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Bottleneck effect in three-dimensional turbulence simulations
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At numerical resolutions around 512nd above, three-dimensional energy spectra from turbulence simu-
lations begin to show noticeably shallower spectra tha?f® near the dissipation wave numbgbottleneck
effect”). This effect is shown to be significantly weaker in one-dimensional spectra such as those obtained in
wind tunnel turbulence. The difference can be understood in terms of the transformation between the one-
dimensional and three-dimensional energy spectra under the assumption that the turbulent velocity field is
isotropic. Transversal and longitudinal energy spectra are similar and can both accurately be computed from
the full three-dimensional spectra. Second-order structure functions are less susceptible to the bottleneck effect
and may be better suited for inferring the scaling exponent from numerical simulation data.
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[. INTRODUCTION [10,11], and it has previously been noticed that it is much
weaker when the one-dimensional energy spectra are used

Based on dimensional analysis, Kolmogorpil] con-  [9]. In the present paper we discuss a simple relation be-
cluded that the energy spectrum for isotropic hydrodynamigeween the one-dimensional and three-dimensional energy

turbulence has the form spectra, which agrees well with the simulation data and ex-
N plains this difference.
E(k)=Cyxe™k 1) The data we use for discussing the bottleneck effect are

from a weakly compressible isothermal three-dimensional
for wave numbers in the inertial range between the energy- forced turbulence simulation at a numerical resolution of
carrying and the dissipation wave numbley=e"*»"3* 1024 grid points. The forcing has vanishing net helicity and
(wherev denotes the kinematic viscosity,the spectral en-  he forcing wave numbék; is between 1 and 2. The box size
ergy flux, andCy is nowadays called the *Kolmogorov con- g —| =1 =2, which discretizes the wave numbers in

stant”). This scaling has been confirmed experimentally OVelnits ofk,=1. The viscosityw is chosen such that the Rey-

s_everal_ orders Of magnitude, 3. Nevertheless_, numerical nolds number based on the inverse mean forcing wave num-
simulations consistently show excess power just before the —

dissipation wave numbéc,, which manifests itself particu- P€'» Ums/ (vK¢), is around 1700. The Taylor microscale is
larly at high resolution[4]. This phenomenon has been V5Ums/ @ms~0.14, wherew,is the root mean square vor-
named “bottleneck effect]5,6] and is usually explained by ticity, so the corresponding Taylor microscale Reynolds
the lack of smaller-scale vortices at wave numblersky, number is 350. The average dissipation rates such that
which makes the energy cascade less efficient ardgnd kq/k;s is around 130. The root mean square Mach number is
According to a related interpretation, the bottleneck effect isoetween 0.17 and 0.20; for this type of weakly compressible
the consequence of viscosity stabilizing small vortex tubesimulations, we find that the energies of solenoidal and po-
against the kink instability7]. tential components of the flow have a rati,/Egq
The effect is particularly strong when an unphysical hy-~10 4-10 2 for most scales; only towards the Nyquist fre-
perviscosity is used; see Ref8,9] for results from two- quency the ratio increases to about 0.1. Even for Mach num-
dimensional hydromagnetic turbulence. In experimental datagers between 0.5 and 10, this ratio is only about 0.1-0.2
on the other hand, the bottleneck effect is less pronounceld2,13. It is thus reasonable to assume that compressibility
is irrelevant for the results presented here. This is also sup-
ported by the fact that incompressible pseudospectral simu-

*Electronic address: Wolfgang.Dobler@kis.uni-freiburg.de lations at a resolution of 1084how a bottleneck effedd].
TElectronic address: Nils.Haugen@phys.ntnu.no The simulations discussed here were carried out using a
*Electronic address: Tarek.Yousef@mtf.ntnu.no high-order finite-difference codgl4] and thus complement
SElectronic address: Brandenb@nordita.dk the results that have so far been obtained using spectral
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codes. Figure 1 shows the three-dimensional specE(k) 100 . .
together with the longitudinal and transversal one- 2
dimensional spectr&, (k) and Eq(k) in the upper panel. o M i
The “compensated spectra” in the lower panel allow easy I T
identification of the bottleneck effect and show that it is prac- g o4l "*";--\..,_._ i
tically present only in the three-dimensional spectis(k). 3 TN
In order to reduce the otherwise huge fluctuations, the = TN
one-dimensional spectra have been averaged horizontally, o 107 NS 1
r|l— E N
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EL(k) NN, pﬂEzl [U,(%p,¥q,K) |2, () _ | |
1 10 100
NN, Kk,
_ i 2 10.000 - -
Er(l)= N 2, 2006 Yo 0l 3 :
1.000¢
where[U, |2=[Uy/2+[uy|2. Here N -
| & o000}
u(x,y k)= —Z)mi S euxyz) @ i 5
o 27w N, & rren “ o010}
is the one-dimensional Fourier transform of the velocity vec- 0.001 .
tor u(x), andk scans the intervdlOky,|=[0,7/6z] at the : . . .
resolution sk=2#/L,. The three-dimensional spectrum 1 10 100
E(k) has been obtained by integrating the three-dimensional kfky

spectral energy densny over shel|s- ski2=<k<k; + ok/2 in FIG. 1. Comparison of the averaged one-dimensional longitudi-
analogy to Eq.(A6), W't_h Sk=2m/Ly (and L= Ly= L) nal and transversal spectig, (k) andE+(k), respectively, with the
The spectra are normalized such that three-dimensional spectrui(k) for a forced turbulence simulation
1 at 1024 grid points. Top: the spectra. Bottom: “compensated spec-
* _ P N e tra” e 2%PE(K), e ?*5°E 1(K); the horizontal line represents
fo E(k)dk= §<u >_3f0 EL(k)dk_3f0 Er(k)dk. a k™% Kolmogorov spectrum. The local maximum Btk) around
(5) k=30 represents the bottleneck effect. The dissipation wave num-
ber isky= Y44~ 200.

Il. RELATIONS BETWEEN THE ONE- AND (k!
THREE-DIMENSIONAL SPECTRA ElD(k):J (, )dk’, 0

While most experimental measurements yield longitudi- k

nal one-dimensional spectkg (k), the discussion of the re-

lation between the one-dimensiondfiD) and three- which can also be inverted to give

dimensional spectra is significantly simpler for the total one-

dimensional spectruri;p(k). We thus split this section in dE;p

two parts: we first outline the relations for the total one- E(k)= _kW’ 8

dimensional spectruri;p(k), while in the second part we

obtain analogous results for the longitudinal spectra, which o . )
are of direct relevance for experiments. provided the turbulence is isotropic. A{k) must be posi-
tive, Eq. (7) shows directly that the one-dimensional spec-

trum E;p (k) must be monotonously decreasing. On the other

A. The total one-dimensional spectrum hand, no such restriction holds f@(k), which is in fact
The total one-dimensional spectriap(K) is the sum of  increasing neak=0, sinceE(0)=0.
the longitudinal and twicéfor the two directionsthe trans- Equation(8) is a local relationship, and thus the func-
versal one-dimensional spectra, tional form of E(k) is fully determined by the local behavior
of E;p(k) at a given wave number. To relate it to the bottle-
E1p(K)=EL(K)+2Ex(k). (6) neck effect, we introduce the compensated spectra

It is thus in some sense “more isotropic” than its constitu- ~ 53 ~ e
ents which results in simpler relations to the fully isotropic Eip(k)=k>"Eip(k), E(K)=k>"E(k), 9
three-dimensional spectrum. In Sec. 1 of the Appendix we
show thatE; (k) is related toE(k) by and rewrite Eq(8) in the form
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5 dinEip(k) |-
3 dink

E(k)= Eip(K). (10

Several conclusions can be drawn from Ef$0). First, if
there is a finite interval where the Kolmogorov scalifig

holds for the one-dimensional spectrum, then the same scal-

ing will hold for the three-dimensional spectrum, and vice
versa. Further, Eq10) shows explicitly that even iE;p(Kk)
is monotonous and nonincreasirig(k) may show a maxi-

mum nearky, provided thatE; (k) bends towards the dis-
sipative range sufficiently suddenly. For example, if the one-
dimensional spectrum has the form

E1p(k) =k~ *%exd — (k/ky)"], (11)

then for small wave numberk the compensated three-
dimensional spectrum behaves like

5
3
which shows that there will be a bottleneck effect in the

three-dimensional spectrum when the one-dimensional spec-
trum falls off with an exponenh>5/3. Finally, if E;p(K)

shows a bottleneck effect, i.€6;p(k) shows a local maxi-
mum at some wave numbdy,, then Eq.(10) shows that

E(k) will also have an enhanced value therg(k,,)

=(5/3)E;p(ky), and thus the three-dimensional spectrum
E(k) must show a bottleneck effect, too.

12

- 5 k\"
E(k)~z+|n- K (for k<kg),

B. The longitudinal and transversal one-dimensional spectra

For isotropic turbulence, the one-dimensional longitudinal

PHYSICAL REVIEW E 68, 026304 (2003

E(k=k"E(k), EL(k=K"E(K), (17)
and rewrite Eq(15) in the form
~ 5& 13 ~ e
E= 9 -3 —KE| +K’E . (18

The conclusions that can be drawn from ELg) are similar
to those forE p(k). If there is a finite interval where the
Kolmogorov scalingg, (k) =Cge?3k 52 holds for the lon-

gitudinal spectrum(which implies E{ =E]=0), then the
same scaling will hold for the three- dlmensmnal spectrum,
and vice versa. The Kolmogorov constdiy of the three-
dimensional spectrum is then a factor 55M.1 larger than
the corresponding consta@f; for E, (k); cf. Eq.(16.37") of
Ref. [15].

Equation(18) shows that even iE, (k) is monotonously
nonincreasingE (k) may show a maximum nedq,, pro-
vided that the term involving, dominates over the curva-
ture termk®E] . Finally, if E, (k) shows a bottleneck effect,
then beyond the local maX|murEL(k)<0 If the maximum
is wide enough, Eq(18) implies thatE will show a bottle-
neck effect, too. The situation is less clealkﬁE (k) is

large [corresponding to a narrow maximum Bf (k)], but
numerical experiments with model spectra suggest that the

three-dimensional spectrud, (k) will still be nonmonoto-
nous, although it may vary in a more complicated manner.

Ill. SAMPLE SPECTRA
A. Model spectra

and transversal SpeCtra are related to the three-dimensional For illustration purposes, we consider a |0ng|tud|na| spec-

spectrum by(see Sec. 2 of the Appendix

1(= k? \ E(k
EL(k)zsz< —F)L—,)dk’ (13
1 (= k2 \E(k")
and
E(k)=K?E (k) —KE{ (k) (15

(the primes denoting derivativesDifferentiating Eq.(13),

we obtain
E/(k)=— kf

which shows thak, (k) [just like E;p(k)] must be monoto-
nously decreasing.

Equation(15) is again a local relationship, and thus the
functional form ofE(k) is fully determined by the local be-
havior of E, (k) at a given wave number. As in E¢(P), we
introduce the compensated spectra

d k'<O, (16)

trum of the form

—5/3
exl — (k/ky)"].

k

3

EL(k):(

The compensated spectrum E, (k)= (k/kq)*>3E (K)
=exfd —(k/ky)"] is monotonously decreasing and tHes(k)
shows no bottleneck effect at all. kt=k4 the compensated
three-dimensional spectrum has the value

(20)

which shows thaE(k4)>55/9 (a sufficient condition for the
bottleneck effect in the three-dimensional spectrufn
>(55/48)(—1)~1.97; this is illustrated in Fig. 2. A more

thorough analysis reveals tha(k) will have a maximum if
and only if n>5/3, but forn=2 the maximum is hardly
discernible.

As we have seen, in order to get a bottleneck effect, we
need a one-dimensional spectrum with a more complicated
form than justk~>3exp(—k/ky). One functional form where
this is given has been proposed by She and Jacksoh
based on experimental data:

026304-3



DOBLER et al. PHYSICAL REVIEW E 68, 026304 (2003
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FIG. 2. Compensated three-dimensional spectruiik) s

= (k/kq)**E(k) corresponding to the longitudinal spectrh®) for
exponents=1,2,4. The bottleneck effect appears for 2.

EL(k) k)5/3 8( k)l —0.6%/K 1.0
E (k,) (kp +0. K e . (21) f |
Figure 3a) shows this spectrurfifor E, (k,) =kp=1], to- "":.,
gether with the corresponding three-dimensional spectrum PPE \‘3;
(15). The compensated spectra clearly show a bottleneck ef- | | 55/12 i°°E it
. . . . - . T
fect in the three-dimensional spectrum, whicligsactically) 01F | 55/9 k°E N3 4
absent in the one-dimensional spectrum. C s ‘\‘t
Quian[16] has proposed a spectrum that shows quite a T SBETE i
marked bottleneck effect. Based on a closure model, he sug- by . . . A
gests the functional form 0.0001 0.0010 0.0100 0.1000  1.0000
ik,
2/3 _ 5
E(k)= 62/3k5/3[ 1.19+ 6.3]( _) exd —5.4(k/kg)*?]. FIG. 3. Comparison of compensated speéirék) andE(k) for
Kqg the models of She and Jackson, and of Qui@h.Longitudinal

(22 spectrum(21), together with the derived three-dimensional spectra,

. h he | itudinal h . . IIongitudinal and total 1D spectra; the spectra are normalized ac-
Figure 3b) s c_)WS the longitudinal and t ree.-dlmensmna. cording tok,=E (kp,)=1. Note the appearance of a mild bottle-
spectra. For this model, the bottleneck effect is very promi-

- . . neck effect, i.e., a maximum i&(k). (b) Three-dimensional spec-
ngnt .|nE(k), and aISQ eviden@lthough weakerin the lon- trum (22), together with the derived one-dimensional spectra; the
gitudinal one-dimensional spectruf (k).

spectra are normalized accordingkg=e=1. The bottleneck ef-

fect is quite pronounced and appears in both, one- and three-

B. Spectra from direct numerical simulations dimensional spectra. Note that in both plots, the amplitudes of the

one-dimensional spectra have been scaled to get matching plateaus

in the inertial range. The dotted horizontal lines are drawn for ori-
To avoid(double numerical differentiation of our spectra, entation.

we use a parametrization fdt, (k). The one-dimensional

spectrum shown in Fig. 1 is well approximated by the for-trum E (k) according to Eq(23), together with the derived
mula three-dimensional spectruB(k) from Eq. (15). Also shown
are data points from the numerical simulati@iamonds and
O/ T8, - tan . akdst ask+agk? crosses Comparing the calculated three-dimensional profile
ElN (k)= (k™ " +agk?)e™ 2 Trakradl’ (23)  (solid line) with the data point{crossek we find that Eq.
AeKT a7 (15) agrees quite well with the numerical data for not too
small k. The discrepancy for very small wave numbers can
be explained by the fact that the periodicity of the numerical

a=(2.1x 10 %,4.3,0.42,0.85,1.2,0.000480.0068,0.34,  POX Precludes isotropy at the largest scales.
It is quite evident from Fig. 4 thaE(k) shows a much

wherek= k/k,. The peak dissipation wave numbey~18  more pronounced local maximum near the dissipation wave
is the location of the maximum of the dissipation spectrumnumberky than doesE, (k). The width and structure of the
k?E,, and is about one order of magnitude smaller tkgn maximum is well reproduced by E¢L5) applied to our pa-
[10]. Figure 4 shows the parametrized one-dimensional specametrization(23) of E, (k).

1. Three-dimensional spectrum from Ek)

with
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10.00F 3 ment is quite good for both one-dimensional spectra apart

from the very lowest wave number.

1'005 E IV. STRUCTURE FUNCTIONS
:§ i Another classical tool in turbulence research is the inves-
& %% E tigation of structure functions]. The second-order structure
function
0.01g |+—+—+ 3 _ 2
3 E r)={[u(x)—u(x+r 24
E oo e E Sy(r)=([u(x) —u(x+r)]%) (24)
. . . is related to the three- and one-dimensional spectra via the
0.1 1.0, 10.0 Fourier-type integral transform(gf. Ref.[15])
k
- fpan o * sinkr
FIG. 4. Compensated longitudinal energy spectrkifiE, (k) Sz(r):4f 1— E(k)dk (25)
according to parametrizatiof23) and the corresponding three- 0 kr

dimensional spectrunk®3E(k) from Eq. (15). For comparison,
c.rosses. and diamonds show the spectra obFalned dlrectly frAc_)m the :4f (3— 3 coskr+kr sinkr)E, (k)dk. (26)
simulation. The spectra have been normalized by introdu&ing 0

=k/k,, EL.=E, /E (k,), andE=E/E, (k,), wherek, is the peak o o

dissipation wave number. The three-dimensional energy spectrufdimilarly, the longitudinal and transversal second-order
agrees quite well with the numerical data foe 45k, where sk structure functions

=27/L,~0.0&, is the wave number resolution.

SN =([u00 ~ux+12)]?), 27)
2. One-dimensional spectra from &) A
S =([u (%)~ u(x+1%)1%) (28)

In contrast to experiments, data from numerical simula-
tions easily provide the three-dimensional spectii(k).  can be expressed as
Sometimes it may be interesting to determine the one-
dimensional spectreE, (k) and Eq(k) from the three-
dimensional spectrum. The corresponding relatid8 and
(14) were given above. Here we apply them to our numerical
data to see how well the inferred one-dimensional spectra [ocalized variations oE (k) or E, (k) in wave number
agree with those directly obtained from the simulation dataspace, such as the bottleneck effect, will influeBgg) and
Figure 5 shows the longitudinal and transversal spectra obg{-/")(r) in a nonlocal fashion. Correspondingly, little in-
tained by applying Eqs.(13) and (14) to the three- gjght into the bottleneck effect can be expected from struc-
dimensional spectrum using the trapezoidal rule. The agrequre functions. On the other hand, this means that structure

functions are less sensitive to the bottleneck effect and might
o - - ] thus form a more robust tool for assessing scaling exponents
T and possibly even the Kolmogorov constant at moderate
1.00F o . = Reynolds number.
o Ko e XX oy ] However, while structure functions are much smoother
a D/uﬂ_uugmmasmﬂtb X""x tha_n spectra, their quling_ range is considerably smaller,
— .- - which adds its own difficulties to that method. In three nu-
0.10F Bﬁ% W merical simulations at 256512, and 1024 grid points, we
s no %] find the value of the structure function exponent derived
%] from S,(r) to be 0.74, 0.67, and 0.68, respectively, which is
o3 X B B quite close to Kolmogorov’'s value of 2/3. However, if we
0.01¢ ¥ use the two transversal and the longitudinal structure func-
b, . LB tions(corresponding to thedisplacement of tha,, u,, and
1 10 100 u, components of the velocity vecipthe values are far less
kit accurate and span the intervdl6.67,0.79, [0.62,0.72,

FIG. 5. Compensated one-dimensional energy spectra. Shomj}{).GO,O.?@, respectively, for the three resolutions, which in-
are the longitudinal spectruri, (k) and the transversal spectrum dicates that the convergence may not have yet been reached.
E(k). Data points obtained directly from the numerical simulation 1 he situation for the Kolmogorov constant is even worse,
are indicated as boxesE() and crossesHy). The dashed and because fronS,(r) we get the values 3.96, 1.93, 1.8, re-
dotted lines show the one-dimensional spectra obtained from Eqspectively, for the three resolutions. So in practice, the slow
(13) and (14), respectively. The spectra agree quite well with the convergence may well render this method more unreliable
numerical data fok=24k. than the use of one-dimensional spectra.

s(zL’T)(r):4f:(l—coskr)EL,T(k)dk. (29

—

PP E (k)

T
o X
1
m
1
M
b
O
1
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2.0[T ] T ] dimensional spectra has been known for 50 years, but it has
to our knowledge never been explicitly discussed in connec-
[ [ ] tion with the bottleneck effect. In the present paper, we have
15} . shown that much of the bottleneck effect seen in numerical

i ] turbulence simulations is simply the result of the mathemati-
cal discrepancy between the one- and three-dimensional
10k ] spectra.

- T The bottleneck effect has no evident manifestation in the

second-order structure functions, where localized features in
o5l €S, (r)/4.82]| 1 k space appear in a delocalized manner. This implies that in
[ A IR 11/3 (e8P 14.82| | order to obtain the asymptotic energy spectrum exponent it
e --—- 114 ey PSP 14.82]| ] may be easier to use second-order structure function expo-
= ; nents, although in practice the reduced scaling range may
0.0l 1 1 . e
0.01 010 1.00 render this method difficult.
kyr
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Similar to the spectra, the second-order structure func- AppENDIX: RELATIONS BETWEEN THE ONE- AND
tions can be transformed into each otk@ssuming isotropy THREE-DIMENSIONAL SPECTRA
according to the relations
In this appendix, we derive the relations between the
d§2L)(r) three-dimensional spectruf(k) and the one-dimensional
Sz(f)=fT+35(2L)(r), (30 spectraE (k), E_(k), E;p(k), most of which can also be
found in Refs[15,17,18.

S(zL)(r): %frsz(r’)r’zdr’, (32) 1. Total one-dimensional spectrum
re7o We derive the relation between the three-dimensional
W spectrum E(k) and the total one-dimensional spectrum
My 2N =S7(r) E.o(k)=E, (k) +2E1(k). Consider a periodic box of vol-
Sy (r)= : (32 : b .
2 umeV=L,L,L, with a turbulent velocity fieldi(x), which

has the Fourier transform
Like in the case of relation€l3)—(15), this has implications

for the monotonicity of the compensated structure functions . 1 .

< - - L u(k)= ———| ek *u(x)dx® (A1)

S(r)=Sr ?r) near the boundaries of the scaling interval; 2mavlv '

see also Refl6]. Normally, however, none of the structure

functions S,(r), SH(r), SiP(r) show a secondary bump with the inversion

near the edges of the scaling interval, as can be seen in Fig.

6, which implies that we cannot directly apply the results of \Vi o

Secs. Il and 11l to structure functions. u(x)= 2 )Sf e " u(kdke. (A2)
o

V. CONCLUSIONS The one-dimensional kinetic energy spectrum is

In this paper, we h:?\ve highlighted th_e disc_repancy be- <|C|(k)|2>
tween the one—d_lmensmnal and three-dimensional spectra. ElD(kz):zf f dkdk, (k,=0), (A3)
Well-known relations between the spectra show that the 2 Y
three-dimensional spectrum may show the bottleneck effect
even if the one-dimensional spectra do not show it at allwhere(-) denotes an ensemble average &rdKk, ky k,).
while the converse cannot happen. The spectra always agré@e factor 2 in Eq(A3) accounts for the fact thd,p does
in the inertial rangeE (k) <E, (k)«k %3, but in current nu-  not distinguish between positive and negatkse Normal-
merical simulations the length of the inertial range is limitedization of E;p(k;) is such that
to about one decade, so the discrepancy is quite noticeable.
Indeed, the topic of a bottleneck effect in hydrodynamic tur-
bulence has only emerged in the past ten years since humeri-
cal simulations have shown this to be a strong effect. On the
other hand, the relation linking one-dimensional to three-Equation(A3) can also be written as they average

u

- ms_ 1 [ ([u0l?)
JO ElD(kz)dkz: 2 =vaTdX3. (A4)
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1 - ) If we assume incompressibility, the longitudinal component
Eip(k)= WJ (lu(x,y,k,)|%ydxdy (A5)  F, vanishes, and thus
x=y

and is for homogeneous turbulence equa(l|ﬁ(x,y,kz)|2> at Foyk)=| 6,q— Kpkq Fr(k)=| 8.~ kpkq | E(K)
any point ,y). pa a2 T P k2 amk?’
The three-dimensional velocity energy spectrum is given (A13)
by
. and in particular
(luckol?)
s 2mF K)=|1- = | —, (A14)
k?) 2k?
whered(), denotes the solid angle elementkirspace E(k)
satisfies the relation K2\ E(k)
w2 27 Fy(K) +Fyy(K) 1= 1+ F)W (A15)

fo E(k)dk= 5 (A7)

The longitudinal one-dimensional spectrum
If u is statistically isotropic in the sense that the ensemble

average of the spectral energy of the velodity(k)|?) is F, (k)
only a function ofk= k|, thenE(k) becomes EL(kz)Ezf dekxdky (A16)
a(k)|?
E(k)=477k2<| (2)| >. (A8) thus becomes
e 1 (= K2\ E(k

To evaluateE, in this case, we introduce cylindrical coor- EL(kZ)zj F,(k)2mkdxk= Ef (1_ _; %dk,
dinates ,¢,k,) in k space and write the double integral 0 kz k
(A3) in the form (A17)

=(|G(k)|2) =(|0(k)|2) using the same substitution as in E49) above. Similarly,

ElD(kZ)=2f TZ’]TKdK=47Tf dek, we can write the transversal one-dimensional spectrum
0 K,
(A9)

_ Fxx(K) +Fyy(k)
: 2_12_ 12 - , Er(k,)=2 — dk.dk,, (A18)
sincex“=k“—k%. Comparing with Eq(A8), we see that

*E(k) in the form
Eanl)= | Spdk (A10)
’ [ K| EK)
the inversion of which gives Er(ky) = ka 1+ E Tdk- (A19)
dE;p(k dinE;p(k
E(k)= _k%()z _Eand+T<() (A11) Taking the derivative of EqLA17), we find
Ei(k) (= E(K)
2. The longitudinal and transversal one-dimensional spectra Ko, de, (A20)
z z
In this section, we derive the relation between the longi-
tudinal and transversal one-dimensional energy spectrand thus
E, (k), E7(k), and the three-dimensional energy spectrum
E(k). E(k)=Kk?E] (k) —KE[ (k). (A21)
For homogeneous, isotropic turbulence, the energy spec-
trum tensor is given bysee, e.g., Ref§15,17,18) Inserting this relation into Eq(A19) allows us to express
E;(k) throughE, (k) as
k k
/0 - _ _ pRq
Fpq(k)=(Up(k) U5 (K9) =[FL(k) ~Fr(k) 1= 5 + Fr(k) 3y o ER E oo
(A12) neye 2 2
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