2]
+ 2 a|AAm | + 2 6k4 melem
+c.c. (3.29

PHYSICAL REVIEW E68, 026314 (2003

sent the effects of multiple scattering by disorder. It will be
shown in the following section that (Bg,) ~* is positive and
represents the length scale of spatial attenuation, i.e., local-
ization.

To proceed further, one must first prescribe the correlation
function y(|x—x’|), truncate the series at some finite but
largen, and solve the truncated system by numerical means.
The truncated differential system is

. v 3 n—m
d—>2“+ﬁmAm— i gkanm+§| wm{ I; 2AF Ay
[m/2]
+ > a|A|Am_|}=O, m=12,...n. (3.2
I=1

Note that the infinitd series must be truncated lat n—m
because thé\ A, terms are summed ovérsuch thatm
+1=n, only the firstn harmonics are taken into account.

We remark that the two-harmonic system=2) without
randomness is the basis of the second-harmonic-generation
theory in nonlinear opticg4], and has been shown in RE5]
to give good predictions for laboratory observations of shal-
low water waves over a plane sealéd].

IV. THE COEFFICIENTS B,

For illustration we assume the correlation function to be
Gaussian:

(4.1

wherel=KI"' is the ratio of the correlation distance to the
characteristic wavelength.
To calculateg,,, let us note first that

db\ ,db| dy
b(X)& =— b(X)& =—

dg’ 4.2

To ensure solvability of the preceding equation, secular

terms proportional to expf,) must be removed. With the
help of the dispersion relation,,=k,, we get

©

dA
il 2‘1 2AF A

WJFBm

i wm

Vo 3
Am—l gkmAm+ g

[m/2]

+ > aAAL|=0, m=12, ... (3.29
I=1

This result constitutes an infinite number of nonlinearly
coupled equations governing the slow spatial evolution of

harmonic amplitudes, and extends the theory of R&ffor
harmonic generation over a smooth sealjgge also Ref.
[31]). The linear terms with complex coefficieng, repre-

The following integrals can be evaluated as

f sgr(£) y(§)emlé-dg
=_fo e (€127 g 2ikméq e 4 fxe*(§2/2|2)d§
— 0

:|\/§<\/2; fo e—u2—2i\§kmludu)

4.3

and

026314-4
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aol order multiple scattering by disorder, the total wave energy
of all leading-order harmonics decreases with propagation
o5l ] distance. Without disorder Bg,=0, the total leading-order
energy is conserved. Although Bryaf8] first derived the
20 1 evolution equations for an infinite number of harmonics gen-
erated in shallow-water waves over a smooth bed, his
15} 1 nth-order differential system was not properly truncated. In
y(gmuf) consequence, he did not succeed in proving (Bd).
100 y We shall prove the general relation by the method of in-
5l duction. For one harmoninE 1), Eq.(5.1) can be shown
readily by multiplying the governing equation By*,
0 3(p,ia?) dA »
. . ) , —+| B—i=zk?|A=0, (5.2)
0 2 4, 6 8 10 dX 6
m
L ) and adding the result to its complex conjugate. Fer2, the
FIG. 1. Real and imaginary parts B/ o governing differential equations are
” dy e dA v 3
fﬁwsgrté)d—ge'km('g' d¢ T H Bmigk At ZikiATA=0, (53
1[0 . (22 ok ? e (£222) dA, Vo4 3.,
e\ ) e T e e | Lo ax | Bk At gikaat=0. (5.4
= —2-2ik |\/§f0 e~ U2=2i\Zkplug . (4.4 Multiplying Eq. (5.3 by A} and adding the resulting equa-
m —w tion to its complex conjugate yields

These results can be used to give T

3
= +2 R By)A 1A} — ZKiIM(AT?A;)=0. (5.5

dx
ﬁ_ml_kz|2 N2m 14 o 2K _kal 1_@
o2 Ttmog (1+e m)—i 2 \/5 Similarly for the second harmonic,
2k dAA; 3
><e’2k§n'2f e”zdu). (4.5 ax T2 REBIAA; ~ §k2|m(AiA§):o- (5.6
0
Clearly Re3,,>0 for all m, implying that all harmonics are Adding Egs.(5.5 and(5.6), the following is obtained
localized. For each harmonic, the productdieé is the ratio 2 2
of the correlation length to the localization length. For suffi- E | m| +2 R&Bm|Anl?
ciently high harmonics, R, | is essentially proportional to m=1 mem
k212=m?k?2. Thus higher harmonics are more localized, 3 3
i.e., attenuated in a shorter distance. Sire!’, for a fixed - Zkﬂm(A’{ 2p,)+ §2kllm(AfA§). (5.7)

I", shorter waves are more strongly localized. A similar re-
sult has been reported before in R&9]. Figure 1 shows the

dependence of the real and imaginary parts8gi/a? on  Sincek,=2k,, the right-hand side of E¢5.7) is zero; Eq.
Kyl . (5.1) is proven. In the limit of a smooth bottong,,=0, m

=1,2, the total energy of the two harmonics is constarX,in

although energy can be interchanged between the first and

second harmonics. This result for the two harmonics is
To help understand the physics of harmonic generatioknown as the Manley-Rowe relation in parametric electron-

and localization, and to provide a means to assess computigs.

tional accuracy, we shall prove the following general relation For any integen>2, we first multiply Eq.(3.26) by A%,

on the first-order wave energy: add the result to its complex conjugate, and then perform the

summation inm from 1 ton to get

V. EVOLUTION OF WAVE ENERGY

d n n
ax 2, [Anl?=—22 Relpm)lAd? (5.1 " [ d 3
: m 2 | gx/Anl®+2 ReBrm)|Anl? | = gHn, (58

wheren is any integer representing the highest harmonic in
the truncated differential system. Physically, due to secondwhere
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n

H,= >, k,Im
m=1

n—m [m/2]

21 Af A ALF 21 01|A|Am—|Ar’%]
(5.9

The task is to prove that, i, vanishes for anyn, H, 1
must vanish also. Note that we can rewrite

n+1

Hnﬂzm}:‘,l Kqlm

n+1-m [m/2]

2’1 A An ALt |21 aAAL AL

[(n+1)/2]
Z aIAIAn+1IA:+1}

=H,+(n+1)k;Im

n

+ 2 mkaIm[2AT, ;A 1A (5.10

with @;=1 forl=(n+1)/2. It is necessary to examine sepa-

rately odd and even values of

A. n=odd

Letn=2p—1 in Eq.(5.10, wherep is a positive integer.
Recall thatey=1 only for | =p, and a;=2 otherwise. As-
sumingH,=H,,_,=0, the remaining part of E¢5.10 is

p—1
H2p=kllm[2pA’2‘pE 2A1Ag- 1+ 2P A5 ALA,
=1

2p—1
+2Az mA’Q*pmAfn}. (5.10)

m=1

Expanding the sum oven,

2p—1
> mAS, AR
m=1
=A1r ﬁp,ﬁZA; ’2cp72+ T +pA;A;
+.o -+ (2p—2)A%, LA +(2p— 1)AS, (A
p—1
=2p 3 ALAS, -t PASAS (.12
we get

p—1
Hap= kllm{ 2pA’2‘p|21 2A1Ag -1+ 2D A5 ALA,

p—1
- 2pA2p< 2mE:1 AEAS, m+ AEAY ) } =0,

(5.13

since the quantity inside the brackets is real.

B. n=even

Let n=2p in Eq. (5.10, wherep is an integer. Now,
=2 foralll as (20+1)/2 is not an integer. Withl,,=0, the
remaining part of Eq(5.10 is

PHYSICAL REVIEW E68, 026314 (2003

SV
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0 \FAUA AR

(1] 50 X 100 150

FIG. 2. Evolution of the first four harmonicsn=1,2,3,4 from
top down over a semi-infinite region of disordes:=0.2, v=1,
andl=k;=1.

p
Hops 1= keI (2|o+1>A§p+1|§1 2A A1

2p

+2A2p+1n1§=:l MAZ 1A |- (5.14

Expanding the sum oven,

2p
E mA;erlfmA%
m=1

:AI ;p+2A; ;pfl+"'+(2p_1) ;pflAg

+(2p)As AT
p
=(2p+1) 2 ATAZ1m, (5.19

we get

ook N - - X=[12,22
08} v
o7t oy : a2
0.8l y) ol
Al os}
04t ; iy i
03] : i o

0.2

0.1

FIG. 3. Incident wave phase effect on the first three harmonics

(m=1,2,3 from top dowh The width of the disordered region is
10. Solid lines: disorder is iX=[10,20Q]; dash-dotted line: disorder
isin X=[12,22. 0=0.2, v=1, andl=k;=1.

026314-6



LOCALIZATION OF HARMONICS GENERATED IN.. ..

0.9
0.8r
0.7p
0.6F \}
|Am| 0.5-
0.4H
0.3
0.2

0.1

— - X=[12,37)

FIG. 4. Effects of incident wave phase on the first three harmon-
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FIG. 6. Localization of harmonics over a semi-infinite region

ics (m=1,2,3 from top dowh The width of the disordered region (X>10) of stronger disorder=0.35) (m=1,2, ... ,6).Other pa-

is 25. Solid lines: disorder is iX=[5,30], dash-dotted line: disor-
der is inX=[12,37]. 0=0.2, v=1, andl=

p

Hopi1=kelm| (2p+ 1)A§p+1§l 2A A1+ c.c] =0.

kl:l.

rameters aréd=1, v=1, andk;=1. Solid lines: odd harmonics
(1,3,9; dash-dotted lines: even harmonis4,6.

region of disorder withoc=0X<0;0=0.2X>0. Incident
waves with only the first harmonic arrive frok<0. For the

(5.16 parameterk,;=1, |=1, andv=pu?/e=1, Fig. 2 shows the
evolution of the first four harmonics. Second and higher har-
ThusH,,,=0 if H,=0. SinceH,=H,=0, it follows by  Monics are seen to grow at the expense of the first, but they
induction thatH;=H,=Hs=--- =H,=0 for any integen.  all attenuate with distance; the higher harmonics die out

The energy relatior5.1) is proven.

VI. NUMERICAL RESULTS OF HARMONIC EVOLUTION

AND LOCALIZATION

For n=2, an analytical solution is possible only @y

sooner. Once the second and higher harmonics are suffi-
ciently diminished, energy exchange with the first harmonic
becomes insignificant; the latter then attenuates monotoni-
cally with distance.

Next we examine the effects of several parameters in turn:
the position and size of the region of randomness, the root-

= B,, Which is not the case here unless the bottom is perMeéan-square height, the ratio of correlation length to
fectly smooth so thap,=3,=0. In this section, we report Wavelengthl, and the ratio of dispersion to nonlinearity

. LS S ’ X 2 o : :
the numerical results based on finite-difference solution oft”/€=v. Let the incident wave first go through harmonic

the differential system truncated at=6. Accuracy is as-

generation over a smooth bed, then pass over a disordered

sured since the energy relation is satisfied in all cases witfegion of finite extent.

errors in the range of 10—-10 *2. The results also differ

very little from those fom=10.

To see the possible effects of the wave phase, we compare
in Fig. 3 two cases where the randomness has the same

The typical features can be displayed for a semi-infinite
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FIG. 7. Localization of harmonics over a semi-infinite region

FIG. 5. Localization of harmonics over a semi-infinite region (X>10) of larger correlation length relative to the wavelength (

(X>10) of weak disorder €£=0.2) (m=1,2,...,6 from top
down). Other parameters ate=1, v=1, andk,;=1. Solid lines:
odd harmonicg1,3,9; dash-dotted lines: even harmoni&4,6.

=2). Other parameters are=0.35, v=1, andk;=1. Solid lines
from top down: odd harmonickl,3,9; dash-dotted line from top
down: even harmonic&,4,6.
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FIG. 8. Localization of harmonics over a semi-infinite region of  FIG. 9. Localization of harmonics over a semi-infinite region of
disorder >10) for more nonlinear waves € 0.5). Other param-  disorder >10) for less nonlinear wavesy€2). Other param-
eters arer=0.35,1 =1, andk,;=1. Solid lines from top down: odd eters arec=0.35, =1, andk;=1. Solid line: odd harmonics
harmonicg1,3,5; dash-dotted line from top down: even harmonics (1,3,5; dash-dotted line: even harmonitz4,6.

2141 . . . . . .

(248 persion by varying the ratip?/e= v. The region of disorder
—0.2 and horizontal extent 10. In both cases the first har- IS semi-infiniteX>10. For the same region of randomness,
monic amplitude is unity =0, while all higher harmon- X>10 ando=0.35, we add Figs. 8 and 9 to compare them
ics are zero. However, in one, disorder beginsXat10 (© Fig. 6, corresponding te=0.5, 2, and 1, respectively.
where the first harmonic is the smallest and the second har- It iS clear that as» increasedweaker nonlinearity and/or
monic the largest. In the other, disorder beginsXat12 stronger dispersionthe second and higher harmonic ampli-
where the first harmonic is the largest and the second hapudes decrease and the modulation of all harmonics becomes
monic the smallest. After passing the region of disorder, thanore rapid. For the most nonlinear case with 0.5, energy
reduced harmonics of the two wave trains are seen to diffefOnversion from the first to the second and higher harmonics

in phase but not in amplitude. is very effective, yet they all are localized by radiation damp-
Figure 4 compares two cases for a wider region of disor!"9- . ,
der equal to 25. For the same incident waveXat0, the In conclusion, we have shown that two major advances of

random bottom extends ovéf=[5,30] in one and oveiX modem physics, harmonic generation and localization, are
—[12,37] in the other. After the region of randomness, har-intertwined ina problem of coas_tal oceanography. Moreover,
monics of both waves are diminished. Again they differ inthe @symptotic method of multiple scales, widely used for
phase but not in amplitude. It may be concluded that théV@Ve Propagation in slowly varying or periodic media, is

wave phase relative to the position of the randomness is of¢€Nn 10 be an effective tool for a weakly random medium as
little consequence on localization. well. The same technique can'llkelly be applied to other prob-

As expected from the expressions@ , largero leads to lems such as sound propagation in a shallow sea over a ran-
faster localization. Quantitative confirmation can be seen irﬁjomly rough seabed.

Figs. 5 and 6. In both cases, randomness start&=al0 ACKNOWLEDGMENTS
where the first harmonic is the smallest.
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