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Complex Ginzburg-Landau equation with nonlocal coupling
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A Ginzburg-Landau-type equation with nonlocal coupling is derived systematically as a reduced form of a
universal class of reaction-diffusion systems near the Hopf bifurcation point and in the presence of another
small parameter. The reaction-diffusion systems to be reduced are such that the chemical components consti-
tuting local oscillators are nondiffusive or hardly diffusive, so that the oscillators are almost uncoupled, while
there is an extra diffusive component which introduces effective nonlocal coupling over the oscillators. Linear
stability analysis of the reduced equation about the uniform oscillation is also carried out. This revealed that
new types of instability which can never arise in the ordinary complex Ginzburg-Landau equation are possible,
and their physical implication is briefly discussed.
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[. INTRODUCTION for our purpose because CGL is believed to be quite a gen-
eral result of the center-manifold reduction. Still there seems
Oscillatory reaction-diffusion systems are generally re-t0 be a way out within the same framework if we slightly
duced to the complex Ginzburg-LandéDGL) equation by ~ €xtend the conventional method of reduction. Note first that
means of the so-called center-manifold reduction when thinder usual conditions the disappearance of the effects of
local oscillators are close to their supercritical Hopf bifurca-nomocaIllty near the bifurcation point comes from that the

tion point[1]. This fact led to a now widely accepted view Icharacttiristii:h wa;elet_ngtrhp Ofl. the %gtter:} bec_?mes ;:ar
that, without resorting to individual systems, one may con-Cnger than the etiective coupling radius. It so, 1t may hap-

centrate on CGL if one wishes to gain a qualitative underPen that nonlocality persists even close to the bifurcation

standing of some universal dynamical features shared conioint when the system involves a certain parameter whose

monly by a broad class of oscillatory reaction-diffusion Suitable tuning, as the bifurca_tion po_int Is approgched,_ k_eeps
systems. This view in fact underlies a vast amount of work in P co_mpafable W'th the _effect|ve radl_us of pouphr_wg. Similar
the past(see Refs[2,3] for review) devoted to CGL. How- physma! idea lies behind the multiple b|f_urcat|9n theory.
ever, due to its local nature of coupling, CGL may fail to wh|ch ams to capture suph cor_nplex Qynam|cs as is absentin
capture some important aspects of the dynamics characteriTs,tle vicinity of a S|mpl_e b_lfurcatlo_n point.

tic to a certain class of oscillatory reaction-diffusion systems. . Section Il starts with introducing a universal class of os-

In fact, it was argued recently that a situation may arisecillatory reaction-diffusion systems involving three or more

where the oscillator coupling becomes effectively nonlocal chemical components. Af“?f briefly.discussing its phys_ical
relevance, we proceed to its reduction near the Hopf bifur-

and as a consequence the system exhibits such peculiar off— : : . .
namics as can never be seen in CJ@l5]. This suggests that at|on. If a certain parameter associated with the strgngth of
there remains a yet unexplored area of reaction-diffusion sy fective nonlocal coupling is as small as the bifurcation pa-

tems where nonlocal effects on the pattern dynamics mudgmeter, the reduced equation tur_ns out to take the form_ of a
seriously be considered. In the present paper, we are co onlocally coupled complex Ginzburg-Landau equation.

cerned with how this area is still accessible within the frame- _nalyt|c Lqrrr?ulas Ifgrbsomf coellflzlelnts Of. t?'s _equanonltz)alre
work of the center-manifold reduction. It will turn out that 9'V€M. Which wou € of great nelp in nferring possibie
anges of the parameters in the original system where

this can actually be achieved by a slight extension of thd ) . A
conventional reduction scheme. nonlocality-dominated pattern dynamics is expected. Re-

Effective nonlocality in coupling may become relevant garding t_he derivation of th? reduce_d equation,_ our primary
when the reaction-diffusion system involves three or mor concern is the case when direct oscillator coupling is absent,

chemical components. Suppose that the system of concern t the effec.ts of weak d|ffu5|v(a.e., dlrec.)'coupllng_wnl
3lso be considered. In Sec. lll, linear stability analysis of our

such that the chemical components constituting the local od local CGL i ied out about th i lati

cillators are free of diffusion, i.e., the oscillators remain un-"oNocal LLL IS carried out about Ih€ unitorm osciiiation.

coupled, while the system involves an extra diffusive com—The resulting eigenvalue Spectra, .espemally those of the
X phase branch, can be qualitatively different from those of the

ponent which, for its diffusive nature, plays the role of a A
coupling agent. By eliminating mathematically this diffusive standard CGL, W_hose physu_:al |mpl|cat|on IS discussed. A
y%hort summary will be given in the final section.

component, the system becomes a field of nonlocall
coupled oscillators possibly involving delay also. The main
goal of the present paper is to achieve a reduction of such
reaction-diffusion systems to a universal equation of the
Ginzburg-Landau type without missing the effects of nonlo- The reaction-diffusion model of our concern was previ-
cality. ously proposed by one of the present autlidisand is given

It may seem that the center-manifold idea would not workby the general form

II. AUNIVERSAL CLASS OF REACTION-DIFFUSION
SYSTEMS AND THEIR REDUCTION
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IX=F(X)+kg(S), (1) stable fixed point X,S) =(0,0), while this becomes oscilla-
tory unstable foru=0; namely, atu=0 a pair of complex
79;S= —S+DV?2S+h(X). (2)  conjugate eigenvalues of the Jacobian associated with each

local system about the fixed point cross the imaginary axis of

Here then-dimensional real vector fielflrepresents a local the complex plane, while the other eigenvalues all remain in
limit-cycle oscillator with dynamical variablX, so that the the left half plane. It is a well-known fact that the center-
first equation withk=0 represents a field of continuously manifold reduction can be applied to reaction-diffusion sys-
distributed oscillators without mutual coupling. The full sys- tems near the Hopf bifurcation point of the local oscillators
tem involves an additional chemical component with concenl1]- This leads generally to the CGL equation
t_ration S_whose dynamic; is govgrned by the second equa- G A= uoA—B|A2A+ aV2A, (4)
tion. This component simply diffuses and decays at a
constant rate, while it is produced locally as represented bwhere the amplitudé and the parameters, «, and 8 are
the termh(X), the production rate depending on the local generally complex. The small paramejeias been retained
value of X. The dynamics of the local oscillators is influ- in Eq. (4) so thatA, t, andr scale like|u|"? |u|~*2 and
enced in return by the local concentrationSyand this effect |M|71{27 respectively. _
is represented by the terkg(S). We do not know any ex- It is clear that the above reduced form of reaction-
perimental system which can directly be related to ourdiffusion systems remains valid also for our particular sys-
reaction-diffusion model, although biological populationstem given by Egs(1) and (2). Since CGL is a diffusively
such as cellular slime molds and oscillating yeast cells undefoupled(i.e., locally coupled system, it may seem that ef-
glycolysis, and also the recent series experiments by Vana?Ct'Ve nonlocality in coupling characteristic to our system
and Epsteiri6] using the Belousov-Zhabotinsky reaction dis- disappears completely near the bifurcation point. The reason
persed in water-in-oil aerosol OT microemulsion show a parfor the disappearance of nonlocality is clear. This is because
tial similarity to our model in that the coupling between the the characteristic wavelength, of the field X becomes
local oscillators is mediated by some diffusive chemicals. longer and longer as the bifurcation point is approached like

For the sake of convenience, we inserted in B).pa- |p~|ul "% so that the effective coupling radius given by
rameterr to indicate explicitly the time constant & antici-  D*? comes to fall well within this scale, which gives nothing
pating a limiting case in which is vanishingly small. Note but the definition of local coupling. In what follows, we will
that there is no direct coupling among the local oscillatorsbe concerned with a special situation in which spafald
while their indirect coupling is provided by the diffusive POssibly temporalnonlocality can survive even close to the
chemical represented I In later discussions, we will gen- bifurcation point, so that the reduced equation involves non-
eralize the above model by assumipgndh to depend both local coupling rath_er thar_1 diffusive coupling. Th_e same result
on X and S, and also by including a small diffusion term, Was used already in earl_lerwor[@\S] for the particular case
i.e., weak direct coupling in Ed1). Throughout the present Of vanishingly smallr without showing how the reduction
paper, the spatial extension of the system is supposed suffan actually be achieved. We will develop below the reduc-
ciently large. tion procedure explicitly including the case of finite

Let the spatially uniform steady state of our system be Consider our system given by the form of E¢b.and(3)
given by (X,S):(0,0), or equiva|ent|y, we measukeandS for which Eq (4) gives the rlght reduced form neaf:O
always from their equilibrium values. Thus, we clearly haveProvided there is no small parameter other tharit is clear
h(0)=0. It is also convenient to arrangeandg so that the that the diffusion term in Eq4) is the reduced form of the
equalitiesf(0)=g(0)=0 may be satisfied. If we likeSmay  coupling termkg(S) in Eg. (1). This implies that|e|

be eliminated from the system by solving E8), which can = O(|k|). Disappearance of spatial nonlocality is consistent
be done explicitly because the equation is linear. If the spaWith the fact that the characteristic wavelengthestimated
tial dimension isd, the solution of Eq(2) is given by from the dimensional argument for E@l), which confirms
l,=0(|u/k|~*3), is far larger than the effective coupling
4 ) t dt’ radius given byD? providedk remains an ordinary magni-
S(r,t)=(2m) f dgexp(iq: r)f_mT tude. This consistency is apparently brokerk hfecomes as

small asu by whichl, becomes independent pfand hence
, =t , can be comparable with the coupling radius. Putting it dif-
Xexp —(1+Dq )_7- hq(t'), ) ferently, spatial nonlocality should remain relevant near the
bifurcation point provided the strength of coupling between
whereh(t') is the spatial Fourier transform i(X(r,t')). the local oscillators and the diffusive component becomes so

Equation(1) with S given by Eq.(3) constitutes a field of Weak as to satisfy
nonlocally coupled oscillators. Note that the nonlocality ap- .
7 : " k~O(|u|). (5)

pears in time as well as in space, and the characteristic scales
in time and space associated with the nonlocality are giveThus, what we do next is to find a reduced equation valid
by 7 and D2, respectively. This fact will be used in the near the doubly singular pointu(k)=(0,0). Before pro-
discussion below. ceeding to this issue, however, we make a remarkearpo-

Suppose that involves a parameter such that ifu<<O  ral nonlocality. Temporal nonlocality, which is characterized
each local system given by Eq4) and(2) with D=0 has a by the time constant, may be relevant to the dynamics even

026219-2



COMPLEX GINZBURG-LANDAU EQUATION WITH . .. PHYSICAL REVIEW E68, 026219 (2003

near the bifurcation point. However, this effect would neverFor obtainingg, the lowest order expression firgiven by
appear as a non-Markoffian form of the reduced equation foEg. (7) is insufficient, and we have to use a more precise
the amplitudeA because the time scale associated with thdormula including the next order term:

variation of A is much longer tham. Still, 7 could be com- o

parable with the period of the basic oscillation. Then, as we  X(t)=¢'“0tUA(t) + c.c.+ e? @0tV A%+ e~ 210ty _ A2

see below, the effect of delay may appear in the reduced
equation through the change in the space dependence of the
coupling function. Specifically, whenis finite, the decay of
the coupling function with distance becomes oscillatory
rather than monotone. T _ ]

Suppose first thak=0. Then the reduced form of the Vi=Vo=~(Lo=2lwg) (M,U,L), (D
ordinary equation(1) is given by Eq.(4) with a=0. Al-
though its derivation is routine, we now recapitulate it for the
purpose of explaining later how easily the reduced equation
can be generalized when a small coupling term is introduce

. Let the Taylor expansion df X) in terms ofX be written B=—2U* -M(U,V,)— 2U* - M(U,V+)—3U* . N(U,U,U).
(13

f(X)=L(X)+M(XX,X)+N(X,X,X+---, (6) Suppose that the vector fiefdis modified slightly tof
+p. Itis clear that the corresponding reduced equation must

where the vector functions(x),M(x,y),N(x,y,2),--- are lin-  also be modified slightly with an additive term
ear functions of each argument and also symmetric in thesexp(—iwgt)U* - p. The specific form ofp of our concern is
vectors. In what follows|(x) will also be expressed dsx  the small coupling termkg(S) in Eqg. (1) with Sgiven by Eq.
in terms of the Jacobiah of f at X=0. Regarding theu (3). The original variableX and the reduced on® must now
dependence df (or L),M,N,--- appearing in the above ex- be regarded as depending on space as well as on time. Thus,
pansion, we need to consider it only for the Jacokiaa the  our problem is to find a reduced form of the quantity
first order inu such asL=Ly+ ulL4; higher order correc- _
tions toL as well asu dependence of1, N, etc. are irrel- k exp(—iwet)U* - g(S)=kp, (14
evant to the reduced equation to the leading order. Let the
pure imaginary eigenvalues at=0 be *iw,, and the cor- using EqQ.(3). Sincek is already small, we only need to
responding right elgenvectors and its complex conjugate areonsider the most dominant contribution o Noting that

written asU and U, respectively. The corresponding left 9(0)=0, we may use a linear approximation
e|genvectors and its complex conjugate are denotedl’by

+VolAl?, (10

where

Vo=—2Ly1(M,U,U). (12)

c]Jslng these quantitieq is given by

and U*, respectively. These eigenvectors satighy - U 9(S)=g,S= quexp(lq r)J dt
=U*.U=0 and U*-U=U*.U=1. If u is nonvanishing (2m)¢
but small, the eigenvalues change 10 wy+ pA .+, Where t—t’
Ni=h_. ><exp(—(1+Dq2)—)ho-xq(t'),
To the lowest order inu, the original fieldX and the 7
complex amplitudeA are mutually related via (15
X(t) = el “ctUA(t) + c.c.. 7) wheregy=dg/dgs— and hg=dh(X)/dX|x—,. Thus, using

Eq. (7) with X andA supposed to depend also ornwe have

Thus, in this approximation we have JA

=exp(—imgt)U* - (X—LoX). This means further that the
right-hand side of Eq(4) with «=0 is identical with the

t dt’

reduced form of exp{iwgt)U* - [ (f(X)—LX)] or t—t/
_ ><exp(—(1+qu)——iwo(t—t'))Aq(t'),
poA— B|A[2ZA=e " T@otU* . [f(X) —LoX] T
ot (16)
=e '9otU* . [ uL X+ M(X,X)
FNCGXX . g here
7= (U*-go)(ho- V). 17

The standard analysis determines the coefficienasid 8 in _ o
terms of some parameters of the equations before reductiohlote that Eq(16) ignores the contribution from the complex

It is clear that the linear coefficient is given by conjugate ofA(t) which would give rise to a rapidly oscil-
lating component op. This is allowed because such a com-
o=U*.-L;U=A\,. (9)  ponent would be averaged out in the equation describing the
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slow evolution ofA(t). Since the time integral in Eq16)
extends practically over the interval betweenr andt, the

slowly varying amplitudeAy(t") may safely be replaced with

Aq(t). In this way, we obtain

k5=kn'f dr'G(r—r AT ), (19
where
() 1 fd iqr l+iwgr 19
r= g4 —————
(2m)d a Dg?+1+iwgr
and
;L n
= 1+iwgr’ (20)
Note thatG(r) satisfies the normalization condition
f drG(r)=1. (21

Thus, the final form of the reduced equation becomes

A= uoA— B|AI2A+ kn’f dr'G(r—r")A(r',t),
(22

PHYSICAL REVIEW E 68, 026219 (2003

above quantity become® °A whered is a complex number
with positive real part, and is given by

5=U*.5U. (24)

Thus, Eq.(22) is modified as

A= uaoA— B|A|?A+ V2 A+ kn'f dr'G(r—r")A(r’,t).
(25)

In the conventional reduction of reaction-diffusion systems,
| 8] is assumed to be of ordinary magnitude, so that the dif-
fusion term can be balanced with the linear and cubic terms
in magnitude only if the characteristic wavelength Af
scales like| x| 2. However, the last property gk contra-
dicts the particular situation of our concern in which the
characteristic wavelength remains independengt off here-
fore, in what follows, we assume thpi| as well ask is of
the order ofw, by which all terms on the right-hand side of
Eq. (25 are balanced with each other, and the coupling non-
locality represented by the last term can survive.

It is more convenient to write Eq25) in the form

A= o' A— B|A|2A+ 5V2A

+k77’Jdr’G(r—r’)[A(r’,t)—A(F,t)L (26)

which we call nonlocally coupled complex Ginzburg-Landauhere o’ = o+ 1~k ’. With this form, the coupling term
equation or simply nonlocal CGL. Itis clear that the situationcan pe approximated by a diffusion term when the character-

of interest is such thak=0O(|u|) for which the coupling

istic wavelength ofA(r,t) is sufficiently longer than the cou-

term in the reduced equation is balanced in magnitude witly|ing radius. Note that’ remains of ordinary magnitude

the other terms even if the characteristic wavelength is indepecausek= () by assumption. Hereafter, we assume that
pendent ofu. We assume that the bifurcation is supercritical,the system is supercritical or

i.e., the real part of3 is positive.
A few generalizations of the original systdifags.(1) and
(2)] can be made. Firsg andh may depend both oX and

Res’ >0.

(27)

S. Since the most dominant part of these quantities alone is An additional remark should be made on the functional
relevant to the reduced equation, one may safely approxiform of the coupling functiorG in connection with the time

mate g(X,S) and h(X,S) as g(X,S)=g(X,0)+g(0,S) and

h(X,S)=h(X,0)+h(0,S), respectively. The resulting new

term kg(X,0) may slightly modifyf(X), but the modified
f(X) may again be denoted byX). Furthermore, because
is small,h(0,S) is practically linear inS. Thus, this quantity
simply modifies the linear decay rate $fwhich can be nor-

scaler of the diffusive componer. As implied by Eq.(16),

finite 7 generally gives rise to memory effects or temporal
nonlocality after the variabl& has been eliminated. How-
ever, as was noted before, the reduced equation is free from
memory effects because the time scale of the slowly varying
amplitudeA is much longer thar. We also noted that be-

malized by a suitable rescaling of time. In this way, the finalcauser may be comparable with the periodr2w, of the

result of reduction is unchanged except tge$) andh(X)
are replaced withg(0,S) and h(X,0), respectively. As the
second generalization, we may include in ED.a diffusion
term such as

aX=F(X)+ 8V2X+kg(S), (23)

where 5 is a diagonal diffusion matrix with non-negative

fundamental oscillation, the effect of delay in coupling
should be relevant to the reduced dynamics. Actually, as is
clear from Eq.(19), the effect of finiter appears in the
coupling functionG. For one-dimensional systems, in par-
ticular, the coupling function is simply expressed as

elements. In parallel with the above argument for obtaining a
reduced form of the nonlocal coupling term, the reducedwvhere

form of the quantity exp{iwgt)U* - 5V2X will then be added

to the right-hand side of Eq22). To the lowest order ap-

proximation, one may apply Ed7) for X, by which the

1 |

G(X)= 5 (ary +ia)e (e e, (28)
+1+\1+ 7\

a-=\——>p | - (29)
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and 0= wq7. If 7 is vanishing,G(x) decays exponentially K<1. (35
with |x|, the decay length being given ty"?, whereas the

decay becomes oscillatory wheris finite. Thus, the effect | | ENVALUE SPECTRUM ABOUT THE UNIFORM

of delay_ in coupling_ is such _that th_e _complex amplitude OSCILLATION
A(x’,t) in the coupling term is multiplied by a factor of
exp(—ia_|x—x']), or equivalently, the phase &f(x’,t), de- It is clear that Eq.(30) admits a family of plane wave

noted by¢(x’',t), is replaced withp(x',t)—a_|x—x'|. In  solutionsA,(r,t)=Rexdi(k-r—Qt)], the stability of which
the physical language, this means that the phase at the spatialextremely important to the understanding of the pattern
point X’ experienced by the oscillator atthrough the de- dynamics of our system. In the present paper, we will focus
layed coupling cannot be its current valug&x’,t) but on the stability of the uniform oscillatioAy(t) for which
should be the value at some tine t, in the past, because
the phase information travels at a finite speed. If this speed is R=1, (36)
constant and the oscillation at is nearly regular, then we
have ¢(x’,t—ty) equal to@(x’,t) plus something propor- Qo=—Cy. (37)
tional to the distancéx—x’|, justifying the above result.
Coming back to general space dimensions, 6) with
the coupling function given by Eq19) involves many pa- A(r,t)=[1+A(r,1)]Aq(1), (39
rameters. However, some of the parameters can be elimi-
nated by suitable transformations of some variables. Firstand linearize Eq(30) in A(r,t). The linearized equation can
the imaginary part of the linear coefficiepioc’ vanishes be solved in terms of the Fourier componentsAqfr,t),
through the transformatiolA— A exdiulmo’t]. Second, denoted byAy(t). Assuming its time dependence in the form

We now put

one may rescalé, t, andr in such a way that R&, uReo’, A4(t)=exp@t), we find the eigenvalue equation
andD may all become unity. In this way, we may write Eq. 5
(26) as A +u(@)h+ov(q)=0, (39
G A=A—(1+iC,)|AIPA+(8,+i5,) VA where
: u(q)=—2Rey(q), (40)
+K(1+icqy) [ dr'G(r—=r")[A(r",t)=A(r,t)],
v(Q)=]7(a)|>=]¥(0)]%, (41
(30)
with
where the coupling functio is defined as an integral form
given by Eq.(19), or Y(Q)=—(1+icy) —(81+i82)q?+K(L1+icy) (G4~ Gy).
(42)
1 . ) .
G(r)= df dqe'q'qu, (31 In what follows, we shall first concentrate on the case with-
(2m) out diffusive coupling, i.e.$;=8,=0; the effects of nonva-
nishing but smalls; will be touched upon later.
1+i60 Let the solutions of Eq(39) be denoted by, and\_
Gy= m (32 with Rex . =Re\ _ . The uniform oscillation is stable if and

only if Rex ;<0 holds for all g. This holds only when

The reduced equation now involves six independent pad(9)>0 andv(q)>0 for all . Equivalently, if one of these

rameterss, , c,, K, 6, 8, ands, all of which are indepen- inequalities becomes violated for a certajnthen the uni-
dent of smallness [;arzli,mete,rsz K and 6. Note that the form oscillation loses stability. This implies that the types of

coupling coefficient in Eq(30) is related to some original InStability could be classified in terms of the signsugi)
parameters through andv(q). Simple calculation shows tha(q) andv(q) can

be expressed in the following form, where we use the nota-

; N2
' » k7’ tion Q=q-“.
K(1+icy)= = (33
uRer’  uReo+kRep’ u(g)=£&(Q)&(Q), (43)
or v(9)=4(Q)%(Q)Q. (44)
Reo Here &,(Q) ando(Q) are non-negative functions €, and
K=1-—— (34) )
Reo §(Q)=a,Q"+a;Q+ay, (45
so that, by combining the last equation with the inequality £(Q)=b,;Q+Dby, (46)
(27) and the original assumption Be-0, we have a restric-
tive condition ap=1+ 6%, (47)
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FIG. 1. The sign ofi(q) changes withy in three different ways.
The figure shows how the corresponding domang, andC ap-
pear in thea;-a, plane.u(q) is positive for allg in A, negative
above some criticad in B, and negative in a finite interval @f in
C. The line separating domaifsandC is given by a parabola,
=a’/4a,,.

a,=2+K(1+c,0), (49
a,=1+K, (49)
bo=2K[1+ ¢+ (1 —Cy) 6], (50)
bi=K[2(1+c,Cp)+K(1+cD)]. (51)

Figure 1 shows the,-a, plane divided into three domains
(labeled byA, B, andC) corresponding to qualitatively dif-
ferent forms ofu(q). Note that thea;-a, plane covers all
possible types ofi(q) because, is positive definite. Simi-
lar picture forv(q) in the by-b; plane is displayed in Fig. 2
where the whole space is divided into four domdiadeled
by A’ to D). Since the parametess;, a,, by, andb; as
functions of four independent parametés, c;, andc,

CI BI
FIG. 2. The sign ob(q) changes withg in four different ways.
The figure shows how the corresponding domansB’, C’, and
D’ appear in theby-b,; plane.v(q) is positive for allq in A’,
negative above some criticglin B’, negative for allg in C’, and
negative below some criticajin D'.
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Kc

12

FIG. 3. Four types of eigenvalue spectrum for the phaselike
fluctuations about the uniform oscillation which is stable only for
type S. The figure shows how they appear in theKc, plane in the
vicinity of the origin K=0. The other parameters are fixed @s
=1.0 and#=6.0. In each of the four cases, the eigenvalues of the
amplitudelike fluctuations, which is not shown in the figure, form a
branch completely separated from the phase branch and remain
negative for allg.

can be changed independently, every combination between
two members, one from the grouf\B,C) and the other
from (A’,B’,C’,D"), is possible. Uniform oscillation is un-
stable for all these combinations except fév,A’). Loss of
stability occurs as we move across the liag=0 or af
—4aya,=0 in Fig. 1, for which the instability is oscillatory,
or otherwiseb,=0 or b;=0 in Fig. 2, for which the insta-
bility is nonoscillatory. The critical wave number for which
Rex<0 becomes first violated equals zero on the lme
=0, finite ona2—4aya,=0, and infinite ona,=0 andb,
=0. The last type of instability, i.e., the instability which
starts at infiniteg, was calledshort-wavelength bifurcation
by Heagyet al. [7].

If |K| is not too largeu is non-negative, so that the insta-
bility is only throughv becoming negative and hence it is
nonoscillatory. The corresponding critical lineg=0 and
b;=0 in Fig. 2 can now be translated into critical relations
betweenK and Kc, under fixedc, and 6. In this way, we
have four types of eigenvalue spectrum shown schematically
in Fig. 3 where lined; andL, correspond td,=0 and
b;=0, respectively. The figure shows the spectra only for
phaselike fluctuations because in each case the amplitude
branch which is separated from the phase branch remains
negative for allq so that the amplitudelike fluctuations are
irrelevant to stability. Separation between the phase and am-
plitude branches also implies that the eigenvalues associated
with these branches are all real. In contrast, if these branches
merge, then the eigenvalues of the two branches for given
would form a complex conjugate pair. Note that in each type
of spectrum shown in the figure, the eigenvalue saturates to a
constant as the wave number tends to infinity, which is char-
acteristic to nonlocally coupled systems. The characteristic
wave number about which the eigenvalue starts to saturate
equals the inverse of the coupling radius. Physically, this
reflects the fact that the dynamics of fluctuations whose
wavelengths are much shorter than the coupling radius is
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FIG. 6. Eigenvalue spectra close to a finite-wave-number insta-

FIG. 4. Figure 3 is extended to the region of largerA new ijity, which are obtained as a modification &f, in Fig. 3 by
type of eigenvalue spectrum appears for large neg#tivihis type,  assuming nonvanishing, in the reduced equatiof80).
labeled byU; is similar toU, in Fig. 3 except that the amplitude
branch merges with the phase branch above a certain wave ”umbﬁ()undary associated with the last type of instability.
which is still below the wave number at which Rehanges sign. Finally, we comment on the effects of weak diffusion rep-
Thus, the eigenvalues associated with the unstable fluctuations ¥8sented by the terms{ +i 8,) VA in Eq. (30). For simplic-
complex rather than real, i.e., the instability is oscillatory in nature.ity’ we assume thas, is vanishing whiles, is a small posi-
tive. It is clear that this diffusion term simply gives rise to an

practically the same as the oscillators’ individual dynam'cs’additional stabilizing term- 5,q to each of the eigenvalues

and hence it is insensitive to the wave number. Note also tha}\t as a function ofy, Thus, the fluctuations with sufficiently

fche typeUz_spectrum is possible only whehis _nonvanlsh- short wavelength are always decaying. A particularly inter-
Ing or, equwalently, when the nonlocal coupling before re_esting result from this fact appears in type eigenvalue
duction involves delay. . spectrum in Fig. 3. Depending on the value&f the dis-
For larger K], the phase and amplitude branches can,e qjon curve is deformed like some curves shown in Fig. 6.
merge, so that oscillatory instability becomes possible. | ven the dispersion curves of typel and Uy, could be
particular, the short-wavelength-type instabilty, i.e., the in'deformed into a similar form if some paramézter vaules are
stability initiated by qu_ctuations withinfinite wave humber chosen suitably. It is clear that there is a critical valueSpf
;ﬁm gccggicrizsih?estlgﬁit_ 0 d?ar I?a_m_i%]. ;‘ims ;y\ﬁ;i?ﬁt?s' 5, &t which fluctuations with a certain wave numisgrbecome
be lpp tensi f the di y diag Fig. 3 Tgh' | f th unstable. Due to the presence of long-wavelength fluctua-
global extension of the diagram in Fig. 5. 1h€ values ol &;, o\ hich are almost neutral in stability, the unstable
other parameters are the same as in Fig. 3,6#=1.0 and growth of the mode witty, will generally be unable to lead

QZ.G'O' Oscillatory |nsta.b|I|ty initiated by fluctua}uons W't.h to a Turing-type periodic standing pattern. Instead, from the
finite wave number, which occurs when crossing the line

2 P I outset, a group of modes with wave numbers closg. twill
a;—480a,=0 in Fig. 1, does not appear in Fig. 4, but may .., ;e nonlinearly with another group of modes of almost
appear when different values of, and 6 are chosen. For 4nishingg with almost neutral stability, leading to a pecu-
instance, the stability diagram for the casecgf —2.5 and

. S > . liar spatiotemporal chad$,13]. The simple evolution equa-
¢=1.5 is displayed in Fig. 5 where the lifg, gives the o

ke, au=—df €= (1+37)*Ju—(dxu)?, (52)

]

called the Nikolaevskii equatiofi0Q], gives qualitatively the
same eigenvalue spectrum as those in Fig. 6. Actually, it was
argued previously that the Turing pattern in this system ex-
isting for small positivee is always unstable, and as a result
the system immediately becomes turbulent characterized by
the coexistence of turbulent fluctuations with vastly different
length scales. Possibility of this type of turbulence in
reaction-diffusion systems was discussed by Fujisaka and
Yamada[11]. In electroconvective systems, similar type of
complex behavior was discovered by Ketial. [9] which
they calledsoft-mode turbulence

-4

FIG. 5. Similar to Fig. 4 but for different values @ and 6, IV. SUMMARY
i.e., c,=—2.5 and#=1.5. New type of eigenvalue spectrum, de-
noted byU,, appears which differs froly; in Fig. 4 only in that If spatially distributed limit-cycle oscillators are diffu-
the eigenvalues saturate to a negative valug @ses to infinity. sively coupled not directly but via a certain diffusive com-
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ponent, the oscillators may be viewed as coupled nonlocallgive coupling among the oscillators.

after a mathematical elimination of this diffusive variable. Linear stability analysis of the uniformly oscillating state
We showed in the present paper that this actually occurs iof the reduced equation was also carried out. Some new
reaction-diffusion systems and that the nonlocality of thistypes of eigenvalues spectrum were found to arise, and their
kind persists even close to the Hopf bifurcation point pro-physical relevance was suggested.

vided the coupling between each local oscillator and the dif- How the solution behaves in the nonlinear regime is
fusive component is sufficiently weak. Specifically, underknown only partially. For instance, tyge;, spectrum in Fig.
this condition, the system is reduced to a complex Ginzburg3 was found to lead to turbulence with multiaffinit§]. It
Landau-type equation with nonlocal rather than diffusivewas also found that even the normal spectritype S) can
coupling. Temporal nonlocality or memory effects which give rise to peculiar spiral waves without phase singularity
generally exist before reduction does not appear explicitly invhen the nonlocal coupling becomes wddl2]. Different

the reduced equation, still they may generally affect the funcaspects of the nonlocal CGL including the aforementioned
tional form of the coupling function. Our results were gen-type of turbulence associated with the dispersion curve in
eralized so as to include the effects of direct but weak diffufig. 6 will be developed in forthcoming pap€rk3].
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