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Strongly nonlinear long gravity waves in uniform shear flows

Wooyoung Choi
Department of Naval Architecture and Marine Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA

~Received 14 January 2003; published 12 August 2003!

Long surface gravity waves of finite amplitude in uniform shear flows are considered by using an asymptotic
model derived under the assumption that the aspect ratio between wavelength and water depth is small. Since
its derivation requires no assumption on wave amplitude, the model can be used to describe arbitrary amplitude
waves. It is shown that the simple model captures the interesting features of strongly nonlinear solitary waves
observed in previous numerical solutions. When compared with the case of zero vorticity, the solitary wave in
uniform shear flows is wider when propagating upstream~opposite to the direction of surface drift!, while it is
narrower when propagating downstream. For the upstream-propagating solitary wave, a stationary recirculating
eddy appears at the bottom when wave amplitude exceeds the critical value. For the case of downstream
propagation, no eddy forms at the bottom but the solitary wave becomes more peaked, yielding a cusp at the
critical wave amplitude, beyond which the solitary wave has a round wave profile. Although the appearance of
the derivative singularity is inconsistent with the long-wave assumption in the model, round wave profiles
away from the singularity are qualitatively similar to numerical solutions and observation.

DOI: 10.1103/PhysRevE.68.026305 PACS number~s!: 47.32.2y, 47.35.1i, 47.15.Ki
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I. INTRODUCTION

When gravity waves propagate on the surface of sh
flows, it is no longer appropriate to adopt the assumption
irrotational flows under which most theories for surfa
waves have been developed. See, for example, Mei@1# for a
review of irrotational water wave theories and Choi@2# for
recent advances. Linear long gravity waves in shear flo
were first considered by Burns@3#, who examined the rang
of long-wave speed for general velocity profiles. For line
gravity waves of arbitrary wavelength in water of fini
depth, Yih@4# investigated the linear stability of shear flow
in detail.

After Benjamin@5# developed a weakly nonlinear theo
for steady solitary waves, Freeman and Johnson@6# derived
the Korteweg–de Vries equation to describe the time evo
tion of weakly nonlinear waves in shear flows of arbitra
vorticity distribution, but little progress has been made b
yond the weakly nonlinear regime. When a strong shear
rent is present in shallow water, it has been shown that
effect of strong nonlinearity on the propagation of surfa
gravity waves needs to be taken into consideration@7#.

To isolate the effect of background vorticity and to avo
mathematical complexity, a simple case of constant vortic
has been often considered by assuming that the detailed
ticity distribution is unimportant for long waves. Even fo
this simple uniform shear for which all perturbations are
rotational, only numerical approaches using the boundary
tegral method have been adopted to find finite amplitu
solitary wave solutions@7–9#. Numerical solutions for stead
waves are valuable but it is rather difficult to study their tim
evolution with the full Euler equations. Therefore a simp
model capturing the salient features of strongly nonlin
waves will be very useful.

Here we derive an asymptotic model for long surfa
gravity waves of large amplitude in shallow water of co
stant vorticity and analytically study strongly nonlinear so
tary wave solutions. The derivation of the model based o
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systematic expansion method is presented in Sec. III.
ratio between water depth and characteristic wavelengt
assumed to be small but no assumption on wave amplitud
imposed. Similar asymptotic expansion methods have b
successfully applied to interfacial gravity waves between t
fluids @10–12#. Solitary wave solutions of the model ar
compared with weakly and fully nonlinear solutions in Se
IV.

II. BASIC EQUATIONS

For an inviscid and incompressible fluid of densityr, the
two-dimensional velocity components (U,V) in Cartesian
coordinates and the pressureP satisfy the Euler equation
and the continuity equation given by

Ut1UUx1VUy52Px /r, ~1!

Vt1UVx1VVy52Py /r2g, ~2!

Ux1Vy50, ~3!

whereg is the gravitational acceleration. Since the equat
for vorticity v(5Vx2Uy) is given, from Eqs.~1!–~3!, by
dv/dt50, any two-dimensional perturbations to flow wit
constant vorticity are irrotational. The boundary conditions
the free surface and the bottom are given by

z t1U zx5V, P50 at y5h1z~x,t !, ~4!

V50 at y50, ~5!

where z(x,t) is the surface elevation andh is the water
depth.

For the case of constant negative vorticityv52V, as
shown in Fig. 1, the dispersion relation between linear wa
speedcl and wave numberk is given @7# by
©2003 The American Physical Society05-1
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cl
6

Agh
5FS 12

tanh~kh!

2kh D6Atanh~kh!

kh S 11F2
tanh~kh!

4kh D ,

~6!

where the Froude numberF is defined by

F5
Vh

Agh
. ~7!

As kh→0, cl is reduced to the linear long-wave speed,c0,
given by

c0
6

Agh
5

F

2
6A11

F2

4
. ~8!

III. MODEL FOR STRONGLY NONLINEAR LONG WAVES

To derive the model, we first nondimensionalize physi
variables as

x5Lx* , y5hy* , t5~L/Agh!t* , ~9!

P5~rgh!P* , z5hz* , U5AghU* , V5eAghV* ,
~10!

whereL is a typical horizontal length scale ande5h/L is
assumed to be small for long waves. When we substi
Eqs.~9! and~10! into the horizontal momentum equation~1!
and the continuity equation~3!, we have, after taking the
depth mean of the equations and dropping all the aster
@11#,

h t1~hŪ !x50, h511z~x,t !, ~11!

~hŪ ! t1~hUU !x52h P̄x , ~12!

where f̄ is the depth mean quantity defined by

f̄ ~x,t !5
1

hE0

11z

f ~x,y,t !dy. ~13!

The vertical momentum equation~2! can be written as

Py5212e2@Vt1UVx1VVy#, ~14!

FIG. 1. Uniform shear flow.
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and the vorticityv is given by

v52Uy1e2Vx . ~15!

For uniform shear flow, the velocity field can be decompos
into

~U,V!5~U01u,v !, U0~y!5Fy, ~16!

whereU0(y) is the rotational basic flow and (u,v) are the
irrotational perturbation velocity components.

From Eqs.~14! and~15!, we assume that all physical var
ables for irrotational flows can be expanded as

f ~x,y,t !5 f 01e2f 11O~e4!, f 5~u,v,P!. ~17!

Substituting Eqs.~16! and ~17! into Eqs.~14! and ~15! with
v52F, we have the leading-order equation as

u0y50, v0y52u0x , P0y521, ~18!

where the continuity equationux1vy50 has been used
Then the first-order solutions can be found as

u05u0~x,t !, v052u0xy, P052~y2h!, ~19!

where the boundary conditions,v50 at y50 andP50 at
y5h, have been imposed.

Similarly the second-order solutions can be found,
O(e2), as

u1~x,y,t !52
1

2
u0xxy

21 f 1~x,t !,

v1~x,y,t !5
1

6
u0xxxy

31 f 1xy
2, ~20!

and, from Eq.~14!, the second-order pressureP1 is given by

P15
1

2
G~x,t !~y22h2!1

F

3
u0xx~y32h3!, ~21!

where

G~x,t !5u0xt1u0u0xx2u0x
2 . ~22!

From Eqs.~19! and ~21!, the right-hand side of Eq.~12! is
obtained as

P̄x5zx2
1

h S 1

3
h3G1

F

4
h4ūxxD

x

1O~e4!. ~23!

Also, from Eq.~16!, hŪ andhUU in the left-hand sides of
Eqs.~11! and ~12! can be written as

hŪ5hS F

2
h1ūD , hUU5hS F2

3
h312U0u1uuD ,

~24!

and, from Eqs.~19! and ~20!, we have found that
5-2
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2hU0u5FS h2ū2
1

12
h4ūxxD1O~e4!,

huu5hūū1O~e4!. ~25!

By substituting Eqs.~23! and~25! into Eqs.~11! and~12!, we
finally obtain, after some manipulation, the following evol
tion equations forū andh:

h t1Fhhx1~hū!x50, ~26!

ūt1ū ūx1zx5
1

h Fh3

3
~ ūxt1ū ūxx2ūx

21Fhūxx!G
x

.

~27!

Since we have imposed no assumption on wave amplitu
the system of Eqs.~26! and~27! can be regarded as a mod
for strongly nonlinear long waves. The first equation imp
ing the mass conservation is exact and the second equ
from the horizontal momentum equation has an error
O(e4). The horizontal momentum equation~27! can be re-
written, in a conserved form, as

S ū1
1

6
h2ūxxD

t

1S 1

2
ū21h D

x

5Fh2

2 S ūxt1
2

3
ū ūxx2ūx

21
2

3
FhūxxD G

x

~28!

or, after multiplying byh, as

S hū1
F

2
h2D

t

1S hū21
1

2
h21Fh2ū1

F2

3
h3D

x

5Fh3

3
~ ūxt1ū ūxx2ūx

21Fhūxx!G
x

. ~29!

These two different forms of equations imply conservation
vorticity and momentum, respectively.

When no shear is present (F50), Eqs.~26! and~27! can
be reduced to the set of equations, first derived by Green
Naghdi @13# using the so-called director-sheet metho

whose solitary wave solution is given by

02630
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z5a sech2@k~x2ct!#, k25
3a

4~11a!
, c2511a.

~30!

It is well known that the highest irrotational solitary wav
has a 120° angle at the crest, where the long-wave appr
mation ceases to be valid. Therefore the irrotational mo
with F50 becomes invalid as wave amplitude approac
the maximum value.

Weakly nonlinear waves

For weakly nonlinear waves ofa/h5O(e2) where a is
typical wave amplitude, Eqs.~26! and~27! can be reduced to
the Boussinesq equations if we substituteh51 and neglect
the quadratic nonlinear terms in the right-hand side of E
~27!. The kinematic equation is the same as Eq.~26!, while
the dynamic equation becomes

ūt1ū ūx1zx5
1

3
~ ūxxt1Fūxxx!. ~31!

For unidirectional waves, we can reduce the system of eq
tions given by Eqs.~26! and ~31! to the Korteweg–de Vries
~KdV! equation@5,6#:

z1c0zx1c1zzx1c2zxxx50, ~32!

wherec0 is defined in Eq.~8! andc1 andc2 are given by

c15
~c02F !312~c02F !1F

11~c02F !2 , c25
~c02F !3

3@11~c02F !2#
.

~33!

The well-known solitary wave solution of Eq.~32! is given
by

z5asech2@k~x2ct!#, k25
ac1

12c2
, c5c01

ac1

3
.

~34!

IV. SOLITARY WAVES

For traveling waves, we assume
z5z~X!, ū5ū~X!, X5x2ct. ~35!

y
FIG. 2. The right-hand side of Eq.~37! shows that solitary wave solutions exist only in shaded areas.~a! Upstream-propagating solitar
waves ofc5c2, ~b! subcritical solitary waves propagating downstream (c5c1, a1,b1), ~c! supercritical solitary waves (c5c1, a1

.b1).
5-3
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After substituting Eq.~35! into Eq.~26! and integrating once
we obtain the following expression forū in terms ofh

ū5cS 12
1

h D1
F

2 S 1

h
2h D , ~36!

where we have imposed the zero boundary conditions foz

andū at both infinities. After integrating once the two diffe
ent forms of the horizontal momentum equations given
Eqs. ~28! and ~29!, and subtracting each other, we have t
following first-order ordinary differential equation forz:

zX
25

z2~a12z!~z2a2!

~z2b1!2~z2b2!2[
z2N@z#

~D@z#!2 , ~37!

where we have used Eq.~36! and imposed the zero bounda
conditions at both infinities forz andzX to find solitary wave
solutions. In Eq.~37!, a6 are two roots ofN@z#50 given by

N@z#52z22S 41
12

F2D z1S 12

F2D ~c22Fc21!50,

~38!

andb6 are two roots ofD@z#50 given by

D@z#5z212 z12S 12
c

F D50. ~39!

FIG. 3. Solitary wave profiles of wave amplitudea50.5:
downstream-propagating waves ~—-! with F51;
upstream-propagating waves~- - - -! with F51; pure gravity
waves~— - — -! with F50.
02630
y

For solutions of Eq.~37! to be bounded and physical (z
.21), a solitary wave has to be always positive with wa
amplitudea[a1 . Note thata2 is always less than21,
which is unphysical. By settingzX50 ~equivalently,N@z#
50) at z5a, the wave speedc can be found as

c6~a!5
F

2
6A11a1

F2

12
~a214a13!, ~40!

which can be reduced to the linear long-wave speedc0
6 as

a→0. The left- and right-going waves have wave speed
c2,c0

2,0 andc1.c0
1.0, respectively.

As illustrated in Fig. 2, there are three cases of inter
depending on the behavior of the denominator of Eq.~37!.
For upstream-propagating waves (c5c2), the denominator
of Eq. ~37! never vanishes and solitary wave solutions
ways exist for all wave amplitudes@see Fig. 2~a!#. For
downstream-propagating waves (c5c1), c.(F/2) and the
denominator of Eq.~37! may vanish atz5b6 . In particular,
b1.0 deserves attention sinceb1 can lie in between the
interval 0,b1,a, which is the physical range ofz. When
the wave amplitude is small,b1 is greater thana and no
singularity appears inside the physical range ofz ~Fig. 2b).
As the wave amplitude increases,a approachesb1 and both
numerator and denominator vanish at the critical wave a
plitude (a5b1). This critical condition between wave am
plitude and the Froude number can be written, from E
~38! and ~39!, as

F25
12

3a319a218a
. ~41!

FIG. 4. The critical condition between the Froude number a
wave amplitude, given by Eq.~41!.
q.
FIG. 5. Subcritical case: comparison of strongly nonlinear solitary waves ofa51 ~——-! propagating downstream, governed by E
~37!, with weakly nonlinear waves~- - - -! governed by Eq.~32! for three different~subcritical! Froude numbers (F50,0.3,0.6).
5-4
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FIG. 6. Solitary wave solu-
tions ~—-! of Eq. ~37! compared
with weakly nonlinear solitary
waves ~- - - -! governed by Eq.
~32!, and numerical solutions (d)
by Vanden-Broeck @8#. ~a! a
50.2, F50.114; ~b! a51, F
50.148.
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Beyond the critical wave amplitude, the slope becomes i
nite (zX5`) at a point wherez5b1 @Fig. 2~c!#.

Solitary wave solutions can be found implicitly, by inte
grating Eq.~37!, as

case~a!: X52H@z;c2#1H@a1 ;c2#,

case~b!: X5H@z;c1#2H@a1 ;c1#,

case~c!: X52H@z;c1#1H@a1 ;c1# for b1<z<a1

X5H@z;c1#2H@b1 ;c1#1X0 for 0<z<b1 ,

where

H@z;c#5E z D@z#

zAN@z#
dz52AN@z#2S 6

F2D sin21S 2z1b

2a11b D
1

2~12c/F !

Aa1
2 1ba1

~ ln z2 ln@2~a1
2 1ba1!2bz

12A~a1
2 1ba1!N@z##!,

X05H@a1 ,c1#2H@b1 ,c1#, andb54112/F2.
Before we present wave profiles for different regimes,

first compare in Fig. 3 irrotational (F50) and rotational
(F51) solitary waves ofa50.5 propagating upstream an
downstream. Since waves are symmetric, we only sho
half of the wave profile. As pointed out by Benjamin@5#
based on his weakly nonlinear theory, the vorticity typica
lengthens the solitary wave propagating opposite to the
rection of surface drift, while it shortens the wave propag
ing in the same direction of surface drift.
02630
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A. Waves propagating downstream

For fixeda ~or F), as shown in Fig. 4, the condition give
by Eq.~41! determines the critical Froude numberFc ~or the
critical wave amplitudeac). For example, whena51, the
critical Froude number isFc5A15/5'0.775. For the sub-
critical case (F,Fc), as the Froude number approaches
the critical value, Fig. 5 shows that solitary waves beco
more peaked. When compared with weakly nonlinear wav
we can see that strongly nonlinear waves become narro
as the Froude numberF increases. In Fig. 6, solitary wav
solutions of Eq.~37! for the subcritical case are compare
with exact numerical solutions by Vanden-Broeck@8#, and
we note that the strongly nonlinear model shows be
agreement than the weakly nonlinear KdV model as wa
amplitude increases.

As the Froude number further increases and reaches
critical value given by Eq.~41!, solitary wave is finite but
has a cusp at the peak withzX(0)→`. Beyond the critical-
ity, although the derivative singularity appears atX5X0

wherez(X0)5b1 with 0,b1,a, strongly nonlinear soli-
tary waves become round. Figure 7 shows wave profiles
three different supercritical Froude numbers (F51, 2, and
4!, and the weakly nonlinear theory never describes this t
of solitary wave. Wave profiles of higher amplitudea
510,20, and 40 forF51 are shown in Fig. 8

From Eq.~37!, the behavior ofzX nearX5X0 is approxi-
mated byzX;21/(z2b1) and its solution can be found a
z2b1;6uX2X0u1/2, where the positive~negative! sign is
taken for X,X0 (X.X0). Therefore we can see that th
supercritical solitary wave solution has the square-root s
gularity in the derivative.
q.
FIG. 7. Supercritical case: comparison of strongly nonlinear solitary waves ofa51 ~——-! propagating downstream, governed by E
~37!, with weakly nonlinear waves~- - - -! governed by Eq.~32! for three different~supercritical! Froude numbers (F51,2,4).
5-5
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B. Waves propagating upstream

For upstream-propagating waves (c5c2), the denomina-
tor never vanishes for realz and b6 is purely imaginary.
Therefore smooth solitary waves exist for any wave am
tude and Froude number, as shown in Fig. 9. When co
pared with the KdV theory, upstream propagating solita
waves of large amplitude are always wider than weakly n
linear waves.

As the leading-order approximation, the total stream fu
tion C can be written, in a frame moving with wave speedc,
as

C~X,y!5
F

2
y22c y1ū~X!y, ~42!

which, at the bottom and the free surface, becomesC(X,0)
50 andC(X,h)52c1(F/2), respectively. AtX50, C in
Eq. ~42! can be rewritten, from Eq.~36!, as

C~0,y!5
F

2
y~y2y0!, ~43!

wherey0 is given by

y05a111
~2c/F !21

a11
. ~44!

FIG. 8. Strongly nonlinear solitary waves ofa510, 20, and 40
with F51 propagating downstream.
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From Eq.~43!, whenc,(F/2), we can see that the sign o
stream functionC can change from negative to positive
between the bottom and the free surface (0,y,11a),
wheny0 is positive. This implies that there is a chance fo
recirculating eddy of amplitudey0 to appear at the bottom
This happens only to upstream-propagating waves when
wave amplitude is large enough. Fory0 to be positive and
less thana11, we have, from Eq.~44!, the following con-
dition

F

2
@12~a11!2#,c,

F

2
. ~45!

It is interesting to note that, from the condition given by E
~45!, the minimum wave amplitude for a stationary eddy
appear is exactly the same as that for the occurrence of
gularity in zX given by Eq.~41!. For example, the minimum
wave amplitude forF51 is a'0.738 and the size of the
eddy grows as wave amplitude increases. Figure 10 sh
the streamlines for the Froude numberF51 and wave am-
plitude a52, and a well-defined eddy is observed.

V. DISCUSSION

We have derived a set of evolution equations for stron
nonlinear long waves in uniform shear flows and found la

FIG. 10. Streamlines for a upstream-propagating solitary w
with F51 anda52.
FIG. 9. Comparison of strongly nonlinear solitary waves ofa51 ~——-! propagating upstream, governed by Eq.~37!, with weakly
nonlinear waves~- - - -! governed by Eq.~32! for different Froude numbers (F50.5,1,2).
5-6
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amplitude solitary wave solutions propagating both upstre
and downstream. A solitary wave propagating opposite to
direction of surface drift~upstream! can induce a steady re
circulating eddy at the bottom when wave amplitude exce
the critical value. For waves propagating in the same dir
tion as the surface drift, smooth solitary waves cease to e
at the critical wave amplitude, beyond which new round so
tary wave solutions with infinite wave slopes symmetrica
disposed on both sides of the wave are found.

The appearance of the derivative singularity for large a
plitude waves in shear flows is somewhat puzzling since
inconsistent with the original long-wave assumption in t
model. This singularity disappears at the irrotational lim
(F50) and therefore is associated with pure rotational w
modes in a thin layer of constant vorticity. In other word
solitary wave solutions of the same problem without grav
(g50) will also have the derivative singularity. Previou
numerical solutions@7,8# in fact show that rotational solitary
wave has a corner of 120° at the critical~not necessarily
e
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maximum! wave amplitude, beyond which waves becom
round and multivalued in the limit of zero gravity. Any long
wave model cannot describe a multivalued wave profile a
a solution with infinite slope can be considered as an
proximation to such a wave profile. Round and wider solita
wave solutions away from the singularity are qualitative
similar to what have been observed in the surf zone@7# and
earlier numerical solutions of the full Euler equations@8#.
More careful comparison with numerical solutions is nec
sary to validate our solutions for very large amplitude rou
waves.

Here we only consider traveling wave solutions but,
using the model, one can study the evolution of large ro
tional solitary waves, including their stability and interactio
Also the effect of bottom topography can be easily includ
in the model and it would be interesting to examine whet
the rotational model better predicts the dynamics of shal
water waves in the surf zone, where the horizontal vortic
is easily generated by wave breaking.
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