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Complex Ginzburg-Landau equation with nonlocal coupling

Dan Tanaka and Yoshiki Kuramoto
Department of Physics, Graduate School of Sciences, Kyoto University, Kyoto 606-8502, Japan

~Received 17 April 2003; published 26 August 2003!

A Ginzburg-Landau-type equation with nonlocal coupling is derived systematically as a reduced form of a
universal class of reaction-diffusion systems near the Hopf bifurcation point and in the presence of another
small parameter. The reaction-diffusion systems to be reduced are such that the chemical components consti-
tuting local oscillators are nondiffusive or hardly diffusive, so that the oscillators are almost uncoupled, while
there is an extra diffusive component which introduces effective nonlocal coupling over the oscillators. Linear
stability analysis of the reduced equation about the uniform oscillation is also carried out. This revealed that
new types of instability which can never arise in the ordinary complex Ginzburg-Landau equation are possible,
and their physical implication is briefly discussed.
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I. INTRODUCTION

Oscillatory reaction-diffusion systems are generally
duced to the complex Ginzburg-Landau~CGL! equation by
means of the so-called center-manifold reduction when
local oscillators are close to their supercritical Hopf bifurc
tion point @1#. This fact led to a now widely accepted vie
that, without resorting to individual systems, one may co
centrate on CGL if one wishes to gain a qualitative und
standing of some universal dynamical features shared c
monly by a broad class of oscillatory reaction-diffusio
systems. This view in fact underlies a vast amount of work
the past~see Refs.@2,3# for review! devoted to CGL. How-
ever, due to its local nature of coupling, CGL may fail
capture some important aspects of the dynamics charact
tic to a certain class of oscillatory reaction-diffusion system

In fact, it was argued recently that a situation may ar
where the oscillator coupling becomes effectively nonloc
and as a consequence the system exhibits such peculia
namics as can never be seen in CGL@4,5#. This suggests tha
there remains a yet unexplored area of reaction-diffusion
tems where nonlocal effects on the pattern dynamics m
seriously be considered. In the present paper, we are
cerned with how this area is still accessible within the fram
work of the center-manifold reduction. It will turn out tha
this can actually be achieved by a slight extension of
conventional reduction scheme.

Effective nonlocality in coupling may become releva
when the reaction-diffusion system involves three or m
chemical components. Suppose that the system of conce
such that the chemical components constituting the local
cillators are free of diffusion, i.e., the oscillators remain u
coupled, while the system involves an extra diffusive co
ponent which, for its diffusive nature, plays the role of
coupling agent. By eliminating mathematically this diffusiv
component, the system becomes a field of nonloc
coupled oscillators possibly involving delay also. The ma
goal of the present paper is to achieve a reduction of s
reaction-diffusion systems to a universal equation of
Ginzburg-Landau type without missing the effects of non
cality.

It may seem that the center-manifold idea would not wo
1063-651X/2003/68~2!/026219~8!/$20.00 68 0262
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for our purpose because CGL is believed to be quite a g
eral result of the center-manifold reduction. Still there see
to be a way out within the same framework if we slight
extend the conventional method of reduction. Note first t
under usual conditions the disappearance of the effect
nonlocality near the bifurcation point comes from that t
characteristic wavelengthl p of the pattern becomes fa
longer than the effective coupling radius. If so, it may ha
pen that nonlocality persists even close to the bifurcat
point when the system involves a certain parameter wh
suitable tuning, as the bifurcation point is approached, ke
l p comparable with the effective radius of coupling. Simil
physical idea lies behind the multiple bifurcation theo
which aims to capture such complex dynamics as is abse
the vicinity of a simple bifurcation point.

Section II starts with introducing a universal class of o
cillatory reaction-diffusion systems involving three or mo
chemical components. After briefly discussing its physi
relevance, we proceed to its reduction near the Hopf bi
cation. If a certain parameter associated with the strengt
effective nonlocal coupling is as small as the bifurcation p
rameter, the reduced equation turns out to take the form
nonlocally coupled complex Ginzburg-Landau equatio
Analytic formulas for some coefficients of this equation a
given, which would be of great help in inferring possib
ranges of the parameters in the original system wh
nonlocality-dominated pattern dynamics is expected. R
garding the derivation of the reduced equation, our prim
concern is the case when direct oscillator coupling is abs
but the effects of weak diffusive~i.e., direct! coupling will
also be considered. In Sec. III, linear stability analysis of o
nonlocal CGL is carried out about the uniform oscillatio
The resulting eigenvalue spectra, especially those of
phase branch, can be qualitatively different from those of
standard CGL, whose physical implication is discussed
short summary will be given in the final section.

II. A UNIVERSAL CLASS OF REACTION-DIFFUSION
SYSTEMS AND THEIR REDUCTION

The reaction-diffusion model of our concern was pre
ously proposed by one of the present authors@4# and is given
by the general form
©2003 The American Physical Society19-1
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] tX5f~X!1kg~S!, ~1!

t] tS52S1D¹2S1h~X!. ~2!

Here then-dimensional real vector fieldf represents a loca
limit-cycle oscillator with dynamical variableX, so that the
first equation withk50 represents a field of continuous
distributed oscillators without mutual coupling. The full sy
tem involves an additional chemical component with conc
tration S whose dynamics is governed by the second eq
tion. This component simply diffuses and decays at
constant rate, while it is produced locally as represented
the termh(X), the production rate depending on the loc
value of X. The dynamics of the local oscillators is influ
enced in return by the local concentration ofS, and this effect
is represented by the termkg(S). We do not know any ex-
perimental system which can directly be related to o
reaction-diffusion model, although biological populatio
such as cellular slime molds and oscillating yeast cells un
glycolysis, and also the recent series experiments by Va
and Epstein@6# using the Belousov-Zhabotinsky reaction d
persed in water-in-oil aerosol OT microemulsion show a p
tial similarity to our model in that the coupling between t
local oscillators is mediated by some diffusive chemicals

For the sake of convenience, we inserted in Eq.~2! pa-
rametert to indicate explicitly the time constant ofS, antici-
pating a limiting case in whicht is vanishingly small. Note
that there is no direct coupling among the local oscillato
while their indirect coupling is provided by the diffusiv
chemical represented byS. In later discussions, we will gen
eralize the above model by assumingg andh to depend both
on X and S , and also by including a small diffusion term
i.e., weak direct coupling in Eq.~1!. Throughout the presen
paper, the spatial extension of the system is supposed s
ciently large.

Let the spatially uniform steady state of our system
given by (X,S)5(0,0), or equivalently, we measureX andS
always from their equilibrium values. Thus, we clearly ha
h(0)50. It is also convenient to arrangef andg so that the
equalitiesf(0)5g(0)50 may be satisfied. If we like,Smay
be eliminated from the system by solving Eq.~2!, which can
be done explicitly because the equation is linear. If the s
tial dimension isd, the solution of Eq.~2! is given by

S~r,t !5~2p!2dE dqexp~ iq•r!E
2`

t dt8

t

3expS 2~11Dq2!
t2t8

t Dhq~ t8!, ~3!

wherehq(t8) is the spatial Fourier transform ofh„X(r,t8)….
Equation~1! with S given by Eq.~3! constitutes a field of
nonlocally coupled oscillators. Note that the nonlocality a
pears in time as well as in space, and the characteristic sc
in time and space associated with the nonlocality are gi
by t and D1/2, respectively. This fact will be used in th
discussion below.

Suppose thatf involves a parameterm such that ifm,0
each local system given by Eqs.~1! and~2! with D50 has a
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stable fixed point (X,S)5(0,0), while this becomes oscilla
tory unstable form>0; namely, atm50 a pair of complex
conjugate eigenvalues of the Jacobian associated with
local system about the fixed point cross the imaginary axis
the complex plane, while the other eigenvalues all remain
the left half plane. It is a well-known fact that the cente
manifold reduction can be applied to reaction-diffusion s
tems near the Hopf bifurcation point of the local oscillato
@1#. This leads generally to the CGL equation

] tA5msA2buAu2A1a¹2A, ~4!

where the amplitudeA and the parameterss, a, andb are
generally complex. The small parameterm has been retained
in Eq. ~4! so thatA, t, and r scale likeumu1/2, umu23/2, and
umu21/2, respectively.

It is clear that the above reduced form of reactio
diffusion systems remains valid also for our particular s
tem given by Eqs.~1! and ~2!. Since CGL is a diffusively
coupled~i.e., locally coupled! system, it may seem that ef
fective nonlocality in coupling characteristic to our syste
disappears completely near the bifurcation point. The rea
for the disappearance of nonlocality is clear. This is beca
the characteristic wavelengthl p of the field X becomes
longer and longer as the bifurcation point is approached
l p;umu21/2 so that the effective coupling radius given b
D1/2 comes to fall well within this scale, which gives nothin
but the definition of local coupling. In what follows, we wi
be concerned with a special situation in which spatial~and
possibly temporal! nonlocality can survive even close to th
bifurcation point, so that the reduced equation involves n
local coupling rather than diffusive coupling. The same res
was used already in earlier works@4,5# for the particular case
of vanishingly smallt without showing how the reduction
can actually be achieved. We will develop below the red
tion procedure explicitly including the case of finitet.

Consider our system given by the form of Eqs.~1! and~3!
for which Eq. ~4! gives the right reduced form nearm50
provided there is no small parameter other thanm. It is clear
that the diffusion term in Eq.~4! is the reduced form of the
coupling term kg(S) in Eq. ~1!. This implies that uau
5O(uku). Disappearance of spatial nonlocality is consiste
with the fact that the characteristic wavelengthl p estimated
from the dimensional argument for Eq.~4!, which confirms
l p5O(um/ku21/2), is far larger than the effective couplin
radius given byD1/2 providedk remains an ordinary magni
tude. This consistency is apparently broken ifk becomes as
small asm by which l p becomes independent ofm and hence
can be comparable with the coupling radius. Putting it d
ferently, spatial nonlocality should remain relevant near
bifurcation point provided the strength of coupling betwe
the local oscillators and the diffusive component becomes
weak as to satisfy

k;O~ umu!. ~5!

Thus, what we do next is to find a reduced equation va
near the doubly singular point (m,k)5(0,0). Before pro-
ceeding to this issue, however, we make a remark ontempo-
ral nonlocality. Temporal nonlocality, which is characteriz
by the time constantt, may be relevant to the dynamics eve
9-2
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COMPLEX GINZBURG-LANDAU EQUATION WITH . . . PHYSICAL REVIEW E68, 026219 ~2003!
near the bifurcation point. However, this effect would nev
appear as a non-Markoffian form of the reduced equation
the amplitudeA because the time scale associated with
variation ofA is much longer thant. Still, t could be com-
parable with the period of the basic oscillation. Then, as
see below, the effect of delay may appear in the redu
equation through the change in the space dependence o
coupling function. Specifically, whent is finite, the decay of
the coupling function with distance becomes oscillato
rather than monotone.

Suppose first thatk50. Then the reduced form of th
ordinary equation~1! is given by Eq.~4! with a50. Al-
though its derivation is routine, we now recapitulate it for t
purpose of explaining later how easily the reduced equa
can be generalized when a small coupling term is introduc

Let the Taylor expansion off(X) in terms ofX be written
as

f~X!5L~X!1M ~XX,X!1N~X,X,X1¯ , ~6!

where the vector functionsL(x),M(x,y),N(x,y,z),¯ are lin-
ear functions of each argument and also symmetric in th
vectors. In what follows,L(x) will also be expressed asLx
in terms of the JacobianL of f at X50. Regarding them
dependence ofL (or L),M,N,¯ appearing in the above ex
pansion, we need to consider it only for the JacobianL to the
first order inm such asL5L01mL1; higher order correc-
tions to L as well asm dependence ofM, N, etc. are irrel-
evant to the reduced equation to the leading order. Let
pure imaginary eigenvalues atm50 be6 iv0, and the cor-
responding right eigenvectors and its complex conjugate
written as U and Ū, respectively. The corresponding le
eigenvectors and its complex conjugate are denoted byU*
and Ū* , respectively. These eigenvectors satisfyU* •Ū
5Ū* •U50 and U* •U5Ū* •Ū51. If m is nonvanishing
but small, the eigenvalues change to6 iv01ml6 , where
l̄15l2 .

To the lowest order inm, the original fieldX and the
complex amplitudeA are mutually related via

X~ t !5eiv0tUA~ t !1c.c.. ~7!

Thus, in this approximation we have ] tA

5exp(2iv0t)U* •(Ẋ2L0X). This means further that th
right-hand side of Eq.~4! with a50 is identical with the
reduced form of exp(2iv0t)U* •@(f(X)2L0X)# or

msA2buAu2A.e2 iv0tU* •@ f~X!2L0X#

5e2 iv0tU* •@mL1X1M~X,X!

1N~X,X,X1¯#. ~8!

The standard analysis determines the coefficientss andb in
terms of some parameters of the equations before reduc
It is clear that the linear coefficients is given by

s5U* •L1U5l1 . ~9!
02621
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For obtainingb, the lowest order expression forX given by
Eq. ~7! is insufficient, and we have to use a more prec
formula including the next order term:

X~ t !5eiv0tUA~ t !1c.c.1e2iv0tV1A21e22iv0tV2Ā2

1V0uAu2, ~10!

where

V15V̄252~L022iv0!21~M,U,U!, ~11!

V0522L0
21~M,U,Ū!. ~12!

Using these quantities,b is given by

b522U* •M~U,V0!22U* •M~Ū,V1!23U* •N~U,U,Ū!.
~13!

Suppose that the vector fieldf is modified slightly tof
1p. It is clear that the corresponding reduced equation m
also be modified slightly with an additive term
exp(2iv0t)U* •p. The specific form ofp of our concern is
the small coupling termkg(S) in Eq. ~1! with Sgiven by Eq.
~3!. The original variableX and the reduced oneA must now
be regarded as depending on space as well as on time. T
our problem is to find a reduced form of the quantity

k exp~2 iv0t !U* •g~S![kp̃, ~14!

using Eq. ~3!. Since k is already small, we only need t
consider the most dominant contribution top̃. Noting that
g(0)50, we may use a linear approximation

g~S!.g0S.
g0

~2p!dE dqexp~ iq•r!E
2`

t dt8

t

3expS 2~11Dq2!
t2t8

t Dh0•Xq~ t8!,

~15!

whereg05dg/dSuS50 and h05dh(X)/dXuX50. Thus, using
Eq. ~7! with X andA supposed to depend also onr, we have

p̃5
h

~2p!dE dqexp~ iq•r!E
2`

t dt8

t

3expS 2~11Dq2!
t2t8

t
2 iv0~ t2t8! DAq~ t8!,

~16!

where

h5~U* •g0!~h0•U!. ~17!

Note that Eq.~16! ignores the contribution from the comple
conjugate ofA(t) which would give rise to a rapidly oscil
lating component ofp̃. This is allowed because such a com
ponent would be averaged out in the equation describing
9-3
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D. TANAKA AND Y. KURAMOTO PHYSICAL REVIEW E 68, 026219 ~2003!
slow evolution ofA(t). Since the time integral in Eq.~16!
extends practically over the interval betweent2t and t, the
slowly varying amplitudeAq(t8) may safely be replaced with
Aq(t). In this way, we obtain

kp̃5kh8E dr8G~r2r8!A~r8,t !, ~18!

where

G~r!5
1

~2p!dE dqeiq•r
11 iv0t

Dq2111 iv0t
~19!

and

h85
h

11 iv0t
. ~20!

Note thatG(r) satisfies the normalization condition

E drG~r!51. ~21!

Thus, the final form of the reduced equation becomes

] tA5msA2buAu2A1kh8E dr8G~r2r8!A~r8,t !,

~22!

which we call nonlocally coupled complex Ginzburg-Land
equation or simply nonlocal CGL. It is clear that the situati
of interest is such thatk5O(umu) for which the coupling
term in the reduced equation is balanced in magnitude w
the other terms even if the characteristic wavelength is in
pendent ofm. We assume that the bifurcation is supercritic
i.e., the real part ofb is positive.

A few generalizations of the original system@Eqs.~1! and
~2!# can be made. First,g andh may depend both onX and
S. Since the most dominant part of these quantities alon
relevant to the reduced equation, one may safely appr
mate g(X,S) and h(X,S) as g(X,S)5g(X,0)1g(0,S) and
h(X,S)5h(X,0)1h(0,S), respectively. The resulting new
term kg(X,0) may slightly modify f(X), but the modified
f(X) may again be denoted byf(X). Furthermore, becauseS
is small,h(0,S) is practically linear inS. Thus, this quantity
simply modifies the linear decay rate ofSwhich can be nor-
malized by a suitable rescaling of time. In this way, the fin
result of reduction is unchanged except thatg(S) andh(X)
are replaced withg(0,S) and h(X,0), respectively. As the
second generalization, we may include in Eq.~1! a diffusion
term such as

] tX5f~X!1 d̂¹2X1kg~S!, ~23!

where d̂ is a diagonal diffusion matrix with non-negativ
elements. In parallel with the above argument for obtainin
reduced form of the nonlocal coupling term, the reduc
form of the quantity exp(2iv0t)U* • d̂¹2X will then be added
to the right-hand side of Eq.~22!. To the lowest order ap
proximation, one may apply Eq.~7! for X, by which the
02621
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above quantity becomesd¹2A whered is a complex number
with positive real part, and is given by

d5U* • d̂U. ~24!

Thus, Eq.~22! is modified as

] tA5msA2buAu2A1d¹2A1kh8E dr8G~r2r8!A~r8,t !.

~25!

In the conventional reduction of reaction-diffusion system
udu is assumed to be of ordinary magnitude, so that the
fusion term can be balanced with the linear and cubic te
in magnitude only if the characteristic wavelength ofA
scales likeumu21/2. However, the last property ofA contra-
dicts the particular situation of our concern in which t
characteristic wavelength remains independent ofm. There-
fore, in what follows, we assume thatudu as well ask is of
the order ofm, by which all terms on the right-hand side o
Eq. ~25! are balanced with each other, and the coupling n
locality represented by the last term can survive.

It is more convenient to write Eq.~25! in the form

] tA5ms8A2buAu2A1d¹2A

1kh8E dr8G~r2r8!@A~r8,t !2A~r,t !#, ~26!

wheres85s1m21kh8. With this form, the coupling term
can be approximated by a diffusion term when the charac
istic wavelength ofA(r,t) is sufficiently longer than the cou
pling radius. Note thats8 remains of ordinary magnitude
becausek5O(m) by assumption. Hereafter, we assume th
the system is supercritical or

Res8.0. ~27!

An additional remark should be made on the function
form of the coupling functionG in connection with the time
scalet of the diffusive componentS. As implied by Eq.~16!,
finite t generally gives rise to memory effects or tempo
nonlocality after the variableS has been eliminated. How
ever, as was noted before, the reduced equation is free
memory effects because the time scale of the slowly vary
amplitudeA is much longer thant. We also noted that be
causet may be comparable with the period 2p/v0 of the
fundamental oscillation, the effect of delay in couplin
should be relevant to the reduced dynamics. Actually, a
clear from Eq.~19!, the effect of finitet appears in the
coupling functionG. For one-dimensional systems, in pa
ticular, the coupling function is simply expressed as

G~x!5
1

2
~a11 ia2!e2(a11 ia2)uxu, ~28!

where

a65S 611A11u2

2D D 1/2

, ~29!
9-4
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and u5v0t. If t is vanishing,G(x) decays exponentially
with uxu, the decay length being given byD1/2, whereas the
decay becomes oscillatory whent is finite. Thus, the effect
of delay in coupling is such that the complex amplitu
A(x8,t) in the coupling term is multiplied by a factor o
exp(2ia2ux2x8u), or equivalently, the phase ofA(x8,t), de-
noted byf(x8,t), is replaced withf(x8,t)2a2ux2x8u. In
the physical language, this means that the phase at the sp
point x8 experienced by the oscillator atx through the de-
layed coupling cannot be its current valuef(x8,t) but
should be the value at some timet2t0 in the past, becaus
the phase information travels at a finite speed. If this spee
constant and the oscillation atx8 is nearly regular, then we
havef(x8,t2t0) equal tof(x8,t) plus something propor
tional to the distanceux2x8u, justifying the above result.

Coming back to general space dimensions, Eq.~26! with
the coupling function given by Eq.~19! involves many pa-
rameters. However, some of the parameters can be e
nated by suitable transformations of some variables. F
the imaginary part of the linear coefficientms8 vanishes
through the transformationA→A exp@imIms8t#. Second,
one may rescaleA, t, andr in such a way that Reb, mRes8,
andD may all become unity. In this way, we may write E
~26! as

] tA5A2~11 ic2!uAu2A1~d11 id2!¹2A

1K~11 ic1!E dr8G~r2r8!@A~r8,t !2A~r,t !#,

~30!

where the coupling functionG is defined as an integral form
given by Eq.~19!, or

G~r!5
1

~2p!dE dqeiq•rGq , ~31!

Gq[
11 iu

q2111 iu
. ~32!

The reduced equation now involves six independent
rametersc1 , c2 , K, u, d1, andd2 all of which are indepen-
dent of smallness parametersm, k, and d. Note that the
coupling coefficient in Eq.~30! is related to some origina
parameters through

K~11 ic1!5
kh8

mRes8
5

kh8

mRes1kReh8
~33!

or

K512
Res

Res8
~34!

so that, by combining the last equation with the inequa
~27! and the original assumption Res.0, we have a restric-
tive condition
02621
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K,1. ~35!

III. EIGENVALUE SPECTRUM ABOUT THE UNIFORM
OSCILLATION

It is clear that Eq.~30! admits a family of plane wave
solutionsAk(r,t)5Rexp@i(k•r2Vt)#, the stability of which
is extremely important to the understanding of the patt
dynamics of our system. In the present paper, we will foc
on the stability of the uniform oscillationA0(t) for which

R51, ~36!

V052c2 . ~37!

We now put

A~r,t !5@11D~r,t !#A0~ t !, ~38!

and linearize Eq.~30! in D(r,t). The linearized equation ca
be solved in terms of the Fourier components ofD(r,t),
denoted byDq(t). Assuming its time dependence in the for
Dq(t)}exp(lt), we find the eigenvalue equation

l21u~q!l1v~q!50, ~39!

where

u~q!522Reg~q!, ~40!

v~q!5ug~q!u22ug~0!u2, ~41!

with

g~q!52~11 ic2!2~d11 id2!q21K~11 ic1!~Gq2G0!.
~42!

In what follows, we shall first concentrate on the case wi
out diffusive coupling, i.e.,d15d250; the effects of nonva-
nishing but smalld1 will be touched upon later.

Let the solutions of Eq.~39! be denoted byl1 and l2

with Rel1>Rel2 . The uniform oscillation is stable if and
only if Rel1,0 holds for all q. This holds only when
u(q).0 andv(q).0 for all q. Equivalently, if one of these
inequalities becomes violated for a certainq, then the uni-
form oscillation loses stability. This implies that the types
instability could be classified in terms of the signs ofu(q)
andv(q). Simple calculation shows thatu(q) andv(q) can
be expressed in the following form, where we use the no
tion Q[q2.

u~q!5j~Q!j0~Q!, ~43!

v~q!5z~Q!z0~Q!Q. ~44!

Herej0(Q) andz0(Q) are non-negative functions ofQ, and

j~Q![a2Q21a1Q1a0 , ~45!

z~Q![b1Q1b0 , ~46!

a0511u2, ~47!
9-5
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a1521K~11c1u!, ~48!

a2511K, ~49!

b052K@11c1c21~c12c2!u#, ~50!

b15K@2~11c1c2!1K~11c1
2!#. ~51!

Figure 1 shows thea1-a2 plane divided into three domain
~labeled byA, B, andC) corresponding to qualitatively dif
ferent forms ofu(q). Note that thea1-a2 plane covers all
possible types ofu(q) becausea0 is positive definite. Simi-
lar picture forv(q) in the b0-b1 plane is displayed in Fig. 2
where the whole space is divided into four domains~labeled
by A8 to D8). Since the parametersa1 , a2 , b0, andb1 as
functions of four independent parametersK, u, c1, and c2

FIG. 1. The sign ofu(q) changes withq in three different ways.
The figure shows how the corresponding domainsA, B, andC ap-
pear in thea1-a2 plane.u(q) is positive for allq in A, negative
above some criticalq in B, and negative in a finite interval ofq in
C. The line separating domainsA andC is given by a parabolaa2

5a1
2/4a0.

FIG. 2. The sign ofv(q) changes withq in four different ways.
The figure shows how the corresponding domainsA8, B8, C8, and
D8 appear in theb0-b1 plane. v(q) is positive for all q in A8,
negative above some criticalq in B8, negative for allq in C8, and
negative below some criticalq in D8.
02621
can be changed independently, every combination betw
two members, one from the group (A,B,C) and the other
from (A8,B8,C8,D8), is possible. Uniform oscillation is un
stable for all these combinations except for (A,A8). Loss of
stability occurs as we move across the linea250 or a1

2

24a0a250 in Fig. 1, for which the instability is oscillatory
or otherwiseb050 or b150 in Fig. 2, for which the insta-
bility is nonoscillatory. The critical wave number for whic
Rel,0 becomes first violated equals zero on the lineb0

50, finite ona1
224a0a250, and infinite ona250 andb1

50. The last type of instability, i.e., the instability whic
starts at infiniteq, was calledshort-wavelength bifurcation
by Heagyet al. @7#.

If uKu is not too large,u is non-negative, so that the insta
bility is only throughv becoming negative and hence it
nonoscillatory. The corresponding critical linesb050 and
b150 in Fig. 2 can now be translated into critical relatio
betweenK and Kc1 under fixedc2 and u. In this way, we
have four types of eigenvalue spectrum shown schematic
in Fig. 3 where linesL1 and L2 correspond tob050 and
b150, respectively. The figure shows the spectra only
phaselike fluctuations because in each case the ampli
branch which is separated from the phase branch rem
negative for allq so that the amplitudelike fluctuations a
irrelevant to stability. Separation between the phase and
plitude branches also implies that the eigenvalues assoc
with these branches are all real. In contrast, if these branc
merge, then the eigenvalues of the two branches for giveq
would form a complex conjugate pair. Note that in each ty
of spectrum shown in the figure, the eigenvalue saturates
constant as the wave number tends to infinity, which is ch
acteristic to nonlocally coupled systems. The characteri
wave number about which the eigenvalue starts to satu
equals the inverse of the coupling radius. Physically, t
reflects the fact that the dynamics of fluctuations who
wavelengths are much shorter than the coupling radiu

FIG. 3. Four types of eigenvalue spectrum for the phase
fluctuations about the uniform oscillation which is stable only f
typeS. The figure shows how they appear in theK-Kc1 plane in the
vicinity of the origin K50. The other parameters are fixed asc2

51.0 andu56.0. In each of the four cases, the eigenvalues of
amplitudelike fluctuations, which is not shown in the figure, form
branch completely separated from the phase branch and re
negative for allq.
9-6
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practically the same as the oscillators’ individual dynami
and hence it is insensitive to the wave number. Note also
the typeU2 spectrum is possible only whenu is nonvanish-
ing or, equivalently, when the nonlocal coupling before
duction involves delay.

For larger uKu, the phase and amplitude branches c
merge, so that oscillatory instability becomes possible.
particular, the short-wavelength-type instability, i.e., the
stability initiated by fluctuations withinfinite wave number
can occur across the linea250 or K521. This type actu-
ally appears in the stability diagram in Fig. 4 which is
global extension of the diagram in Fig. 3. The values of
other parameters are the same as in Fig. 3, i.e.,c251.0 and
u56.0. Oscillatory instability initiated by fluctuations wit
finite wave number, which occurs when crossing the l
a1

224a0a250 in Fig. 1, does not appear in Fig. 4, but m
appear when different values ofc2 and u are chosen. For
instance, the stability diagram for the case ofc2522.5 and
u51.5 is displayed in Fig. 5 where the lineL4 gives the

FIG. 4. Figure 3 is extended to the region of largerK. A new
type of eigenvalue spectrum appears for large negativeK. This type,
labeled byU3 is similar toU2 in Fig. 3 except that the amplitud
branch merges with the phase branch above a certain wave nu
which is still below the wave number at which Rel changes sign.
Thus, the eigenvalues associated with the unstable fluctuation
complex rather than real, i.e., the instability is oscillatory in natu

FIG. 5. Similar to Fig. 4 but for different values ofc2 and u,
i.e., c2522.5 andu51.5. New type of eigenvalue spectrum, d
noted byU4, appears which differs fromU3 in Fig. 4 only in that
the eigenvalues saturate to a negative value asq goes to infinity.
02621
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boundary associated with the last type of instability.
Finally, we comment on the effects of weak diffusion re

resented by the term (d11 id2)¹2A in Eq. ~30!. For simplic-
ity, we assume thatd2 is vanishing whiled1 is a small posi-
tive. It is clear that this diffusion term simply gives rise to a
additional stabilizing term2d1q2 to each of the eigenvalue
l6 as a function ofq. Thus, the fluctuations with sufficiently
short wavelength are always decaying. A particularly int
esting result from this fact appears in typeU2 eigenvalue
spectrum in Fig. 3. Depending on the value ofd1, the dis-
persion curve is deformed like some curves shown in Fig
Even the dispersion curves of typesU1 and U12 could be
deformed into a similar form if some parameter vaules
chosen suitably. It is clear that there is a critical value ofd1
at which fluctuations with a certain wave numberqc become
unstable. Due to the presence of long-wavelength fluct
tions which are almost neutral in stability, the unstab
growth of the mode withqc will generally be unable to lead
to a Turing-type periodic standing pattern. Instead, from
outset, a group of modes with wave numbers close toqc will
couple nonlinearly with another group of modes of almo
vanishingq with almost neutral stability, leading to a pecu
liar spatiotemporal chaos@8,13#. The simple evolution equa
tion,

] tu52]x
2@e2~11]x

2!2#u2~]xu!2, ~52!

called the Nikolaevskii equation@10#, gives qualitatively the
same eigenvalue spectrum as those in Fig. 6. Actually, it w
argued previously that the Turing pattern in this system
isting for small positivee is always unstable, and as a resu
the system immediately becomes turbulent characterized
the coexistence of turbulent fluctuations with vastly differe
length scales. Possibility of this type of turbulence
reaction-diffusion systems was discussed by Fujisaka
Yamada@11#. In electroconvective systems, similar type
complex behavior was discovered by Kaiet al. @9# which
they calledsoft-mode turbulence.

IV. SUMMARY

If spatially distributed limit-cycle oscillators are diffu
sively coupled not directly but via a certain diffusive com

ber

are
.

FIG. 6. Eigenvalue spectra close to a finite-wave-number in
bility, which are obtained as a modification ofU2 in Fig. 3 by
assuming nonvanishingd1 in the reduced equation~30!.
9-7
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ponent, the oscillators may be viewed as coupled nonloc
after a mathematical elimination of this diffusive variab
We showed in the present paper that this actually occur
reaction-diffusion systems and that the nonlocality of t
kind persists even close to the Hopf bifurcation point p
vided the coupling between each local oscillator and the
fusive component is sufficiently weak. Specifically, und
this condition, the system is reduced to a complex Ginzbu
Landau-type equation with nonlocal rather than diffus
coupling. Temporal nonlocality or memory effects whic
generally exist before reduction does not appear explicitly
the reduced equation, still they may generally affect the fu
tional form of the coupling function. Our results were ge
eralized so as to include the effects of direct but weak dif
ce

ce

,

02621
ly
.
in
s
-
f-
r
-

n
-

-
-

sive coupling among the oscillators.
Linear stability analysis of the uniformly oscillating sta

of the reduced equation was also carried out. Some n
types of eigenvalues spectrum were found to arise, and t
physical relevance was suggested.

How the solution behaves in the nonlinear regime
known only partially. For instance, typeU12 spectrum in Fig.
3 was found to lead to turbulence with multiaffinity@5#. It
was also found that even the normal spectrum~type S) can
give rise to peculiar spiral waves without phase singula
when the nonlocal coupling becomes weak@12#. Different
aspects of the nonlocal CGL including the aforemention
type of turbulence associated with the dispersion curve
Fig. 6 will be developed in forthcoming papers@13#.
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