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Localization of harmonics generated in nonlinear shallow water waves
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~Received 20 August 2002; revised manuscript received 30 May 2003; published 28 August 2003!

The propagation of nonlinear shallow water waves over a random seabed is studied. A bathymetry which
fluctuates randomly from a constant mean adds multiple scattering to resonant interactions and harmonic
generation. By the method of multiple scales, nonlinear evolution equations for the harmonic amplitudes are
derived. Effects of multiple scattering are shown to be represented by certain linear damping terms with
complex coefficients related to the correlation function of the seabed disorder. For any finite number of
harmonics, an equation governing the total wave energy is derived. By numerical solution of the amplitude
equations, the effects of spatial attenuation~localization! on harmonic generation are studied.
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I. INTRODUCTION

Several characteristics of long waves in shallow water
of general interest to wave physics in many different co
texts. The interplay between nonlinearity and dispersion h
on one hand, led to impressive advances in soliton dynam
and the inverse scattering theory@1#. On the other hand, in
dependent discoveries in wave-wave interactions ushered
new age of oceanography@2,3# and nonlinear optics@4#. In
particular, the mechanism of harmonic generation, first fou
in optics, is known to have a close cousin in shallow-wa
waves@5,6#.

Anderson localization, originated in the study of transp
in disordered quantum systems@7#, is still an expanding
topic in wave propagation in random media@8,9#. Many
mathematical studies on nonlinear waves in random me
have also appeared. In particular, Devillard and Souill
@10# have studied the one-dimensional nonlinear Schro¨dinger
equation with a random potential. Extensions of this wo
for incident solitons and other types of random potenti
have been advanced by many others~see e.g., Refs.@11–
15#!. For extensive reviews, see Refs.@16,17#. Relevant to
long waves in shallow water, a theory for the Korteweg–
Vries equation@18# with a weak random potential has als
been studied by Garnier@19#. In these mathematical model
a common feature is that the final differential equation h
one or more stochastic coefficients.

In the past few decades, great efforts have been devote
oceanography to wave prediction. For deep seas, focus
been directed to wind forcing, nonlinear energy transfer
tween different wavelengths and frequencies, and dissipa
by wave breaking. For shallow seas, it is important to
count in addition for dissipation from the seabed due to fr
tion, as well as the effects of depth variation. Existing tre
ments of the latter aspect have largely been limited
deterministic modeling of refraction and/or scattering. Sin
some complex bathymetries can be best described as a
dom function of space, it is of practical value to see h
multiple scattering by random bathymetry can cause spa
attenuation, i.e., localization by radiation damping. Only
few papers on the linearized aspects have appeared in
literature@20–25#. For nonlinear long waves in shallow wa
ter, the only known theories are of Howe@26# and Rosales
1063-651X/2003/68~2!/026314~9!/$20.00 68 0263
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and Papanicolaou@27#. For intermediate depth, the perturb
tion method of multiple scales, also known as the theory
homogenization in some contexts, has been shown to b
effective tool for analyzing weakly nonlinear waves in
weakly disordered medium of large spatial extent. The ba
ideas were first explained for the simple case of a taut st
embedded in a nonlinearly elastic surrounding, whose ela
properties contain a random component@28#. It has been
shown that the wave envelope is governed by a cubic Sc¨-
dinger equation modified by a linear term with a compl
damping coefficient, which is related to the statistical cor
lation function of the random perturbations. Effects of loc
ization on the evolution of soliton envelopes and side-ba
instability have been examined. Similar analysis has b
reported for small-amplitude water waves of intermedi
wavelength over a seabed with weak disorder in depth. O
and two-dimensional nonlinear Schro¨dinger equations with a
linear damping term have been derived for the envelope
narrow-banded wave train. In one dimension, complex d
fraction is found after a bisoliton passes over a finite strip
random seabed@29#. When the random bathymetry is tw
dimensional and confined in an elongated area of large w
and length, the envelope of a uniform wave train is found
turn to a number of dark solitons in the shadow@30#.

In this paper, we study long waves in shallow water ov
a random seabed in order to see how harmonic generatio
nonlinearity is counteracted by localization. We shall beg
with the Boussinesq equations@31# which account for weak
nonlinearity and dispersion to the leading order. Evoluti
equations for all harmonic amplitudes will be derived. T
effects of multiple scattering due to weakly random irreg
larities on the seabed will be shown to give rise to line
damping terms whose coefficients are found analytically
a prescribed correlation function. An equation for the evo
tion of the wave energy will be derived for any finite numb
of harmonics and used to verify numerical results. Phys
implications will be examined through numerical solutio
of these evolution equations.

II. BOUSSINESQ APPROXIMATION FOR LONG WATER
WAVES

Consider one-dimensional long waves in shallow wa
Using primes to distinguish quantities with physical dime
©2003 The American Physical Society14-1
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sions, leth8(x8,t8) denote the local depth beneath the s
water level,h8(x8,t8) the free surface displacement abov
and u8(x8,t8) the depth-averaged horizontal velocity of th
water. It is well known that, to the leading order of nonli
earity and dispersion, the laws of mass and momentum c
servation are approximated by

]h8

]t8
1

]

]x8
@~h81h8!u8#50, ~2.1!

]u8

]t8
1u8

]u8

]x8
1g

]h8

]x8
5

h8

2

]2

]x82 S h8
]u8

]t8
D 2

h82

6

]3u8

]x82]t8
.

~2.2!

The accuracy of these equations can be made explici
employing the following dimensionless variables witho
primes:

x5Kx8, t5t8KAgH, h5
h8

a
,

h5
h8

H
, u5

u8

aAg/H
, ~2.3!

whereK, a, andH are, respectively, the typical wave numbe
wave amplitude, and mean depth. Equations~2.1! and ~2.2!
can then be normalized in the following form:

]h

]t
1

]

]x
@~h1eh!u#50, ~2.4!

]u

]t
1eu

]u

]x
1

]h

]x
5

m2h

2

]2

]x2 S h
]u

]t D2
m2h2

6

]3u

]x2]t
,

~2.5!

where

e5
a

H
!1, m5KH!1. ~2.6!

These equations are accurate to the leading order ine and
m2, which are small but independent parameters characte
ing, respectively, nonlinearity and dispersion. Since terms
higher order in both effects are excluded, the accuracy of
Boussinesq approximation is limited toO(e)5O(m2)!1.

We assume that the sea depth deviates only slightly f
a constant mean value, by an amount somewhat larger
the typical wave amplitude. In dimensionless terms,h fluc-
tuates from the constant 1 byAeb(x), i.e.,

h~x!512Aeb~x!, ~2.7!

whereb is a stationary random function ofx with zero mean,
^b(x)&50. Equation~2.4! becomes

]h

]t
1

]

]x
@~12Aeb1eh!u#50. ~2.8!
02631
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By retaining terms only up toO(e) and O(m2), Eq. ~2.5!
reduces to

]u

]t
1eu

]u

]x
1

]h

]x
5

m2

3

]3u

]x2]t
, ~2.9!

which can be used to combine with Eq.~2.8! to yield

]2h

]t2
2

]2h

]x2
52AeS b

]h

]x D1
e

2 S ]2u2

]x2
1

]2u2

]t2
1

]2h2

]t2 D
1

m2

3

]4h

]x4
. ~2.10!

We next seek approximations for the propagation of a w
train which is a simple harmonic at some station to the left
the region of disorder.

III. ASYMPTOTIC EXPANSIONS

As is readily shown in Eq.~2.10!, without bed roughness
and nonlinearity and sincem2!1, the dispersion relation o
a progressive wave (h,u)}e6 i (kx2vt) is nearly a straight
line. With weak nonlinearity the lowest few harmonic
e6 im(kx2vt), with m51,2,3, . . . , canresonate each other vi
quadratic interaction. Interactions with and among high
harmonics are weak because of the increasing phase
match.

For a plane seabed (b[0), Mei and Ünluata @5# have
shown that both nonlinearity and dispersion become imp
tant after a physical distance ofO(1/eK). For a randomly
rough seabed, it can also be estimated that the localiza
distance is inversely proportional to the root-mean-squ
height of the random perturbations, i.e.,O(1/eK) under the
assumption of Eq.~2.7!. We therefore introduce the multipl
scale coordinatesx and X5ex, and expandh and u in as-
cending powers ofAe:

h5h01e1/2h11eh21•••,

u5u01e1/2u11eu21•••, ~3.1!

where each unknown function depends ont and on the fast
and slow variables in spacex and X5ex. For successive
orders, perturbation equations are found from Eq.~2.10!:

]2h0

]t2
2

]2h0

]x2
50, ~3.2!

]2h1

]t2
2

]2h1

]x2
52

]

]x S b
]h0

]x D , ~3.3!

]2h2

]t2
2

]2h2

]x2
52

]

]x S b
]h1

]x D12
]2h0

]X]x
1

3

2

]2h0
2

]t2
1

n

3

]4h0

]x4
,

~3.4!

where
4-2
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n5m2/e5O~1! ~3.5!

measures the relative importance of dispersion vs nonlin
ity and is the reciprocal of Ursell’s parameter. The right-ha
side of Eq.~3.4! has been simplified by using the leadin
order approximation.

We now solve the perturbation problems sequentially.

A. Equation and solution at O„e0
…

Consider the evolution of a train of progressive wav
whose harmonics have the amplitudesAm , the frequencies
vm5mv, and the wave numberskm , with m51,2, . . . :

h05
1

2 (
m52`

`

Am~X!eium, u05
1

2 (
m52`

`

Bm~X!eium,

~3.6!

whereum denotes the wave phase,

um5kmx2vmt, ~3.7!

with k2m52km andv2m52vm , and

A2m5Am* and B2m5Bm* . ~3.8!

Here A* denotes the complex conjugate ofA. In order that
the normalized mean depth is unity, we setA050. It follows
from Eq. ~3.2! that

v5k, vm5km~5mk!, ~3.9!

which are the first-order dispersion relations. The followi
normalized wave numbers and frequencies are implied:km

5km8 /K andvm5vm8 /KAgH.

B. Equation and solution at O„e1Õ2
…

The forcing terms in Eq.~3.3! can be expanded and sep
rated into time harmonics,

2
]

]x S b
]h0

]x D52 (
m52`

`

Fme2 ivmt, ~3.10!

where the coefficientsFm are random functions ofx,

Fm5
1

2
ikmAm~X!

d

dx
@b~x!eikmx# ~3.11!

andF050. The solution of Eq.~3.10! can be written in the
form

h15 (
m52`

`

h1
(m)e2 ivmt, h1

(0)50. ~3.12!

For everyh1
(m) , wheremÞ0, the governing equation is

d2h1
(m)

dx2
1km

2 h1
(m)5Fm~x!. ~3.13!

By using the Green function
02631
r-
d

s

Gm~ ux2x8u!5
eikmux2x8u

2ikm
, ~3.14!

the solution forh1 is easily found to be

h15 (
m52`

`

e2 ivmtE
2`

`

ikmGm~ ux2x8u!

3
Am~X!

2

d

dx8
@b~x8!eikmx8#dx8, ~3.15!

which behaves as outgoing waves at infinities. Using ang
brackets to denote the ensemble average, we see readily
^h1&50.

C. Problem at O„e… and amplitude evolution equations

Let us take the ensemble average of Eq.~3.4!,

]2^h2&

]t2
2

]2^h2&

]x2
52

]

]x K b
]h1

]x L 12
]2h0

]X]x
1

3

2

]2h0
2

]t2

1
n

3

]4h0

]x4
. ~3.16!

The forcing terms on the right-hand side are calculated
low.

Using the known solution forh1
(m) , the first forcing term

on the right-hand side can be decomposed into

K b
]h1

(m)

]x L 52E
2`

`

km
2 sgn~x2x8!Gm~ ux2x8u!

Am

2

3
d

dx8
@^b~x!b~x8!&eikmx8dx8#. ~3.17!

We now add the assumption thatb is a stationary random
function of x on the fast scale so that

^b~x!b~x8!&5s2g~ ux2x8u!, ~3.18!

wheres(X) is the root-mean-square height of the roughn
and g(x2x8) is the autocorrelation function of the be
roughness. It then follows that

K b
]h1

(m)

]x L 5 ikm

Am

4
eikmxE

2`

`

dx8 sgn~x2x8!eikm(ux2x8u)

3
d

dx8
@g~x2x8!eikm(x82x)#

52 ikmAm

s2

4
eikmxE

2`

`

dj sgn~j!eikmuju

3
d

dj
@g~j!e2 ikmj#. ~3.19!
4-3
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Note that Eq.~3.19! is zero form50 and the result form
,0 is equal to the complex conjugate of the result form
.0, hence

2
]

]x F (
m52`

`

e2 ivmtK b
]h1

(m)

]x L G5 (
m51

`

ikmAm~X!bmeium

1c.c., ~3.20!

where the coefficientbm5Rebm1 i Imbm is complex and
defined by

bm5
s2

4
ikmE

2`

`

sgn~j!S dg

dj
2 ikmg Deikm(uju2j)dj.

~3.21!

By following the procedure in Ref.@31#, the nonlinear forc-
ing term in Eq.~3.16! can be shown to be

3

2

]2h0
2

]t2
5 (

m51

`

2
3

8
vm

2 eiumF(
l 51

`

2Al* Am1 l1 (
l 51

[m/2]

a lAlAm2 l G
1c.c., ~3.22!

where@m/2# is the integer part ofm/2, anda l is a coefficient
equal to 1 forl 5@m/2# and equal to 2 otherwise. The la
forcing term is

n

3

]4h0

]x4
5 (

m51

`
n

6
km

4 Ameium1c.c. ~3.23!

In summary Eq.~3.16! can be rewritten as

S ]2

]t2
2

]2

]x2D ^h2&5 (
m51

`

ikmAmbmeium1 (
m51

`

ikm

dAm

dX
eium

2 (
m51

`
3

8
vm

2 eiumF(
l 51

`

2Al* Am1 l

1 (
l 51

[m/2]

a lAlAm2 l G1 (
m51

`
n

6
km

4 Ameium

1c.c. ~3.24!

To ensure solvability of the preceding equation, secu
terms proportional to exp(ium) must be removed. With the
help of the dispersion relationvm5km , we get

dAm

dX
1bmAm2 i

n

6
km

3 Am1
3

8
ivmF(

l 51

`

2Al* Am1 l

1 (
l 51

[m/2]

a lAlAm2 l G50, m51,2, . . . ,̀ . ~3.25!

This result constitutes an infinite number of nonlinea
coupled equations governing the slow spatial evolution
harmonic amplitudes, and extends the theory of Ref.@6# for
harmonic generation over a smooth seabed~see also Ref.
@31#!. The linear terms with complex coefficientsbm repre-
02631
r

f

sent the effects of multiple scattering by disorder. It will b
shown in the following section that (Rebm)21 is positive and
represents the length scale of spatial attenuation, i.e., lo
ization.

To proceed further, one must first prescribe the correlat
function g(ux2x8u), truncate the series at some finite b
largen, and solve the truncated system by numerical mea
The truncated differential system is

dAm

dX
1bmAm2 i

n

6
km

3 Am1
3

8
ivmF (

l 51

n2m

2Al* Am1 l

1 (
l 51

[m/2]

a lAlAm2 l G50, m51,2, . . . ,n. ~3.26!

Note that the infinitel series must be truncated atl 5n2m
because theAl* Am1 l terms are summed overl such thatm
1 l<n, only the firstn harmonics are taken into account.

We remark that the two-harmonic system (n52) without
randomness is the basis of the second-harmonic-gener
theory in nonlinear optics@4#, and has been shown in Ref.@5#
to give good predictions for laboratory observations of sh
low water waves over a plane seabed@32#.

IV. THE COEFFICIENTS bm

For illustration we assume the correlation function to
Gaussian:

g~j!5expS 2
j2

2l 2D , ~4.1!

where l 5Kl 8 is the ratio of the correlation distance to th
characteristic wavelength.

To calculatebm , let us note first that

K b~x!
db

dx8
L 52 K b~x8!

db

dxL 52
dg

dj
. ~4.2!

The following integrals can be evaluated as

E
2`

`

sgn~j!g~j!eikm(uju2j)dj

52E
2`

0

e2(j2/2l 2)e22ikmjdj1E
0

`

e2(j2/2l 2)dj

5 lA2S Ap

2
2E

2`

0

e2u222iA2kmluduD ~4.3!

and
4-4



ffi

d

re

tio
u

io

i
n

rgy
tion

n-
his
In

in-

-

and
is
n-

the

LOCALIZATION OF HARMONICS GENERATED IN . . . PHYSICAL REVIEW E68, 026314 ~2003!
E
2`

`

sgn~j!
dg

dj
eikm(uju2j)dj

5
1

l 2 S E
2`

0

je2(j2/2l 2)e22ikmjdj2E
0

`

je2(j2/2l 2)dj D
52222ikmlA2E

2`

0

e2u222iA2kmludu. ~4.4!

These results can be used to give

bml

s2
5km

2 l 2
A2p

8
~11e22km

2 l 2!2 i
kml

2 S 12
kml

A2

3e22km
2 l 2E

0

A2kml
eu2

duD . ~4.5!

Clearly Rebm.0 for all m, implying that all harmonics are
localized. For each harmonic, the product Rebml is the ratio
of the correlation length to the localization length. For su
ciently high harmonics, Rebml is essentially proportional to
km

2 l 25m2k2l 2. Thus higher harmonics are more localize
i.e., attenuated in a shorter distance. Sincel 5Kl 8, for a fixed
l 8, shorter waves are more strongly localized. A similar
sult has been reported before in Ref.@29#. Figure 1 shows the
dependence of the real and imaginary parts ofbml /s2 on
kml .

V. EVOLUTION OF WAVE ENERGY

To help understand the physics of harmonic genera
and localization, and to provide a means to assess comp
tional accuracy, we shall prove the following general relat
on the first-order wave energy:

d

dX (
m51

n

uAmu2522 (
m51

n

Re~bm!uAmu2, ~5.1!

wheren is any integer representing the highest harmonic
the truncated differential system. Physically, due to seco

FIG. 1. Real and imaginary parts ofbml /s2.
02631
-

,

-

n
ta-
n

n
d-

order multiple scattering by disorder, the total wave ene
of all leading-order harmonics decreases with propaga
distance. Without disorder Rebm50, the total leading-order
energy is conserved. Although Bryant@6# first derived the
evolution equations for an infinite number of harmonics ge
erated in shallow-water waves over a smooth bed,
nth-order differential system was not properly truncated.
consequence, he did not succeed in proving Eq.~5.1!.

We shall prove the general relation by the method of
duction. For one harmonic (n51), Eq. ~5.1! can be shown
readily by multiplying the governing equation byA* ,

dA

dX
1S b2 i

n

6
k3DA50, ~5.2!

and adding the result to its complex conjugate. Forn52, the
governing differential equations are

dA1

dX
1S b12 i

n

6
k1

3DA11
3

4
ik1A1* A250, ~5.3!

dA2

dX
1S b22 i

n

6
k2

3DA21
3

8
ik2A1

250. ~5.4!

Multiplying Eq. ~5.3! by A1* and adding the resulting equa
tion to its complex conjugate yields

dA1A1*

dX
12 Re~b1!A1A1* 2

3

4
k1Im~A1*

2A2!50. ~5.5!

Similarly for the second harmonic,

dA2A2*

dX
12 Re~b2!A2A2* 2

3

8
k2Im~A1

2A2* !50. ~5.6!

Adding Eqs.~5.5! and ~5.6!, the following is obtained

(
m51

2 S duAmu2

dX
12 RebmuAmu2D

5
3

4
k1Im~A1*

2A2!1
3

8
2k1Im~A1

2A2* !. ~5.7!

Sincek252k1, the right-hand side of Eq.~5.7! is zero; Eq.
~5.1! is proven. In the limit of a smooth bottom,bm50, m
51,2, the total energy of the two harmonics is constant inX,
although energy can be interchanged between the first
second harmonics. This result for the two harmonics
known as the Manley-Rowe relation in parametric electro
ics.

For any integern.2, we first multiply Eq.~3.26! by Am* ,
add the result to its complex conjugate, and then perform
summation inm from 1 to n to get

(
m51

n S d

dX
uAmu212 Re~bm!uAmu2D5

3

8
Hn , ~5.8!

where
4-5
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Hn5 (
m51

n

kmImF (
l 51

n2m

Al* Am1 lAm* 1 (
l 51

[m/2]

a lAlAm2 lAm* G .

~5.9!

The task is to prove that, ifHn vanishes for anyn, Hn11
must vanish also. Note that we can rewrite

Hn115 (
m51

n11

kmImF (
l 51

n112m

Al* Am1 lAm* 1 (
l 51

[m/2]

a lAlAm2 lAm* G
5Hn1~n11!k1ImF (

l 51

[(n11)/2]

a lAlAn112 lAn11* G
1 (

m51

n

mk1Im@2An112m* An11Am* # ~5.10!

with a l51 for l 5(n11)/2. It is necessary to examine sep
rately odd and even values ofn.

A. nÄodd

Let n52p21 in Eq.~5.10!, wherep is a positive integer.
Recall thata l51 only for l 5p, anda l52 otherwise. As-
sumingHn5H2p2150, the remaining part of Eq.~5.10! is

H2p5k1ImF2pA2p* (
l 51

p21

2AlA2p2 l12pA2p* ApAp

12A2p (
m51

2p21

mA2p2m* Am* G . ~5.11!

Expanding the sum overm,

(
m51

2p21

mA2p2m* Am*

5A1* A2p21* 12A2* A2p22* 1•••1pAp* Ap*

1•••1~2p22!A2p22* A2* 1~2p21!A2p21* A1*

52p (
m51

p21

Am* A2p2m* 1pAp* Ap* , ~5.12!

we get

H2p5k1ImF2pA2p* (
l 51

p21

2AlA2p2 l12pA2p* ApAp

12pA2pS 2 (
m51

p21

Am* A2p2m* 1Ap* Ap* D G50,

~5.13!

since the quantity inside the brackets is real.

B. nÄeven

Let n52p in Eq. ~5.10!, wherep is an integer. Nowa l
52 for all l as (2p11)/2 is not an integer. WithH2p50, the
remaining part of Eq.~5.10! is
02631
-

H2p115k1ImF ~2p11!A2p11* (
l 51

p

2AlA2p112 l

12A2p11 (
m51

2p

mA2p112m* Am* G . ~5.14!

Expanding the sum overm,

(
m51

2p

mA2p112m* Am*

5A1* A2p* 12A2* A2p21* 1•••1~2p21!A2p21* A2*

1~2p!A2p* A1*

5~2p11! (
m51

p

Am* A2p112m* , ~5.15!

we get

FIG. 2. Evolution of the first four harmonics (m51,2,3,4 from
top down! over a semi-infinite region of disorder.s50.2, n51,
and l 5k151.

FIG. 3. Incident wave phase effect on the first three harmon
(m51,2,3 from top down!. The width of the disordered region i
10. Solid lines: disorder is inX5@10,20#; dash-dotted line: disorde
is in X5@12,22#. s50.2, n51, andl 5k151.
4-6



e
t

o

wi

it

ar-
hey
out
uffi-
nic
oni-

rn:
ot-

y
ic
ered

pare
e

on
n

on

n

n
(

LOCALIZATION OF HARMONICS GENERATED IN . . . PHYSICAL REVIEW E68, 026314 ~2003!
H2p115k1ImF ~2p11!A2p11* (
l 51

p

2AlA2p112 l1c.c.G50.

~5.16!

Thus Hn1150 if Hn50. SinceH15H250, it follows by
induction thatH35H45H55•••5Hn50 for any integern.
The energy relation~5.1! is proven.

VI. NUMERICAL RESULTS OF HARMONIC EVOLUTION
AND LOCALIZATION

For n52, an analytical solution is possible only forb1
5b2, which is not the case here unless the bottom is p
fectly smooth so thatb15b250. In this section, we repor
the numerical results based on finite-difference solution
the differential system truncated atn56. Accuracy is as-
sured since the energy relation is satisfied in all cases
errors in the range of 1029–10212. The results also differ
very little from those forn510.

The typical features can be displayed for a semi-infin

FIG. 4. Effects of incident wave phase on the first three harm
ics (m51,2,3 from top down!. The width of the disordered regio
is 25. Solid lines: disorder is inX5@5,30#, dash-dotted line: disor-
der is inX5@12,37#. s50.2, n51, andl 5k151.

FIG. 5. Localization of harmonics over a semi-infinite regi
(X.10) of weak disorder (s50.2) (m51,2, . . . ,6 from top
down!. Other parameters arel 51, n51, andk151. Solid lines:
odd harmonics~1,3,5!; dash-dotted lines: even harmonics~2,4,6!.
02631
r-

f

th

e

region of disorder withs50,X,0;s50.2,X.0. Incident
waves with only the first harmonic arrive fromX,0. For the
parametersk151, l 51, andn5m2/e51, Fig. 2 shows the
evolution of the first four harmonics. Second and higher h
monics are seen to grow at the expense of the first, but t
all attenuate with distance; the higher harmonics die
sooner. Once the second and higher harmonics are s
ciently diminished, energy exchange with the first harmo
becomes insignificant; the latter then attenuates monot
cally with distance.

Next we examine the effects of several parameters in tu
the position and size of the region of randomness, the ro
mean-square heights, the ratio of correlation length to
wavelength l, and the ratio of dispersion to nonlinearit
m2/e5n. Let the incident wave first go through harmon
generation over a smooth bed, then pass over a disord
region of finite extent.

To see the possible effects of the wave phase, we com
in Fig. 3 two cases where the randomness has the sams

- FIG. 6. Localization of harmonics over a semi-infinite regio
(X.10) of stronger disorder (s50.35) (m51,2, . . . ,6).Other pa-
rameters arel 51, n51, andk151. Solid lines: odd harmonics
~1,3,5!; dash-dotted lines: even harmonics~2,4,6!.

FIG. 7. Localization of harmonics over a semi-infinite regio
(X.10) of larger correlation length relative to the wavelengthl
52). Other parameters ares50.35, n51, andk151. Solid lines
from top down: odd harmonics~1,3,5!; dash-dotted line from top
down: even harmonics~2,4,6!.
4-7
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50.2 and horizontal extent510. In both cases the first ha
monic amplitude is unity atX50, while all higher harmon-
ics are zero. However, in one, disorder begins atX510
where the first harmonic is the smallest and the second
monic the largest. In the other, disorder begins atX512
where the first harmonic is the largest and the second
monic the smallest. After passing the region of disorder,
reduced harmonics of the two wave trains are seen to d
in phase but not in amplitude.

Figure 4 compares two cases for a wider region of dis
der equal to 25. For the same incident waves atX50, the
random bottom extends overX5@5,30# in one and overX
5@12,37# in the other. After the region of randomness, h
monics of both waves are diminished. Again they differ
phase but not in amplitude. It may be concluded that
wave phase relative to the position of the randomness i
little consequence on localization.

As expected from the expressions ofbm , largers leads to
faster localization. Quantitative confirmation can be seen
Figs. 5 and 6. In both cases, randomness starts atX510
where the first harmonic is the smallest.

As pointed out before, greaterl means shorter wavelengt
relative to the correlation length and stronger localizati
This can be seen by comparing Figs. 6 and 7, both fo
semi-infinite region of randomnessX.10 with s50.35.

Finally, we examine the effects of nonlinearity and/or d

FIG. 8. Localization of harmonics over a semi-infinite region
disorder (X.10) for more nonlinear waves (n50.5). Other param-
eters ares50.35, l 51, andk151. Solid lines from top down: odd
harmonics~1,3,5!; dash-dotted line from top down: even harmoni
~2,4,6!.
r-

rs
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-

persion by varying the ratiom2/e5n. The region of disorder
is semi-infiniteX.10. For the same region of randomnes
X.10 ands50.35, we add Figs. 8 and 9 to compare the
to Fig. 6, corresponding ton50.5, 2, and 1, respectively.

It is clear that asn increases~weaker nonlinearity and/o
stronger dispersion!, the second and higher harmonic amp
tudes decrease and the modulation of all harmonics beco
more rapid. For the most nonlinear case withn50.5, energy
conversion from the first to the second and higher harmon
is very effective, yet they all are localized by radiation dam
ing.

In conclusion, we have shown that two major advances
modern physics, harmonic generation and localization,
intertwined in a problem of coastal oceanography. Moreov
the asymptotic method of multiple scales, widely used
wave propagation in slowly varying or periodic media,
seen to be an effective tool for a weakly random medium
well. The same technique can likely be applied to other pr
lems such as sound propagation in a shallow sea over a
domly rough seabed.
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FIG. 9. Localization of harmonics over a semi-infinite region
disorder (X.10) for less nonlinear waves (n52). Other param-
eters ares50.35, l 51, and k151. Solid line: odd harmonics
~1,3,5!; dash-dotted line: even harmonics~2,4,6!.
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