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Similarity scaling of pressure fluctuation in turbulence
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Pressure fluctuation was measured in a turbulent jet using a condenser microphone and piezoresistive
transducer. The power-law exponent and proportional constant of normalized pressure spectrum are discussed
from the standpoint of Kolmogorov universal scaling. The clear power law with scaling exponent clogito
was confirmed in the range of 680, . These Reynolds numbers are much larger than those in velocity
fluctuation to achieve Kolmogorov scaling. The spectral constant is not universal but depends on Reynolds
numbers. Measured pressure probability density functions are compared with direct numerical simulation.
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Static pressure fluctuation is a fundamental quantity convalidity of the scaling form. At this stage, there is no con-
tained in the dynamical equation of fluid motion, but it is the sensus on the scaling exponent of the pressure spectrum and
least understood quantifyt,2] due to the difficulty inherent on the Kolmogorov similarity scaling.
in measuring this term by conventional equipment. There is In this paper, we measure the static pressure fluctuation in
an immense literature on the scaling properties of the veloca fully developed turbulence and study how the spectral form
ity field [3], but despite the dynamical importance of thevaries depending on the Reynolds number. Especially, the
pressure relating to these scaling properties, little attentiospectral exponent and constaidf, are studied from the
has been paid to the scaling properties of the pressure. Kostandpoint of Kolmogorov scaling. We compute the probabil-
mogorov presented hypotheses for small-scale statistidsy density functions and compare them with DNS in order to
based on the idea of local isotropY], which is restated by ascertain the qualitative accuracy.
the relation The data were measured on the center line in a free jet. A

o 34 74 small wind tunnel with a 48 40 mnt nozzle size and a large
Epp(k1)=p™(e)™ v dp(kim), (D wind tunnel with a 406700 mn? nozzle was operated in

for the case of pressure fluctuation, wheres kinetic vis- }Qsitveall(t)?rig rZ?)rz]giz ?efxf L'Jri ?é;sjurrgélsfiliéthuea?gﬁ r\‘/’Jle?lf)c\i/te -in
cosity, {z) is energy dissipation rate per unit mass on anthe r)1/ozzle exit was Iesé than 0.5%. On the center line dgwn-
average, andn is a typical length scale defined by i 26 x/D=<35 (D =40 4'00 . th le width
=(»3/(e))¥ The wave number is defined ty=2xf/U, > cam c&X/D= (D=40, mm, the nozzle widy

; . . velocity and pressure fluctuation were measured for 15 min
wheref is the time frequency and the local mean velocity. at a frgquencg/ of 10 kHz. The Reynolds numbers are in the

fgt" elss t?) Tﬁg%{;gﬁgnﬂ ;?25:3:;‘ f'll'S;u%rteigﬁure spectrum rerange of 206=R, <1200, wherer, is the Taylor microsca!e
Reynolds number. We used aprobe made of tungsten wire
+oo with a diameter of¢=5um and a sensitive length dof
([5‘([3)]2):] Epp(k1)dky, (20 =0.7mm. The probe was operated by a constant-
0 temperature anemometer set at a distance of 2 mm from the
pressure probe. Velocity and pressure fluctuations were mea-
§(51red at the same time.

The measurement of pressure fluctuation in the flow field
was accomplished with a small piezoresistive transducer
(Model XCS062, TEAC/KULITE and a standard quarter-

Epp(ky) = Kpp2<s>4’3k[7/3. (3)  inch condenser microphorislodel 7017, Aco Co., Ltd The

transducer has a frequency response from dc up to 150 kHz

The —7/3 power-law scaling was supported theoreticallywith a dynamic range of 3)610° Pa. The maximum errors
with various assumptions in the 1950s by Batchdld},  contained in linearity and hysteresis are 0.25%. A micro-
Inoue[5], and Obukhoff and Yaglori6]. George, Beuther, phone is available for measuring the frequency of-Z0
and Arndt[7] and Joneset al. [8] measured the pressure X 10° Hz. The lower frequency is restricted due to its me-
spectrum in the mixing layer of a round jet, and Ellip®]  chanical system. The dynamic range isx<20 ?~3.2
and Albertsoret al.[10] measured the pressure in the atmo-x 10° Pa, so a very small amplitude can be measured. The
spheric boundary layer. But all these experiments were nagbrobe is a standard Pitot-static tube measuring 1.0 mm in
enough to ascertain the power-law scaling exponent and theutside diameter and 0.1 mm in thickness as indicated in Fig.
scaling form of Eq(3). The relation was also investigated by 1. Four static-pressure holé&4 mm in diametgrare spaced
analyzing the data of direct numerical simulati@bbrevi- 90° apart and located at a distance of 22 tube diameters from
ated as DNpof homogeneous isotropic turbulendel—14.  the tip of the probe to minimize sensitivity to cross-flow
However, the Reynolds number was too low to confirm theerror. The leeward end is terminated by the microphone or

wherep is the instantaneous fluctuation afy is its aver-
age. When the Reynolds number becomes large, according
Kolmogorov’s idea, the spectrum exhibits a simpler form
independent of kinetic viscosity:

1063-651X/2003/6@)/0263095)/$20.00 68 026309-1 ©2003 The American Physical Society



Y. TSUJI AND T. ISHIHARA PHYSICAL REVIEW E68, 026309 (2003

®=0.4mm ®=1.0mm

_ L | i | L ] 1
10'8.0 1.0 2.0 3.0 4.0
t[sec]

FIG. 2. Typical example of pressure fluctuationRt=1150.
FIG. 1. Schematic view of static pressure prothés a diameter  Vertical axis is normalized by its standard deviation.
of sensor. It is 7.0 and 1.6 mm for microphone and transducer,
respectively. in Fig. 2. It is noted that the pressure fluctuation has occa-
sionally large negative values. This negative spike is charac-

transducer. The sensor diameters dre=1.6 mm andd,,  teristic of pressure fluctuation.
=7.0 mm for the transducer and microphone, respectively. ~ DNS of incompressible homogeneous turbulence was per-
The transducer can detect the low-frequency pressure, biRfmed using periodic boundary conditions of periods of 2
its amplitude cannot be small. The measurable amplitudd €ach of the three Cartesian coordinate directions. There
was put at more than 10 Pa. The microphone can detect @€ three different runs in whicR, =94(N=256"), 164N
very small amplitude, but low-frequency data cannot be ob=512"), and 283\ =1024). Here,N is the number of grid
tained. This ability is the reverse to a transducer. Thus, foints. An almost statistically stationary state was achieved
microphone is preferred for use with a low Reynolds-numbe#ith an energy flux nearly equal to the energy dissipation
flow because of its small amplitude but moderate-scale motate (¢) in the case ofR, =283. Detailed explanations on
tions with a frequency of more than 20 Hz. The static presPNS are given in Ref{18].
sure increases with the Reynolds number, and large-scale The probability density functio{PDF) of pressure is
motions are generated accordingly. In this condition, a transpegatively skewed. This was established in the early 1990s
ducer is used instead of a microphone for measurement. W 9,20. In Fig. 3 measured datD and +) are compared
suppose that a microphone is available ufRfe=350, buta  With DNS (solid line). Both Reynolds nl_meers are almost
transducer may be used beyond this Reynolds number. ~ the same. The symba represents the microphone measure-
The sensors were fitted with tubing as a pressure duct, an#ent and+ represents the transducer, respectively. The mi-
were inserted into the flow domain in such a way that thecrophone is available for low Reynolds number upRg
axis of the microphonéor the transducgiitself was aligned =350. The transducer, however, cannot be adopted below
with the mean stream. We have preliminarily checked théR\=300. PDF shifts to the positive side and its maximum
angle between the pressure probe and the flow direction fd?€ak locates a little away from=0. There is a small quali-
its effect on the measured data. The error was less than 2.5%tive difference between DNS and microphone around
for —15<¢@<+15. Statistical quantities such as spectrum|p/p’|<1, as shown in the inset. On the positive side, ex-
and probability distribution function did not change signifi- Perimental values are slightly larger than those for the DNS.
cantly while # was not so large. They are closer to the Gaussian profitltted ling. On the
The frequency response of the system is limited by théiegative side;-6<p/p’<0, PDFs agree with one another
Helmholtz-resonator response of the tube and sensor cavigpfficiently.

[7,16,17. This frequency is calculated by Inertial scaling for pressure fluctuations is considered in
terms of a one-dimensional spectrul, (k;). George,

Us /S Beuther, and Arndt derived the spectral form in the case of
o Ny 4 homogeneous constant-mean-shear fl@yv They predicted

that the pressure spectrum is generated by three distinct types
whereV is the cavity volumef is the tube length; is the of interaction in the velocity fields. In the inertial range the
sound velocity, ands is the cross sectiofsee also Fig. )1 ~ Spectra associated with these three interaction modes exhibit
Here, V=nd26/Am* and S=m(0.8x10 324 m?. The ki, ky®® andk ' George, Beuther, and Arnfi] and
resonant frequency was computed to be 2.1 and 12.0 kHz feloneset al.[8] measured the pressure in the mixing layer of
the microphone and transducer, respectively. Standing wavé round jet. They observed these different power-law expo-
causes a small disturbance in pressure fluctuation. This fréents, but the scaling range was too narrow to determine the
quency is given byf=U./\s, wherexJ4=¢. f. is about power-law exponent. Later, Kim and Antonia compared
2.4 kHz for microphone and 4.6 kHz for transducer, respecJones’s pressure spectrum with their DIN&2] and found
tively. The spatial resolution is estimated to be a few timeghat the inertial range property was not sufficiently resolved.
tube diameter. Then, the corresponding frequenty, Elliott [9] and Albertsoret al.[10] measured the pressure in
—U,/(nxd), is taken into account in the measurementsthe atmospheric boundary layer. They reporigeck; -
Here,U. is the local mean velocity] is probe diameter, and and k1_3’2 relation, respectively. Albertsoat al. concluded
nis to be from 2 to 5f, is of the order of 1.0 kHz atJ,  that this is due to the effect of large-scale motions in the
=5.0m/s. We set the low-pass filter by checking the fre-flow. According to the recent DN, is approximately
guency spectra. An example of measured pressure is plottemoportional tok1’5’3, unlike Eq.(3), in the wave number

026309-2



SIMILARITY SCALING OF PRESSURE FLUCTUATION . .. PHYSICAL REVIEW B8, 026309 (2003

IOOE T T T T T T I T T ?
10"; 1
2 F :
.(';)1 L 0. :
o _2' '
% 10 E. E
2 b ;
= -3
s '0F El:
Kol C it
e - 1r
oW 10 3
SAE
107 -

FIG. 3. PDF of measured pressysymbolg are compared with DN$solid line9. p’ is a standard deviation @ Insets show the core
region|p/p’|<3.0. Dotted line is Gaussian profile.

range where the energy spectrum exhibits closeEtg  in low Reynolds numbers. This trend is similar to the results
«k; 3 [12-14. In the high Reynolds number DN,  of DNS[12-14. But the exponents certainly approach 7/3
=480, exponent—7/3 was approximately observgd5]. as the Reynolds number increases. This fact is consistent
Considering these previous studies, the power-law exponeni(ith the recent highest resolution DN&4]. In this experi-

of E,, is not clarified at this stage and the validity of Eg) ~ Ment, the —7/3 power-law scaling is confirmed for 600

remains to be proven. <R,.
A power-law exponent of pressure spectrum is systemati- The scaling exponent is about 1.95 R{=200. It is
cally obtained by fitting the relation slightly larger than the 5/3 observed in the DNR-14. We
suppose that this discrepancy is due to the different shape of
Epp(ki) =Kpp*(e)¥ "k 5) " 7, (5)  spectral bump of DNS and that of the experiment. In Fig. 5,

the pressure spectra are normalized in Kolmogorov scaling
against the measured spectrum, while the normalized spegefined by Eq(3). As the Reynolds number increases, there
trum E,,/(k, %)~ 7 shows the broadest flat regioky is a  appears a flat region where we expect the inertial range. In
nondimensional quantity. In Fig. 4, the scaling exponents the dissipation region, there is a small bump for 0.03
are plotted as a function &, . They indeed depart from 7/3 <k, 7. It takes a maximum arourkl »=0.14. However, in
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FIG. 4. Scaling exponeng, and constaan, defined by Eq(6) are plotted as a function of Reynolds number.
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FIG. 5. Pressure spectra are normalized by Kolmogorov scaling

defined by Eq(4). FIG. 6. Velocity and pressure spectra are normalized by

e e - . Kolmogorov scales.
low Reynolds numbers it is difficult to distinguish between 9

the inertial range and the bump region. Thus, the power-law ) ) o _ _
exponenty, inevitably represents the slope of the beginningiNg region than the velocity. This is consistent with t.he result
part of the bump. Gotoh and Fukayama reported that théhat the higher Reynolds number is needed to realize a clear
—5/3 slope observed in DNS is due to the spectral bump-7/3 power-law scaling. Hill and Wilczak derived an exact
aroundk»=0.2 [15]. Comparing the spectral bump in the relation between the pressure structure funct{pnp,]?)
experiment with that of DNS, the bump exists at almost the=([ p(x-+r)—p(x)]?) and the fourth-order velocity struc-
same location (0.08k7), but the DNS bump steeply in- ture  functions, L(r)=([Au,]*=([u(x+r)—u(x)]*,
creases and takes its maximumkaj=0.2. The maximum  T(r)={[Av, ] ={([v(x+r)—v(X)]*%, and M (r)
value, depending on the Reynolds number, is clearly large& ([ Au,]?[Av,]?), under the assumptions of local isotropy
than that in the experiment. It is noted that the high frequenf21]. Here,u is the stream-wise and is the vertical velocity
cies around the bump do not contribute to the negative tail Of:omponent. Hill and Boratav applied the relation to a low
PDF. The negative tail consists of sharp pressure spikes ggeynolds number experiment and to a DNS wRp= 82,
shown in Fig. 2. _ _ . and concluded that the greater Reynolds number is necessary
There has been little discussion as to the value of a spegor the pressure structure function to achieve its inertial-
tral constant. We had systematically obtairelby means  range behaviof23]. This is consistent with our experiment.
of Eq. (5), which are indicated in the inset of Fig. K is a Nelkin and Chen[25] computed the pressure structure
increasing function oR, and it is 5.6-1.0 atR,=1000. By  function in terms of velocity structure functiohgr), T(r),
fitting Eq. (3) against the measured spectrum within 0.02and M(r) obtained by an atmospheric experiment Ryt
<k;7=<0.03 atR, =420 in Fig. 5K, is about 2.2. The flat =10000. They concluded th&fAp,]?) is extremely sensi-
region is very narrow, but this value is similar to that of tive to the small differences in scaling among the three quan-
Gotoh and Fukayama who reported <I§,<3.64 atR, tities, L(r), T(r), andM(r). The power-law exponents of
=480. As the constark, is about 6.5 alR,=1030, We  pressure structure functiogy” defined by([Apr]”)ocrgl(wp)
conclude that the Reynolds number dependende,af not was derived asg(zp):l_ﬂ, or the spectral exponent ig

negligible. _ i i
The exponenty, approaches 7/3 wheR, is larger than :é(lfdg)Tir;:sFi\éalge 's close to the present resultRyt

600. This is a significantly higher Reynolds number than
needed for inertial scaling in velocity statistics. A typical We are grateful to Professor T. Gotoh, Professor K. R.
example of velocity and pressure spectrum is indicated irBreenivasan, and Professor Y. Kaneda for their valuable com-
Fig. 6. The pressure spectrum has a noticeably narrower scahents and advice on the draft version of this paper.

[1] A.S. Monin and A.M. Yaglom,Statistical Fluid Mechanics 148 155(1984).

(MIT, Cambridge, MA, 1975 \ol. 2. [8] B.G. Jones, R.J. Adrian, C.K. Nithianandan, and H.P. Plan-
[2] M. Nelkin, Adv. Phys.43, 143(1994). chon, Jr., AIAA J.17, 449(1979.
[3] K.R. Sreenivasan and R.A. Antonia, Annu. Rev. Fluid Mech. [9] J.A. Elliott, J. Fluid Mech53, 351(1972.

29, 435(1997. [10] J.D. Albertson, G.G. Katul, M.B. Parlange, and W.E. Eich-
[4] G.K. Batchelor, Proc. Cambridge Philos. Sd&, 359(1951). inger, Phys. Fluid40, 1725(1998.
[5] E. Inoue, Geophys. Ma@3, 1 (1951). [11] A. Pumir, Phys. Fluid$, 2071(1994.

[6] A.M. Obukhoff and A.M. Yaglom, National Advisory Com- [12] T. Gotoh and R. Rogallo, J. Fluid MecB96, 257 (1999.
mitte for Aeronautics, Technical Memorandur@5Q 1 (1953. [13] P. Vedula and P.K. Yeung, Phys. Fluiti, 1208(1999.
[7] W.K. George, P.D. Beuther, and R.E.A. Arndt, J. Fluid Mech.[14] N. Cao, S. Chen, and G.D. Doolen, Phys. Fluids 2235

026309-4



SIMILARITY SCALING OF PRESSURE FLUCTUATION . .. PHYSICAL REVIEW B8, 026309 (2003

(1999. [19] M.E. Brachet, Fluid Dyn. Res8, 1 (199J.

[15] T. Gotoh and D. Fukayama, Phys. Rev. L&, 3775(2001J). [20] S. Fauve, C. Laroche, and B. Castaing, J. Phys3, IR71
[16] Y. Kobashi, J. Phys. Soc. Jph2, 533(1957. (1993.
[17] Y. Shirahara and K. Toyoda, Japan Soc. Mech. Engine&9ng [21] R.J. Hill and J.M. Wilczak, J. Fluid Mecl296, 247 (1995.

3381(1993 (in Japanese [22] J. Kim and R.A. Antonia, J. Fluid Mecl251, 219(1993.

[18] T. Ishihara and Y. Kaneda, iRroceedings of the International [23] R.J. Hill and O.N. Boratav, Phys. Rev.35, R2363(1997.

Conference on Statistical Theories and Computational Ap{24] T. Ishihara, Y. Kaneda, M. Yokokawa, K. Itakura, and A. Uno,
proaches to Turbulen¢ce2001, edited by Y. Kaneda and T. J. Phys. Soc. Jpr7.2, 983(2003.
Gotoh (Springer, Tokyo, 2002 p. 178. [25] M. Nelkin and S. Chen, Phys. Fluid®, 2119(1998.

026309-5



