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Strongly nonlinear long gravity waves in uniform shear flows
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Long surface gravity waves of finite amplitude in uniform shear flows are considered by using an asymptotic
model derived under the assumption that the aspect ratio between wavelength and water depth is small. Since
its derivation requires no assumption on wave amplitude, the model can be used to describe arbitrary amplitude
waves. It is shown that the simple model captures the interesting features of strongly nonlinear solitary waves
observed in previous numerical solutions. When compared with the case of zero vorticity, the solitary wave in
uniform shear flows is wider when propagating upstréapposite to the direction of surface dyjftvhile it is
narrower when propagating downstream. For the upstream-propagating solitary wave, a stationary recirculating
eddy appears at the bottom when wave amplitude exceeds the critical value. For the case of downstream
propagation, no eddy forms at the bottom but the solitary wave becomes more peaked, yielding a cusp at the
critical wave amplitude, beyond which the solitary wave has a round wave profile. Although the appearance of
the derivative singularity is inconsistent with the long-wave assumption in the model, round wave profiles
away from the singularity are qualitatively similar to numerical solutions and observation.
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[. INTRODUCTION systematic expansion method is presented in Sec. Ill. The
ratio between water depth and characteristic wavelength is
When gravity waves propagate on the surface of sheaassumed to be small but no assumption on wave amplitude is
flows, it is no longer appropriate to adopt the assumption ofmposed. Similar asymptotic expansion methods have been
irrotational flows under which most theories for surfacesuccessfully applied to interfacial gravity waves between two
waves have been deve|oped. See, for examp'e,[Mébr a fluids [10—13 SO|itary wave solutions of the model are
review of irrotational water wave theories and Cha] for ~ compared with weakly and fully nonlinear solutions in Sec.
recent advances. Linear long gravity waves in shear flows$V-
were first considered by Burri8], who examined the range
of long-wave speed for general velocity profiles. For linear Il. BASIC EQUATIONS
gravity waves of arbitrary wavelength in water of finite
depth, Yih[4] investigated the linear stability of shear flows ~ For an inviscid and incompressible fluid of densitythe
in detail. two-dimensional velocity componentdJ(V) in Cartesian
After Benjamin[5] developed a weakly nonlinear theory coordinates and the pressuPesatisfy the Euler equations
for steady solitary waves, Freeman and Johri§jmerived ~ and the continuity equation given by
the Korteweg—de Vries equation to describe the time evolu-

tion of weakly nonlinear waves in shear flows of arbitrary Uit UU,+VUy=—Py/p, (1)
vorticity distribution, but little progress has been made be-
yond the weakly nonlinear regime. When a strong shear cur- Vi+UVy+VVy=—P,/p—g, 2
rent is present in shallow water, it has been shown that the
effect of strong nonlinearity on the propagation of surface Uyt Vy=0, 3)

gravity waves needs to be taken into considerafidn

To isolate the effect of background vorticity and to avoid
mathematical complexity, a simple case of constant vorticit
has been often considered by assuming that the detailed v
ticity distribution is unimportant for long waves. Even for
this $|mple uniform shear for which all pgrturbatlons are ir- .t e surface and the bottom are given by
rotational, only numerical approaches using the boundary in-

tegral method have been adopted to find finite amplitude

whereg is the gravitational acceleration. Since the equation
ﬁor vorticity w(=V,—U,) is given, from Eqs(1)—(3), by
(ﬁ’w/dtzo, any two-dimensional perturbations to flow with
constant vorticity are irrotational. The boundary conditions at

solitary wave solutiong7—9]. Numerical solutions for steady LGFU L=V, P=0 at y=h+{(x.), ()
waves are valuable but it is rather difficult to study their time

evolution with the full Euler equations. Therefore a simple V=0 at y=0, ®)
model capturing the salient features of strongly nonlinear

waves will be very useful. where {(x,t) is the surface elevation anid is the water

Here we derive an asymptotic model for long surfacedepth.
gravity waves of large amplitude in shallow water of con- For the case of constant negative vorticiby=—(), as
stant vorticity and analytically study strongly nonlinear soli- shown in Fig. 1, the dispersion relation between linear wave
tary wave solutions. The derivation of the model based on apeedc, and wave numbek is given[7] by
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FIG. 1. Uniform shear flow.
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As kh—0, c, is reduced to the linear long-wave speegl,
given by
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I1Il. MODEL FOR STRONGLY NONLINEAR LONG WAVES
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and the vorticityw is given by
w=—U,+€e?V,. (15)

For uniform shear flow, the velocity field can be decomposed
into
(U,V)=(Ug+u,v), Un(y)=Fy, (16)
whereUy(y) is the rotational basic flow andu(v) are the
irrotational perturbation velocity components.
From Eqgs(14) and(15), we assume that all physical vari-
ables for irrotational flows can be expanded as
f(x,y,t)y=fo+€e*f,+0(e*), f=(uo,P). (17
Substituting Eqs(16) and (17) into Egs.(14) and(15) with
o= —F, we have the leading-order equation as

onzo, on:_UOX, Poy:_l, (18)

where the continuity equation,+v,=0 has been used.
Then the first-order solutions can be found as

Po=—(y—m), (19

where the boundary conditions=0 aty=0 andP=0 at
y= 7, have been imposed.

Similarly the second-order solutions can be found, at
O(€?), as

Ug=Uog(X,1), vo=—UqyY,

1
ug(x,y,t)=— EUOXXy2+ f1(x,1),

To derive the model, we first nondimensionalize physical

variables as

t=(L/\gh)t*, 9)

x=Lx*, y=hy*,

P=(pgh)P*, {=h{*, U=\ghU*, V=e\ghV*,
(10

wherel is a typical horizontal length scale ard=h/L is

1
vi(X,y,t)= gquxxy3+flxy21 (20)

and, from Eq/(14), the second-order pressupg is given by

1 F
P1=3GOD(Y2~ 1)+ FUoaly*— 7)), (2D

assumed to be small for long waves. When we substitutg here

Egs.(9) and(10) into the horizontal momentum equati¢h

and the continuity equatio3), we have, after taking the

G(X,t) = Uqyi+ UgUoxx— ng' (22)

depth mean of the equations and dropping all the asterisks

[11],
m+(nU)=0, 7=1+{(x,1), (12)
(7U)+(7UU) = — 7Py, (12

wheref is the depth mean quantity defined by

£( t—ifl+§f t)d 13
(X! )_7’ 0 (va!) y ( )

The vertical momentum equatid@) can be written as

Py=—1—€V,+UV,+VV,], (14)

From Egs.(19) and (21), the right-hand side of Eq12) is
obtained as

— 1/1 3 F —
szgx_; §7IG+Z77UXX

+0(€e%). (23

Also, from Eq.(16), U and »UU in the left-hand sides of
Egs.(11) and(12) can be written as

— F2 -
pUU= 77<?r;3+ 2U0u+uu>,
(24)

_ F _
nU=n(§n+u ,

and, from Eqgs(19) and (20), we have found that
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3
+0(€eY), {=asech[k(x—ct)], k2:4(1—ja)’ c’=1+a.

- — 1
2nUou=F| n U= 757 Uxx
(30)

— 4
nuu=guu+0(e?). @9 |t is well known that the highest irrotational solitary wave

has a 120° angle at the crest, where the long-wave approxi-
mation ceases to be valid. Therefore the irrotational model
with F=0 becomes invalid as wave amplitude approaches
the maximum value.

By substituting Eqs(23) and(25) into Eqs.(11) and(12), we
finally obtain, afte_rsome manipulation, the following evolu-
tion equations fou and #:

7t Eypnet (7u),=0, (26) Weakly nonlinear waves
_ 7”2 - _ For weakly nonlinear waves ai/h=0(e?) wherea is
Uit Uu Uyt = — ?(uxﬁr U Uyy—Ug+F Uy, | . typical wave amplitude, Eq$26) and(27) can be reduced to
7 x the Boussinesq equations if we substitgyte 1 and neglect

(27) the quadratic nonlinear terms in the right-hand side of Eq.
{27). The kinematic equation is the same as E2§), while

Since we have imposed no assumption on wave amplitud ) ;
the dynamic equation becomes

the system of Eq926) and(27) can be regarded as a model
for strongly nonlinear long waves. The first equation imply- o 1 _ o
ing the mass conservation is exact and the second equation Ug+ U Uyt £ = = (Ut Flyyy). (31
from the horizontal momentum equation has an error of 3

O(e%. The horizontal momentum equatié®7) can be re-

: . For unidirectional waves, we can reduce the system of equa-
written, in a conserved form, as

tions given by Eqs(26) and(31) to the Korteweg—de Vries

1 1 (KdV) equation[5,6]:
Ut = 72Uy | +| sUP+ )
67 M) l2m T L+ Col+ Cadlict Caliex=0, (32
n(— 2 2 — wherec, is defined in Eq(8) andc; andc, are given by
= [7 Uyt §U uxx_azx+ §F 77uxx) (28) 0 ' 2
x (co—F)3+2(co—F)+F (co—F)3
C1= , Cp= .
or, after multiplying by, as ! 1+(co—F)? 2 3[1+(co— F)Z](SS)
2 2 la 2,- ’ 3 The well-known solitary wave solution of E¢32) is given
nut 57| | gutt St Eptut ooy by Yy g
t X
7’ — — — ac ac
=[?(Uxt+uuxx—a>2<+|:7luxx) : (29) {=asech[Kk(x—ct)], Ki=-rt, C=Co+ ==
x 12c, 3
(34)

These two different forms of equations imply conservation of
vorticity and momentum, respectively. IV. SOLITARY WAVES
When no shear is preserft€0), Egs.(26) and(27) can
be reduced to the set of equations, first derived by Green and For traveling waves, we assume
Naghdi [13] using the so-called director-sheet method, o
whose solitary wave solution is given by ={(X), u=u(X), X=x—ct. (35

C ; gx C‘x

J 7 K_/b g br/b o N

(a) (b) (c)

FIG. 2. The right-hand side of E¢37) shows that solitary wave solutions exist only in shaded afea&lpstream-propagating solitary
waves ofc=c~, (b) subcritical solitary waves propagating downstreams=¢", a, <b,), (c) supercritical solitary wavescEc™, a,
>b,).
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FIG. 4. The critical condition between the Froude number and
wave amplitude, given by Eq41).

FIG. 3. Solitary wave profiles of wave amplitude=0.5: For solutions of Eq(37) to be bounded and physical (
downstream-propagating waves (—-) with F=1; >—1), a solitary wave has to be always positive with wave
upstream-propagating waves - - -) with F=1; pure gravity —amplitudea=a, . Note thata_ is always less than-1,
waves(— - — -) with F=0. which is unphysical. By settingy=0 (equivalently,N[ /]

o _ ) _ =0) at{=a, the wave speed can be found as
After substituting Eq(35) into Eq.(26) and integrating once,

we obtain the following expression forin terms ofn . F F? s
Cf(a)zgi 1+a+1—2(a +4a+3), (40)
w1 1) . F ( 1 ) 36
=c|ll-—=|+%|——7n]|, . . .
u 7] 2\7m 7 (36) which can be reduced to the linear long-wave spegds

. N a—0. The left- and right-going waves have wave speed of
where we have imposed the zero boundary conditiong for ¢~ <cy <0 andc’>c; >0, respectively.
andu at both infinities. After integrating once the two differ-  As illustrated in Fig. 2, there are three cases of interest
ent forms of the horizontal momentum equations given bydepending on the behavior of the denominator of &7).
Egs.(28) and(29), and subtracting each other, we have theror upstream-propagating waves=(c ), the denominator

following first-order ordinary differential equation fd of Eq. (37) never vanishes and solitary wave solutions al-
) ) ways exist for all wave amplitudefsee Fig. 2a)]. For
§2:§ (a+—g”)(§—a,): NI (37) downstream-propagating waves={c™), ¢>(F/2) and the
X ({=b)*({—b_)* (D[LD* denominator of Eq(37) may vanish at=b.. . In particular,

. b, >0 deserves attention sinde. can lie in between the
where we have used E(B6) and imposed the zero boundary jterval 0<b, <a, which is the physical range @ When

condjtions at both infinities fof and{y to find solita.ry Wave  the wave amplitude is smalb, is greater thara and no
solutions. In Eq(37), a. are two roots oN[{]=0 given by  gingyarity appears inside the physical range @Fig. 2b).

12 As the wave amplitude increasesapproache® . and both
_2) (c?~Fc—1)=0, numerator and denominator vanish at the critical wave am-
F plitude (@=b,). This critical condition between wave am-
plitude and the Froude number can be written, from Egs.
(38) and(39), as

N[¢)= ¢

12
4+a i+

andb.. are two roots oD[ {]=0 given by

¢ F—_ 12 (41)
1=g)=0 (39 3a%+9a’+8a’

D[{]=8%+2¢+2 S

S/h

FIG. 5. Subcritical case: comparison of strongly nonlinear solitary waves=df (——-) propagating downstream, governed by Eq.
(37), with weakly nonlinear waveé - - -) governed by Eq(32) for three different(subcritica) Froude numbersK=0,0.3,0.6).
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0.2 1
0.8 .
0.15 FIG. 6. Solitary wave solu-
0.6 tions (—-) of Eq. (37) compared
S/h o1 04 with weakly nonlinear solitary
’ waves (- - - -) governed by Eq.
0.05 02 (32), and numerical solutions®)
0 by Vanden-Broeck[8]. (a) a
0 > =02, F=0.114; (b) a=1,F
0 2 4 6 8 10 12 4 8§ 10 12 I4 = ®)
=0.148.
x/h x/h
(a) (b)
Beyond the critical wave amplitude, the slope becomes infi- A. Waves propagating downstream

nite ({x=1=) at a point where&=b_ [Fig. 2c)].
Solitary wave solutions can be found implicitly, by inte-  For fixeda (or F), as shown in Fig. 4, the condition given

grating Eq.(37), as by Eq.(41) determines the critical Froude numidey (or the
- B critical wave amplitudea.). For example, whem=1, the
case(): X=—H[{c™]+H[a, ;e ], critical Froude number i$.=/15/5~0.775. For the sub-

critical case F<F.), as the Froude number approaches to
the critical value, Fig. 5 shows that solitary waves become
more peaked. When compared with weakly nonlinear waves,
we can see that strongly nonlinear waves become narrower

case(b): X=H[{;c"]-H[a,;c"],

casec): X=—-H[{;cT]+H[a,;c™] for b .s{¢<a,

_ R ot 14 </< as th_e Froude numbe¥ increases._ !n Fig. 6, solitary wave
X=HI&e J=HIb, ;e ]+ X, for 0=Z<b., solutions of Eq.(37) for the subcritical case are compared
where with exact numerical solutions by Vanden-Brog&, and

we note that the strongly nonlinear model shows better

¢ D[{] 6\ . 20+8 agreement than the weakly nonlinear KdV model as wave
H[é“:C]:f \/—déz - \/N[Z]—(§> sin~t 8.+ 5 amplitude increases.
¢VNLZ] " As the Froude number further increases and reaches the
2(1—clF) critical value given by Eq(41), solitary wave is finite but
(InZ—In[2(a% + Ba,)— B¢ has a cusp at the peak witf(0)— . Beyond the critical-
vai+pay ity, although the derivative singularity appears Xt X,
I RN where ¢(Xy) =b, with 0<b,<a, strongly nonlinear soli-
+2y(@s+ pa NI, tary waveg become round. Figure 7 shows wave profiles for
Xo=H[a, ,c*]-H[b, ,c*], andB=4+12F2. three different supercritical Froude numbefs=(1, 2, and

Before we present wave profiles for different regimes, we); anc_i the weakly nonlinear th_eory never describes_ this type
first compare in Fig. 3 irrotational{=0) and rotational ~©f Solitary wave. Wave profiles of higher amplituce
(F=1) solitary waves ofi=0.5 propagating upstream and =10,20, and 40 foF =1 are shown in Fig. 8
downstream. Since waves are symmetric, we only show a From Eq.(37), the behavior ofy nearX= Xy is approxi-
half of the wave profile. As pointed out by Benjamig]  mated by{x~—1/({—b,) and its solution can be found as
based on his weakly nonlinear theory, the vorticity typically {—b, ~ =|X—X,|Y?, where the positivénegative sign is
lengthens the solitary wave propagating opposite to the ditaken for X<X, (X>X;,). Therefore we can see that the
rection of surface drift, while it shortens the wave propagat-supercritical solitary wave solution has the square-root sin-

ing in the same direction of surface drift. gularity in the derivative.
1 1
08 08
06 06
C/h
04 04
02 0.2
0
o os I 15 2 25 3 0o os I 15 2 25 3
x/h x/h
FIG. 7. Supercritical case: comparison of strongly nonlinear solitary wavas-df (——) propagating downstream, governed by Eq.

(37), with weakly nonlinear waveé - - -) governed by Eq(32) for three different(supercritical Froude numbersH=1,2,4).
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FIG. 8. Strongly nonlinear solitary waves af= 10, 20, and 40
with F=1 propagating downstream.

B. Waves propagating upstream

For upstream-propagating waves<c ™), the denomina-
tor never vanishes for real and b.. is purely imaginary.

PHYSICAL REVIEW E68, 026305 (2003

Y/h

0 2 4 ] 8 10

FIG. 10. Streamlines for a upstream-propagating solitary wave
with F=1 anda=2.

Therefore smooth solitary waves exist for any wave ampli-F"om E.(43), whenc<(F/2), we can see that the sign of
tude and Froude number, as shown in Fig. 9. When comstréam functior can change from negative to positive in
pared with the KdV theory, upstream propagating solitaryP&tween the bottom and the free surface<{6<1+a),

waves of large amplitude are always wider than weakly nonWhenyy is positive. This implies that there is a chance for a

linear waves.

recirculating eddy of amplitudg, to appear at the bottom.

As the leading-order approximation, the total stream func-This happens only to upstream-propagating waves when the
tion ¥ can be written, in a frame moving with wave speed Wave amplitude is large enough. Fgg to be positive and

as

F —
V(Xy)= 5y =cy+uX)y, (42)

which, at the bottom and the free surface, becoi¢X,0)
=0 and¥(X,n)=—c+(F/2), respectively. AX=0, ¥ in
Eq. (42) can be rewritten, from Eq36), as

F
W (0y)=5y(y=Yo), (43
whereyy is given by
a1 (2c/F)—-1 44
Yomatlt i1 “49

less thama+ 1, we have, from Eq(44), the following con-
dition

F F
5[1—(a+1)2]<c<—.

5 49

It is interesting to note that, from the condition given by Eg.
(45), the minimum wave amplitude for a stationary eddy to
appear is exactly the same as that for the occurrence of sin-
gularity in {x given by Eq.(41). For example, the minimum
wave amplitude forF=1 is a~0.738 and the size of the
eddy grows as wave amplitude increases. Figure 10 shows
the streamlines for the Froude number1 and wave am-
plitudea=2, and a well-defined eddy is observed.

V. DISCUSSION

We have derived a set of evolution equations for strongly
nonlinear long waves in uniform shear flows and found large

S/h

x/h

x/h

FIG. 9. Comparison of strongly nonlinear solitary wavesaef1 (——-) propagating upstream, governed by E87), with weakly
nonlinear waveg- - - -) governed by Eq(32) for different Froude numberd(=0.5,1,2).
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amplitude solitary wave solutions propagating both upstrearmaximum) wave amplitude, beyond which waves become
and downstream. A solitary wave propagating opposite to theound and multivalued in the limit of zero gravity. Any long-
direction of surface drifupstreanm can induce a steady re- wave model cannot describe a multivalued wave profile and
circulating eddy at the bottom when wave amplitude exceeda solution with infinite slope can be considered as an ap-
the critical value. For waves propagating in the same direcproximation to such a wave profile. Round and wider solitary
tion as the surface drift, smooth solitary waves cease to existave solutions away from the singularity are qualitatively
at the critical wave amplitude, beyond which new round soli-similar to what have been observed in the surf zpfeand
tary wave solutions with infinite wave slopes symmetrically earlier numerical solutions of the full Euler equatioi@.
disposed on both sides of the wave are found. More careful comparison with numerical solutions is neces-
The appearance of the derivative singularity for large amsary to validate our solutions for very large amplitude round
plitude waves in shear flows is somewhat puzzling since it isvaves.
inconsistent with the original long-wave assumption in the Here we only consider traveling wave solutions but, by
model. This singularity disappears at the irrotational limitusing the model, one can study the evolution of large rota-
(F=0) and therefore is associated with pure rotational wavdional solitary waves, including their stability and interaction.
modes in a thin layer of constant vorticity. In other words, Also the effect of bottom topography can be easily included
solitary wave solutions of the same problem without gravityin the model and it would be interesting to examine whether
(g=0) will also have the derivative singularity. Previous the rotational model better predicts the dynamics of shallow
numerical solution$7,8] in fact show that rotational solitary water waves in the surf zone, where the horizontal vorticity
wave has a corner of 120° at the critid@ot necessarily is easily generated by wave breaking.
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