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Overlapping of nonlinear resonances and the problem of quantum chaos
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The motion of a nonlinearly oscillating particle under the influence of a periodic sequence of short impulses
is investigated. We analyze the Sctiimger equation for the universal Hamiltonian. It is shown that the
guantum criterion of overlapping of resonances is of the faik® 1, whereK is the classical coefficient of
stochasticity and is the functional defined with the use of Mathieu functions. The area of the maximal values
of \ is determined. The idea about the emerging of quantum chaos due to the adiabatic motion along the curves
of Mathieu characteristics at multiple passages through the points of branching is advanced.
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I. INTRODUCTION The Hamiltonian of such type has been investigated for a
long time is being with the purpose of studying a dynamic
The overlapping of nonlinear resonances is the criteriorstochasticity both in classicdll] and in quantum systems
for the origin of dynamical stochasticity in classical Hamil- [3,5,8].
tonian systems. When the conditions for this criterion have Here x andp are the coordinate and the impulse of the
been realized it is possible to justify the transition from theparticle, w, is the fundamental frequency, and 8 are the
dynamic Hamilton description to the statistical one and tocoefficients of the nonlinearityn ande are the mass and the
study the behavior of the system with the help of a statisticatharge of the particlef, is the amplitude of the variable
average. Such a description is as full as possible in this randeeld, X(t) is the periodic sequence of rectangular electro-
and successfully substitutes for a dynamic description, whiclmagnetic impulses with the duratianand with the phase of
loses its sense due to strong local instab{liy?2]. However,  recurringT (Figs. 2 and R It is supposed that &/,1/w,<7
in quantum mechanics the introduction of stochasticity is<T.
significantly difficult [3—8]. What can be considered as a The fundamental component of pumping field at fre-
quantum analog of dynamic stochasticity? What is a criteriorguencyw = w, is able to carry out the linear resonance and
for passing to quantum chaos? How can one quantize theause the increase wfuntil the nonlinear terms proportional
system in a classical limit corresponding to the dynamic stoto x3 andx* become significant in the potentiéle., up to a
chasticity? These are only some of the problems of quantumeighborhood of, , Fig. 1). From this moment the nonlin-
chaos. ear terms will gradually begin to detune the linear resonance
In the present work an attempt is made to investigate tw@at w= w,), which will reduce the resonance growth xf
aspects of a general problem of quantum chaos: the criterionihen the remaining harmonics of the pumping spectrum,
for the overlapping of resonances on the basis of quanturdoncentrated in surd(t), will begin to play a role. Their
mechanics and to study the singularities of wave functions inole will be significant in reaching higher excitatiorx (
the area, in which the classic mechanics assumes the exis-x, ), if criteria of the overlapping of resonances is fulfilled.
tence of dynamic stochasticity.

Let us assume that a nonlinearly oscillating parti¢tey. Il. UNIVERSAL HAMILTONIAN:
1) is under the action of a variable field, CLASSICAL CONSIDERATION
H(X,p)=Hy(X,p) + HynL(X) +eV(X,1), (1) In this section we shall review the well-known results

obtained in the theory of stochasticity for the nonlinearly
where

U®x)

Ho(X)=1/2(p?/m+ w2mx?),
HNL: ’yX3+ 3X4+ cee,

eV(x,t)=—(e/m)xf(t),

f(t)=f2(t)cofwt), eV(X,1)=eVx2(t)cog wt),

FIG. 1. Continuous line corresponds to the anharmonic potential
Uni(X) =mw2x?/2+ yx3+ Bx*. The dashed line corresponds to the
harmonic potential (x)= mw§x2/2. They coincide up to point
e<l. (2) XL -

eVy=—(e/m)f,,
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FIG. 2. Periodic series of rectangular pulsesis the pulse
length andT is the recurring period.

oscillating classical systems. After passing in Hamiltonian
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velocity of the variation ofp contains information about the
nonlinear character of motion. In particular, the dependence

of ¢ on | means the presence of nonlinearity in the oscillat-
ing system. Suppose that for some valuet,ahe resonance
betweenw(l) and some component from the polychromatic
pumping spectrun®) [i.e., o(l,)~n{] is carried out. Then
forming a slow phasex,~¢—nQt, averaging expression
(5) with respect to the fasp, and taking into account Eq.
(5), we get

eV(l ,(p,t)=1/4%V(|)COSan. (6)

(1) to the variables action-angle with the help of transforma-

tion x=2l/mw,cosd,p=—+2lw,msing, and averaging

Eq. (1) with respect to the fast phage we obtain
H=HY-+&V(I) ...,
Ho " =Ho+Hy,
Ho=lwo,Hni=37B(I/mw,)?,
eV(x,t)=el2V(l)cog @) (t)=eV(l,p,1),

V(1) =Vo\21/mw,, 3)

where o= 60— wt is the slow phase.
Let us notice that we have unitedy, with H, in the
unperturbed Hamiltoniamd}-. In what follows, nonlinear

Substituting Eq(6) in Eqg. (4), we have

I,=U(l)sina,,
an=o(l,)—nQ+dU()/dl cosa,, 7
where
U =14 V(). ®)

Equations(7) describe the nonlinear resonance. As op-
posed to the linear resonance at which unbounded linear
growth of an amplitude is validin our case actiot or de-
viation x), in the case of the nonlinear resonaries was
already mentioned there are so-called “phase oscillations,”

terms are not assumed small and the application for them afe., oscillations of the phase, and the amplitudé,, .
the perturbation theory is not possible. The relevant set of Let us introduce the deviation of the actiog]l,,=I

canonical equation looks like

AV(Il,p,t)
8—(9d) ,
e=w(l)+edVv(l,p,t)/al,
where
w(I)Zwo—w+wNL(l),wNLIBW,BI/(meg , (4)
1/r
-

SV(I,(p,t)=l/Z—|_V(|)COS(p2 cosk()t. (5)

=1z

The phasegp, slow as compared t@, remains fast in
comparison with the velocity of the actidnvariation. The

2

fo —_—

«— T

FIG. 3. Pumping spectrunfi(t) consists of many harmonics,

multiples to theQQ=2=/T, enveloping frequency range from,
+1/7 up to w,1/7.

—1,, Al<l, from the resonance value. Then it is possible to
demonstrate that the Hamiltonian

H=w'(A1)?%/2+U(l,)cosa,, (9)

where w’=(dw/d|)|:|n, produces the set of equations of
Eq. (7) type. Really, from the equilibrium conditions,=1
=0, one can obtain

w(ly)—nQ+e/2dU(1,)/dI=0,

o(ly)=o(l,)+o’Al,. (10

If the condition of moderate nonlinearity is just<<u
<1/e, where

dw
,u,=|n/a)(|n)<m) (11

=1,

is the factor of nonlinearity, then with the help of Eq%)—
(11), we get
Al,=U(l,)sine,. (12)

It is possible to obtain the equatian,=w’ Al , for phase
oscillations from set12),

&n—wghsinan=0, (13
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wherew,,=Vo'U is the frequency of phase oscillations. 1.5 TA]
Let us notice that Hamiltoniaf®) is the Hamiltonian of -
the mathematical pendulum, wherewl/plays the role of nzst
mass andJ(l,)cosa, plays the role of potential energy. Tak-
ing into account that in the classical mechanics the problem
of the pendulum can be solved exactly, we reduced an initial 1t
problem to the solved one.
Variation of the action with the help of E49) and(12) 0.75
can be presented in the form
0.5
Al,=J(E+U)/w'dn[e’ J(E+U)/w't;k], E>U
(14) 0.25
[with the period equal to R(k)], E/U
1 1

Al_=\(E+U)/o'cnNo'V(E+U)/w't;1k], E<U

(19

[with the period equal to K(1/k)], whereE is the energy of

the particle,cn anddn are Jacobian elliptic functions: the

elliptic cosine and delta of amplitudés (k) is the second
order complete elliptic integralk=+2U/(E+U) is the

module of elliptic integralsAl ., andAl _ are deviations of
the action up and below the separatrix accordingly. Eor

FIG. 4. Al _ as a function of ratidc/U in the classical case.

o(I13+Al)~(n+1)Q. (20

Just at the jump to the other resonance condition there is
an abruptness, which results in a stochastic wandering of
spectral harmonic$6). It is the essence of overlapping of

=U(or k—1) these two solutions are sewed together andesonances, which serves as the criterion of the stochasticity

take the form of an instanton

V22Ul w'
ch(V2Uw't)

Averaging the action deviation with respect to half perio
we get the following equations:

Al —Al_— (16)

Al,=(E+U)/ow’

B mVE+U/w’

2K(k)

1 4K (k)
_K(k)fo dn(7r,k)dr

E>U,

17

2K (1/k)
cn(kr,1k)dr

1
A|,:\/(E+U)/a) mj

B mUR2w'

=Rk FTY

(18)

a,=arccos(-E/U).
At E~U,

Al_~Al,~Al=mJU

1
2 .
In4./4U/(U—E)

Action variation dependence on the ralitU is presented
in Fig. 4.

According to Fig. 4, the magnitude &1 _ sharply de-
creases as a separatrix is approached.

If during the phase oscillatiol,, takes enough major
values(such asw’Al,=Q), the resonance conditioa(l )
~n() breaks, but other resonance condition is attuned:

(19

emerging in the nonlinearly oscillating system. Expending
o(l) into series with respect tAl, and making an estima-
tion, Al=\U/w’, on the basis of Eq417) and (18), it is
possible to present conditiof20) in the form yw'U~().
Thus, in the case of overlapping of resonances the phase

d,oscillation frequency- w,, coincides by an order of magni-

tude with the frequency distance between harmonics in the
pumping spectrum. Usually, criterion of the dynamic sto-

chasticity, equivalent to the overlapping of resonances, is
written by introducing the stochasticity coefficient

K=~Jo'U/Q>1.

In the range of statistical motion the nonlinear oscillating
system is described with the help of distribution function
p(t), for which it is possible to obtain the diffusion equation

(1]

(21)

7*p(1,t)
a2

ap

whereD=3U2(1)T is a diffusion coefficient. Now from Eq.
(22) with the help ofp(l,t) it is easy to getl =14+ Dt,
where average is understood as a statistical average. Diffu-
sion growth of the action reduces the growth\@k?) in the
range ofx>x, . As an energy of the particle, located in a
hole, isE,=lw,, then in the range of stochastic dynamics
E(t)=E,+ w,\/Dt and “heating” of the particle takes place.
The above-mentioned reasonings are proved by numerical
calculations(Fig. 5).

The first numerical experiments for stochastic “heating”
of a nonlinear oscillator were carried out long time ago, see
Ref. [1].
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08

(20) under Al,, to understand the relevant magnitude ob-
tained from the quantum equations generated by Hamiltonian
9).

Apart from the quantum estimation fdrl, we shall also
be interested in quantum dynamics near the separaffix (
~U) as the basis of directed random motion in one-
dimensional nonlinear systems.

07
06
05

0.4
. QUANTUM-MECHANICAL CONSIDERATION

03 . : . .
The quantum-mechanical consideration of isolated non-

linear resonance, as well as overlapping of two resonances,
was presented in Ref§3,5,6]. In Ref. [5] it was specified
that the Schrdinger equation for a nonlinear isolated reso-
nance can be reduced to the Mathieu’s equation, and if the
o _.““.,utl‘u.,‘.uUL.J.JL.mummﬂummu.ldm.xm,d condition of the resonances overlapping is fulfilled the cor-
0 & 100 150 200 250 300 350 400 450 00 relations drof 6] (numerical computational method§Ve, in
t this section, are interested essentially in quantum-mechanical
FIG. 5. Diffusion growth of the action obtained at the values ofCh""racte”StICS of the prqblem_—wave function and energy
parameters ,=0.5,=20x=1,0=0.2T=10,,=1 and the sto- spectr_u.m. We.shall |nvest|ga_1te, in a quantum case, the unpre-
chasticity factork = (7/T) o' T~3. dictability of hit of a system in any quantum stdtmalog of
a stochastic stratum near a separatrix in classical mechanics

- . : : The universal Hamiltoniari9) depends on the basic pa-
The condition of resonance overlapping has visual Inter'rameter of nonlinear oscillations,’. At quantum reviewin
pretation on a phase plane. & Alg 9

The mathematical pendulum, in association with imtialcorrespondmg to the universal Hamiltonian, Sciinger

i . ,
conditions, can make two types of motion: oscillatory andqui‘:'og_r:’qvglchiﬁ%a?epf;: 'g(;&r)afoﬁo (\;\]/ce ?ﬁéne nt<;)nl't2§ar-
rotary. They are separated by a separatrix on the phase giguantu ! s! ! !

gram. The overlapping of resonances on the phase plane C(%?gﬁ'lﬁggg fnysstggn IW'th'n the framework of the approxima-

responds to a touch of separatrixgsg. 6), if the width of . . I .
the separatrix is estimated ag Al ~ya’U (in frequency The Schrdinger equation relevant to Hamiltoni&®), is

0.2

0.1

units). v 2
The dynamic stochasticity usually originates in a narrow —— + ~[E—Ucosa]¥ =0, (23)
layer near a separatr{d,2]. Therefore, at quantum review- da® X

ing we shall be especially interested in quantum properties of

the system near the separatrix. In other words, we shall baherey=o'#2.

interested in a wave function of isolated nonlinear resonance Let us clarify the essence of the parameterThe value

in the absence of overlapping. The analysis of these properw'# is the quantunm(the minimal portion of the frequency

ties can explain the essence of a quantum chaos. shift stipulated by nonlinearityi.e., the frequency quantum
In conclusion, we shall remark that the condition of over-of nonlinearity. Hence, valugy= w'#%? is the energy quan-

lapping of resonances depends on the acfibp as the so- tum of nonlinearity.

lution of the equations generated by the universal Hamil- Equation(23) is the Mathieu’s equation, which we shall

tonian. Therefore, at quantum reviewing, for establishing theanalyze below. For now we want to get quasiclassical wave

criterion of overlapping of resonances it is enough in Eq.functions relevant to an approximatioh=U/y>1 of the

Schralinger equation. It is known that quasiclassical wave

function is
(L) M c .
7—<:;\’<::\* W(a)zmexp(i/ﬁf Al(a)da), (24)
S — " O
o}
ol)| e TEIN wherec is the normalizing constant antll can be found
( ,l_ from the integral of the energy,
Al=\2/o'(E+U cosa). (25)
Substituting Eq(24) in Eq. (23), after integration we get
0 n 2n 3n o
1/4 N
FIG. 6. Phase trajectories of the mathematical pendulum nea;[/+(a):}(E+U) exy 2i (E+U)/XE(a/2’k)]7 (26)
the two resonances. 2 JK(k) (E+U cosa)*
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[ 2
(U/2)1/4 exr{i U—X[(E—U)F(y,l/k)—i—ZUE(y,l/k)]
VK(1/k) (E+U cosa)**

- JU(1—cosa)
0O<E<U, O=as<q, y=arcsi “UTE a,=arccos—E/U), (28)

E>U, Osasm Y_(a)=142 , (27)

where F(---) is the elliptic integral of the first kind, .

E(---) is the elliptic integral of the second kind, and | =2/w f VE+U cosada

K(---) is the first kind complete elliptic integral.
Let us note that, as in the considered case 1, quasi- 2

classical wave function€6) and(27) oscillate fast with the = \/T[(E—U)K(l/kHZU E(1Kk)]=n. (33

variation of «, having peaks at turning points a,,. It is a X

common property of wave functions in a quasiclassical ap- ) .

proxmanc?n perty of wave funct ! quasi ! P With the help of Eq(33) for the density of energy levels
The wave functions corresponding to the separatrix can bg is possible to obtain

obtained in the limitt — U,

dn 1
V_(a)=V.(a)=V(a) dE~ JUy

:1/2\/— 1 eXpi2V2A sinal2) In the limit E—U for the energy level densitygn/dE,

2 .
U (1+ COSa)lM we get
In4
[E-U| (dn) 1,2 -
— | =——In4\/——.
(29 dE/. JxU [E—U]
According to expressiofR9) for a wave function near the .
separatrix the frequency of fast oscillations practically does hAS can be seen froth(ﬁS) the level densities are loga-
not vary. The turning pointsy,(7 approach+ and the 'thmic (?Nergent neartle sepﬁratrlx assical o of
peaks of fast oscillations become negligibly low. This is con- NOW et us try to evaluate the quasiclassical condition o

nected with the logaritmically diverging factor in E¢R9). the overlapping of resonances. For this purpose it is.neces-
With the help of Eq.(29) it is easy to find an equation for sary to calculate average valugk for a half cycle of motion

K(1/k). (34)

nodal points of separatrix wave functiow,g(a)=0 Eggl (zgﬁfé%TSVle)egobgi;he separatrixes. Taking into account
o
2\/2U/Xsin?n=ﬂ-/2+2ﬂ-n, n=12,.... (30 Ay J‘ﬂ' ¥ (Al (@) ” [E+U #
< > - o +(a (Of = 1T X K(k)’
Differentiating relation(24), it is possible to calculate the (36)

density of nodal points

dn 12U a a1
dan_ﬁ TCOS?. ( )

Y(a)

The high density of nodal points is provided by the major 0.5
parameter of quasiclassical consideratiotJ(®)*?, which

is suppressed by the zeroes of the factougtisin the points !\ ﬂnﬁ ‘ﬂnﬂ

a,= * 1 (see Fig. 7. Another important characteristic of the

guantum state near the separatrix is the density of energ o T —o o

levels. Bohr-Zommerfeld quantization condition looks like UU U U U V Z\j 0
-0.4

= 3€Al(a)da=nh. (32

FIG. 7. Quasiclassical wave function below the separatix,
Taking into account Eq25), we get =0.9U,A~100.

026216-5



UGULAVA, CHOTORLISHVILI, AND NICKOLADZE PHYSICAL REVIEW E 68, 026216 (2003

@o U oﬁ s
<A|>:j%|qf<a)|2m(a)da: \/ZK(ZM() 0.2} W(Q)
(37) 0.1$ !

and near the separatrixés=U,

h
(A =(AlY"~(Al)g=mJU2y———F———,
In4\/2—U

[E-U|
(38)

where(- - -)* denotes averaging with the help of wave func-
tions (26), (27), and(29). Let us note that

(A1) 1h=(UR2Y)YY ag IK(1k)]=AY2>1

is in good agreement with a quasiclassical condition of mo-

tion. Because of the coincidence of classical vatﬁl_b§ with FIG. 8. Quasiclassical wave function near the separatrix,
the quasiclassical ondal)~ it is natural that conditions of E~U.

overlapping resonances will also coincidey’(1)Al

=w'(Al)”=Q. Hence, one can conclude that, under quasi- Wo(a)=cey(a) =112,

classical conditions\>1 and the condition of overlapping
resonances, the stochastic “heating” of electron is under the
conditions given in Sec. | and high excitations can be ob- .
tained(see gchassicaI case, Fig. @l?asiclassical expressions Yn(a)=s&(a)=sinne, n=123.... (41
(36), (37) by the form coincide with the similar classical  These functions should satisfy the equation
expressiong17), (18). But as opposed to the classical for-

mulas, in quasiclassical expressions Eyeenergy spectrum d>r 2E

of quasiclassical levels should be understood urilaNith —+—¥=0, (42
the help of Eqs(33) and(34) it is possible to determine the da X

number of levels entrapped in a nonlinear resonance:

V. (a)=ce,(a)=cosna,

which follows from Eq.(23) at U—0. The equation de-

dn scribes harmonic oscillations with the frequen@®E/ y. To
An= EAE’ (39 reduce it in correspondence with the solutidd), it is nec-
essary to require
where >
—=n or E,=1/2yn?, (43)
AE=fho'(Al)". (40 X
An is the important characteristics of an isolated nonlineaheren=1,2,3 ... . Thelast relation leads to the energy

resonance. Using Eq&34), (37), (39), and(40) it is easy to ~ SPectrum quadratically depending on the quantum number.
show that the number of levels entrapped in nonlinear reso- Itis possible to use the relations obtained with the help of
nance isAn=a,/2. According to Eqgs(35), (38), (39), and  an averaged universal Hamiltonian for calculationAdf in
(40) it is also easy to show that near the separatrix there i§1e zero order with respect to th&/E,

Ang= /2. While according to Eq$34) and(35) the density

of levels increases logarithmically as the separatrix is ap- ((A1)?) =£E (44)
proached, the number of leveln entrapped in resonance is "

not increased. This is caused by the sharp fall of the action

variation nearU=E (see Fig. 4 Thus the number of en-  Then, taking into account E¢43), we get

trapped levels in a nonlinear resonance is not great and re-

mains the same when approaching the separatrix. Major val- (A p=V((AD)*)y=nti. (45)

uesAn, as was shown in Ref6] by means of numerical It ible to obtain th ndition of the overlapping of
methods, can be reached in case of overlapping resonances S possible fo obta € condition of the overiapping o
(Fig. 8. résonances for a frequency shift, caused by the variation of
Let us analyze Schdinger equatiori23). We assume that an action,
U and x are the values of one order and that is why the So~w'(Al)y= 0 nh=Q. (46)
guasiclassical approximation cannot be used.
In the limit caseE>U it is possible to use limiting \{ Using Eq. (46) the condition of resonance overlapping
—0) formulas for the Mathieu’s functior®]: could be written aw~w’'nA=0. It is significantly diffi-
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FIG. 9. Dependence of the eigenval&eon U for different 10 20 30 40 50 60 70
Mathieu’s functions. Dashed line corresponds to the separatrix. ) ) ]
Symbol O denotes branching points above the separatrix and sym- G- 10. Parametex as a function of\ for different Mathieu's
bol @ denotes branching points below the separatrix. functionsce,ces.

istic (in which quantum stajehe system can be found. One
can consider this appearance as quantum analog of formation
of a stochastic layer of motion in the area of classical sepa-
ratrix.

Let us move to the analysis of overlapping criterion in a
quantum case. Taking into account the quantum virial theo-
rem, connecting average kinetic energywith the average
potential energyJ,

cult to fulfill this condition as compared with a similar one of

guasiclassical case, because it requires excessively 8mall
In the opposite limit cas&E<U we have condition of

overlapping the resonances, which is also difficult to fulfill

and for this reason we do not present a detailed analysis.
It is well known that eigenvalues of the Mathieu’s equa-

tion can be defined by means of the Ince-Strutt diagram

(Fig. 9 constructed for the first time to study a parametrical

resonancg9]. As follows from these diagrams, each value du

corresponds to a set of eigenvaluigs and periodical wave 2(T)= < ad—>, (47)

functionsce,(a),se,(a). Curves in Fig. 9 corresponding to @

Fh(_a realized quantum states are knpwn as Mathl_eu_ cha_lract%-r variation of actionAl with the help of Eq.(44), we

istics. A essential feature of Mathieu characteristics is thgpiain

presence of points of branching in the neighborhood of a line

U=E, corresponding to the classical separatrix. Moving <A|>%~/(AI)2)=)\(A)x/w'U,

along Mathieu characteristics from left to right in points of

branching being at the left of separatrix line disappears twowhere

fold degeneration. So through the passing of separatrix line

U=E and reaching the point of branching, to the right of a

separatrix wave functions merge again but nee, and

ce,_1. The emergence of such a pictypoint of branching

from two sides of the separatjiat the passage to quantum and A=U/y. The condition of overlapping of resonances

consideration is a principal characteristic describing a quantakes the form

tum system near classical separatrix. One can observe the

appearance of unpredictability of occupied quantum levels dw=0'(Al)~NA)o'U=Q (49

with the help of branching points located on both sides of a

separatrix. Let us suppose that one of the system parameter*®[ Efx ~

for example, the amplitude of variable field varies adia- e

batically[U— U + € cos(t), e<1,  frequency of slow mo-  *°°[ -

tion]. In common problems of quantum mechanics it is be- sol //

lieved that the distance between levels in an energy -

distribution, depending on exterior parameters, varies syn- . t Prd Ces

chronously with an adiabatically varying parameter, not <

changing in this case a quantum state. The situation is 4} ~

changed radically, if a quantum-mechanical problem of the -

definition of energy distribution and eigenfunctions is re- 2o} Ce

duced to the analysis of diagrams of the Ince-Strutt type. At - A

slow moving along the curves of Mathieu characteristics due

to the adiabatic change of the amplitude of variable field,

after multiple passages through the branching points it iS FIG. 11. Eigenvalué€ as a function ofU, for Mathieu’s func-

impossible to determine exactly in which Mathieu charactertions ce,ce;. Dashed line corresponds to the separatrix.

NA)= \/— f;ceﬁ(a,/\)asinada 48)

10 20 20 40 50 60
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or weakening[ A (A)<1] or amplifying [A(A)>1] the reso-
nances overlapping criterion, in comparison with the classi-
AMA)K=1. (500 cal one. Differently,\(A)>1 means that the condition of

. o . . overlapping of resonances more easily can be fulfilled in a
Comparing the quantum criterio®0) with the classical quantlfrg cgse. y

(21), one can conclude that in quantum case there is an ad- The data of numerical calculations for the magnitude
ditional quantum factok (A). N A(A) are given in Fig. 10. As is visible from Fig. 10,

As can be seen from E¢60), the condition of resonances ) (A)>1, i.e., the resonance overlapping criterion amplifies
overlapping in the quantum case is determined by the madn the quantum case. For high values'ofthe quasiclassical
nitude of A. This condition is reduced to that how many caseé, A(A) should tend to unity. In Fig. 11 the eigenvalues
levels of nonlinearity of energy can be located itJ. of an energyE/ x as functions otJ,, are presented for states

Thus, at quantum reviewing, the additional faciqrA) described by the functionse,(«,U) andceg(a,U). From
appears in the overlapping criterion. The physical sense dfigs. 10 and 11 it is easy to see that the maximum value of
A(A) can be clarified. If the classic criteria of the resonances\ (A) corresponds todE/dU),=0. Thus, in the quantum
overlapping Vo'U~(Q is fulfilled then, according to Eq. case the area lying below classical separatrix corresponds to
(50), the magnitude of(A) determines the conditions of the area of the maximum stochasticity.
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