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Oscillatory amplification of stochastic resonance in excitable systems
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We study systems which combine both oscillatory and excitable properties, and hence intrinsically possess
two internal frequencies, responsible for standard spiking and for small amplitude oscillatory limit cycles
(Canard orbits We show that in such a system the effect of stochastic resonance can be amplified by appli-
cation of an additional high-frequency signal, which is in resonance with the oscillatory frequency. It is
important that for this amplification one needs much lower noise intensities as for conventional stochastic
resonance in excitable systems.
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[. INTRODUCTION Generally, the FHN model is tuned to exhibit either an
oscillatory behavior with strongly nonlinear oscillations in

The response of an excitable system to an external signéihe system or an excitable behavior with a stable fix point,
is a key effect of information processing in a single excitableand the feature that relatively small perturbations can lead to
oscillator or networks of excitable elements. Several intrigu-2 large excursiofexcursion loop or spikeg20,5,21. In con-
ing phenomena have been found in the Study of th|s effecltlrast to thIS we are interested in a FHN mOde| that iS tuned to
One of the most interesting and counterintuitive effect is stohave both oscillatory and excitatory properties. Such dynam-
chastic resonand@R) [1], initially found in bistable systems ics takes place in FHN-like mode[22] or in biophysical
[2], and later confirmed in a large variety of physi€a] or models[23,24], if their parameters are chosen in the region
biological systemg3], including also noise-induced struc- ©f the so-called “Canard” bifurcatiofi25,26. In these works
tures[4] and excitable systenjs]. In SR an optimal amount & Canard solution is a solution of a singular perturbed system
of noise, acting upon an excitable system, increases the quakhich passes close to a bifurcation point and follows a re-
ity of the signal received via noise-induced synchronizatiorP€lling slow manifold for a considerable amount of time.

[6]. Noteworthy, SR has been also found not only in excit- For the FHN model the Canard phenomenon means that
able neural systems its¢lf] or brain processing ar¢8], but there are quasiharmonic oscillations with small amplitude
also in the behavior of the whole organisf@. In spatially ~ and small periodésee Fig. 1 The parameter region between
extended systems SR manifests itself in the signal transmigure excitable and oscillatory cases is typically very narrow
sion, resulted in a noise-induced propagation in b|3tm if the stiffness of the oscillator is |arg@§l). But the value
excitable[11], or monostable systenj42,13. of stiffness is not obligatory large and is defined by the ki-

In SR a part of the noise energy is used for constructivéletic parameters of the specific models. A crucial feature of
purposes, to cause a form of synchronization between inpi¢anard-like behavior is that a very small change in the con-
and output signals. Several investigations have been peftol parameter may lead to a large difference in the trajecto-
formed to find possibilities for the amplification of this ef-
fect. Array-enhanced SR has been considered in Refs 2.0 T
[14,15, where it has been shown that embedding of the pro- j
cessing element in a network of elements with optimal cou-
pling and noisy strengthl6] can improve the signal. This
effect is closely connected and sometimes conceptually in- 1.0
distinguishable from spatiotemporal §R7] or SR in ex-
tended bistable systeni&8]. Ar_lothe_zr possibility to gmplify I | az09866 .-~
the SR effect has been exploited in Relf5] by application ! s
of noninvasive control of SR. In this case, the external feed- ! 7
back has enhanced the response of a noisy system to a mon 0.0 | AL/
chromatic signal. Finally, there were investigations, which ==
have shown that with internal colored noise the SR effect car
be enhanced in systems with a large memory tid.

In this paper we study the SR effect in another class of
systems, which differs to already explored ones by the fact -1-03 0 2‘,0 1' 0 0.0 1‘0 50
that this class possesses properties of both oscillatory an ' ’ ’ ' ’ ’
excitable behavior. As a paradigmatic model for such sys-
tems we consider the famous FitzHugh-Nagu(feiN) os- FIG. 1. The dependence of the trajectories and the appearance of
cillator, known for its simplicity and rather realistic simula- Canard trajectories on the paramesein the FHN model without
tion of neural activity. noise and without driving forces.
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ries and hence produce oscillations with different frequen- Ut —
cies. This changg can be also induced by the action of noise, YO=x(Fa+ fU)+Fex(t), @
if the system possesses Canard-like oscillations.

The idea to use a system with several intrinsic frequenciewhere &(t) is Gaussian white noise of the intensity
as a signal receiver in the presence of noise has been alreat§(t) £(t')) = Uﬁ&(t—t’) and the parametex determines the
reported in the literature. For example, in a bistable underbehavior of the system. Fa@> 1.0 the FHN model is excit-
damped system, stochastic resonance may happen both daigle, and fom<1.0 it shows an oscillatory behavior. At the
to intrawell as well as interwell motiof27]. Further on, it  bifurcation pointa=1.0 the stability of the only fix point
was described that nonadiabatic resonance under the actiap=—a, y;=(a®3)—a will be changed. Between these two
of a high frequency can exist in a noisy excitable systentases an intermediate behavior can appear. For values of the
[28]. In all these works, the improvement of a signal processparameter slightly beyond the bifurcation point, small os-
ing occurs due to the resonance interplay between an incongillations near the unstable fix point are existing instead of
ing periodic signal and one of the internal frequencies of thdarge spikes. To illustrate this, in Fig. 1 trajectories in the
oscillating system. In contrast to this case, we consider herphase space of the FHN system without driving force and
the situation in which an additional high-frequency signalnoise are plotted in dependence on the paranetéor a
improves the detection of a low-frequency signal; i.e., it is<0.9862 and:=0.1, the FHN model oscillates on the well-
crucial that the system is under the action of multifrequencyknown big excursion loop. In the intermediate parameter re-
signal. A similar problem formulation was studied in Ref. gion 0.9864<a<1 ande=0.1, there is also an oscillatory
[29], where it was shown that adding a high-frequency signabehavior but the loopgCanard-trajectorigsin the phase
may help the detection of a low-frequency signal and leadspace are much smaller than the excursion loops. Between
to a heterodyning effect in a two-dimensional oscillator withboth possible traces is a clear gap, so that both of these kinds
one internal frequency near a saddle-node bifurcation. Howef oscillations can be easily distinguished.
ever, this effect occurs due to the action of a resonant high- The Canard trajectories exist also for smalelike 0.01,
frequency signal on a detection threshold near a saddle-nodgit the intermediate parameter region afwhere Canard
bifurcation (see also a case of coupled oscillat¢89]),  oscillations exist tends to zero for decreasing and the
whereas in our case we investigate a noisy system with twperiod of subthreshold oscillations near the bifurcation point
different internal frequencies under the action of a two-jg TSWZWQ [22]. Hence, fore=0.01 the subthreshold
frequency signal, and the resonance effect at one higher iryscillations are very fast, and so the trajectory loops are very
ternal frequency leads to the amplification of stochastic resogmall. In the following, we fix the parameter=0.1 to have
nance at another low frequency. a system with a significant intermediate region where Canard

We consider FHN system under the action of a subthreshgpscillations exist. Similar values ef (parameter to separate
old bichromatic Signal, which consists of two parts: the ﬁrsta slow and a fast moving Variab'were used also in differ-
one has the frequency of an investigated signal, and the segnt papers for the modeling of natural procesk3g—41,
ond one has a higher frequency. We demonstrate the effect ghd so our choice has natural links. In spite of the fact that
SR amplification, when the higher frequency is in resonancérequently used harmonic and singular approximations of
with the frequency of the Canard oscillations of our systemgHN studies are very suitable for the mathematical tractabil-
Noteworthy, two-frequency signals are widely used in com-ty of the model behavior, in the real processes the stiffness is
munications[31], neurosciencg¢32], laser physic§33], or i petween these two limit cases.
acoustics[34]. Additionally, the beneficial role of high-  aAn important fact of the treatment of the Canard oscilla-
frequency(HF) driving has been already found in several tions is that a very small change in the parametézads to
biological phenomena, such as increased drug uptake by |arge difference in the trajectories. This change in the pa-
brain cells[35], improvement of bone and muscle healing rametera can be caused by some instantaneous influence of
[36], or enhanced biodegradation of microorganisi@2].  noise. Beside the expected case for the paransetgpical
The effect, presented in this paper, is also closely connectedr the Canard phenomenon, Canard-like trajectories can be
to vibrational resonanc&VR) in excitable system$38],  ohserved also in the excitable regime-1 close to the bi-
where the high-frequency driving acts as noise and improvegrcation point if the FHN system is forced by additive noise
the signal processing. VR demonstrates a resonancelike bg¢t). This can be easily seen in Fig. 2, where trajectories in
havior with respect to the amplitude of the HF signal. In{he phase space were plotted for the parameter§.1, a
contrast .to VR, in Canard-enhanced SR. it is crucial thafc not_ 1.01, 0220_00040” the excitable regimeand there is no
the amplitude buthe frequencyf the HF signal should be in - heringic driving forces. Only the noise drives the FHN sys-
resonance with the oscillatory behavior of a system. tem and leads to the Canard-like trajectories and the spikes,
and therefore, again the FHN system behaves with two dif-
ferent frequencies of the two cycles, which can be certainly
used in signal processing.

We study the following FHN model: These different trajectories manifest themselves in a poly-
modal interspike interval histogratSIH) not only when the
3 parameteg is chosen from the interval corresponding to the
X(t) = X(t) — X(t) —y(t) (1) Canard orbitgas in Ref.[22]) but for a which provides an
3 ' excitable regimdsee Fig. 3. We have chosen the most pro-

Il. THE MODEL
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FIG. 2. Occurrence of spike and Canard trajectories in a noise FIG. 4. Resonances for the periodically drivém=0.03) FHN
driven FHN model in the excitable regime. system in the excitable regime{ 1.01) under the influence of
different noise intensities.

nounced examples of ISIH polymodality but this type of dis-

. . . . . . W 2mnlw
tribution |.s preserved in some intervals of the essential pa- Qo= J' 2x(t)cog wt) dt,
rameters: ae[1.0-1.05,e[0.2-0.02] under the 2nm Jo
appropriate noise amplitudes.
Next we add a driving forc€ .,(t) =bcost) and inves- Q= /Qsﬁm+ chos

tigate the response of the periodic driven system at the input
frequency. To evaluate the amplitude of the input frequenc
in the output signal, we calculate the Fourier coefficient
for the input frequency. We use th&) parameter instead of

the power spectrum because we are interested in the tra Je consider three case@ a=1.01, FHN in a monostable

port of the information encoded in the frequensy For this excitable regime(b) a=1.0, FHN at the bifurcation point;
task theQ parameter is a much more compact tool than the(c) a=0.998, FHN in an oscillatory regime with small Ca-

power spectrungl,12: nard oscillations around the unstable fix point and small am-
plitudes compared with the amplitude of a spike. The ampli-
w [2mie tude of the periodic driving force is chosen small enough so
Qsm:Z—J 2x(t)sin( wt) dt, that the system needs noise to reach the threshold and to
nmJo produce a spike. Figures 4—6 show the dependence & the

First we look for the resonance frequencies of the system
¥o find both internal frequencid€anard frequency and fre-
quency of the spiking behaviprTherefore we calculate the
parameter versus the circle frequency of the driving force.
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Interspike interval (ISI) At
FIG. 5. Resonances for the periodically drivam=0.02) FHN
FIG. 3. ISIH in a noise driven excitable FHN model. The pa- system at the bifurcation poina& 1.0) under the influence of dif-
rameters ara=1.01,e=0.1. ferent noise intensities.
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parameter on the input frequency for these three cases an
various noise intensitiesZ. The Q parameter refers to the '
variable input frequency and measures the amplitude of the 0.0 =
input frequency in the output signal.

The first peak in Figs. 4—6 ab=1.3 corresponds to a
period length ofT=4.83 and is caused by the firing of a
spike. The second peak at abeut 2.6—2.9 is caused by the |
Canard oscillations near the fix poirt, y; with a small 20 | \
amplitude compared with the big spike. In opposition to the
resonance frequency of the spike, the position of the Canart
resonance frequendy depends on the parameteand the -3.0 : : ‘ ‘ :
noise intensitycri. This can be also easily seen in the phase 100 120 140 . 160 180 200
space in Figs. 1 and 2. The trace of the spikes is very stablc Ll
f"‘”_d narrow, and so the time for one round-trip during a spike FIG. 7. Time series of th&(t) variable for the excitable FHN
is independent of the parame_t&ranq the noise, _Wh'le the_ system driven by additive noise and two periodic forces. The high-
traces for the Canard oscillations fill a much wider area ingequency input signal is in resonance with the Canard frequency
the phase space. Hence we can observe a shifting of thg) and out of resonance with the Canard frequetiyFor a better
Canard-resonance frequency by changa@nd crg- It is  recognition of the signal processing with the low-frequency input
important to note that a peak at the Canard frequency existsignal, this periodic input signal is also plottédith a ten times
even for smaller noise intensities, when the peak at the spikiigher amplitude than in the modglel
ing frequency is not yet pronounced. This explains the fact
that adding the driving force at this Canard frequency can b@wo different but fixed frequencies,
successfully used in the improvement of a signal receiving,
even if the information is carried by another low frequency. _

Noteworthy, similar high-frequency resonance has been Fex(t)=bcog wt) + Ccod ).
described recently in the Hodgkin-Huxley modidR] and it L _ . L .
was proposed in the “resonate-and-fire” neuron mddél], The baS|c.|dea is that t.he mfprmatlon is stored in a low-
but its background is the oscillatory convergence to the redfeauency input signal with a circle frequenayand an am-
state instead of the Canard phenomenon. For a more stiffitude b. The additional high-frequency input signal
FHN oscillator, only the low-frequency peak in ISIH is ob- Ccos(t) and the noise helps to reach the threshold, so both
served, and its coherency is maximal if the period is equal t&f€ Necessary to produce a spike. The amplitude of both pe-

the time of cycle excursion as it has been shown in (2. riodic input si_gnals_ are chos_en small _enou_gh that they _cannot
produce a spike without noise. A similar situation was in the

study of the vibrational resonang88]. But the setup of the

parameters in Ref38] did not allow use of the Canard reso-
With the knowledge of the Canard-resonance frequencypance in the signal processing.

we demonstrate that the response of the system to a given In Fig. 7, two typical time series of thg variable are

input frequency is improved. We force the FHN system withplotted for the parameters=0.1, a=1.01, a§=0.000 375,

x(t)

-1.0

IIl. ENHANCEMENT OF STOCHASTIC RESONANCE
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FIG. 8. Signal processing at the low-frequeney) (input signal FIG. 9. Signal processing at the low-frequenay) (input signal

versus the noise intensity for various frequencies of the highversus the noise intensity for various frequencies of the high-
frequency input signal€) for the FHN system in the excitable frequency input signal§) for the FHN system at the bifurcation
regime. Parametersi=1.01, b=0.007,C=0.025, andw=0.251. point. Parametersa=1.0, b=0.01, C=0.02, andw=0.251. The
The Canard-resonance frequencylig=2.73, see Fig. 4. Canard-resonance frequencyflg=2.62, see Fig. 5.

C=0.025,b=0.007, w=0.251, andQ=2.73 for Fig. 7a)  at the low frequencyw) on the noise intensityr2 are de-
and 1 =2.0, respectively, for Fig. (). The difference be- picted for different frequencies of the high-frequency driving
tween these two figures is the frequen@y of the high-  force.
frequency input signal: the first one shows the case of reso- All three cases have in common that without noisé (
nant forcing with the Canard frequencf2&Q ) and the =0) we observe no information transport, becadkg is
second one corresponds to the forcing out of the Canardero. That means that the FHN system does not show a spik-
frequency L #Q¢). As an important result, the amplitudes ing behavior. These figures demonstrate the bell shaped form
of the small oscillations around the fix point in the original of Q,,, well-known SR effec{1], for all different high fre-
time seriesx(t) are different. Because of the resonance be-quencies. In the range of lower noise, it can be clearly seen
tween the external high-frequency force and the noisethat for the HF part of the signal being in resonance with
induced small amplitude oscillations in the Canard-resonan€anard frequency, the SR effect at the low frequetcis
case, these small oscillations are enhanced by amplitude asynificantly enhanced. In this region there is a significant
the FHN in this regime can easier reach the threshold of thdifference in theQ,, parameter between the forcing at the
firing with the help of noise. As a result, we can observe the
behavior that is more synchronized with the low-frequency  0.03
input signal.

In natural systems with such a spiking behaviorlike neu-
rons, only the spikes themselves are important for the infor-
mation transport. As shown above, small Canard oscillations
near the fix point are very important for the behavior of the 0.02 -
FHN itself, but not for the information transport. To evaluate
the information transport, we calculate again the response o;
the systemQ;,, but replace the original time serigét) by i
a reduced time series without oscillations around the fix o | /
point. In this way we consider only the spikes for the infor-
mation transport. To distinguish between a spike and the sub iy
threshold oscillations, we set the threshold of deteckign I
=0.0. If x(t) is smaller thanx,,, we replacex(t) by the "
value of the fix pointx; . Forx(t)=x,, we use the original 0-%90%00 00005 00010 00015 00020
value ofx(t). This replacement is used only for the calcula- o’
tion of the Q, parameter and not for the simulation of the :
original time series with the Heun method. The filtered time  F|G. 10. Signal processing at the low-frequenay) (input sig-
series are also plotted in Fig. 7 by the dashed line. In Figsaal versus the noise intensity for various frequencies of the high-
8—10(excitable regime, at the bifurcation point, and oscilla-frequency input signal§) for the FHN system in the oscillatory
tory regime, respectiveythe dependencies of the quality of regime. Parametersi=0.998,b=0.005,C=0.01, andw=0.251.
the information transporfrepresented by th@,, parameter The Canard-resonance frequencyls=2.86, see Fig. 6.
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500 tween two adjacent spikes. Except for these three peaks in
the ISIH, the multimodal structure with the period of the
Q=273 Canard period is suppressed. For higher interspike intervals,
400 | Q=20 | a modulation with the period of~3 can be observed,

which corresponds to the high-frequency input signal. In this
case the Canard oscillation can succeed only for two periods
300 and lose the competition with the high-frequency forcing af-

E ter this time, and the waiting time will be dominated now by
= 500 integer numbers of the high-frequency period.
IV. SUMMARY
100 | | 1 In conclusion, we have considered a signal processing in

[l ‘ the noisy system which possesses both oscillatory and excit-
I 1 O , able properties under the action of an additional HF signal.
10 12 14 16 i8 20 22‘ 24 This system was represented by the FHN model with a stiff-
ness between pure excitable and oscillatory regime. We have
demonstrated the possibility to amplify the SR effect in such

FIG. 11. ISI histogram by forcing of the excitable FHN system Systems using the Canard oscillations. In this effect the HF
in (2=2.73=0¢) and out of the Canard resonanc@+2.0  Signal that is in resonance with the frequency of Canard os-
#Qc). cillations strongly improves signal processing of the low-
frequency signal. The effect shows a frequency selectivity
and disappears in the region out of resonance with the Ca-
nard frequency.

2 4 6 8
Interspike interval (ISI) At

Canard-resonance frequenc € () ¢) and the forcing out

of the Canard resonancl*{1c). The difference in th@, For supercritical Hopf bifurcation in FHN-like models,

parameter is caused only by a change of the frequéhof this phenomenon is relevant for biology if the stiffness of the

the HF signal because the amplitudes are the same withig stem(a degree of excitabilityis limited by the intervak
one figure. This effect can be understood as the coexistence’ g y

of two resonances. The first resonance happens between tﬁe[o'z_ 0.04in or_der to get the o_bs_ervable periods of noise-
induced Canard-like orbits. In this interval very small noise

high frequency of a signal and the frequency of Canard OS'_s necessary for a significant improvement of signal process-
cillations. If these two frequencies are similar, this resonanc{en It mean).i, o fgr neurons ?he ossibilit o?a ne?/v requ-
amplifies the conventional SR for a signal with low fre- 9- €9, ' P Y g

quency lation of signal processing which, in addition to the choice of
The demonstration of signal enhancement may be pre:'r:n\s/ii?sesi?)rtic?grugciihoe?llpnii)riz mitr?\:i’rgi%(e:ﬁ?trm the signal
sented also in the form of interspike interval histograms. In ISy envil S
; . ; We hope that these theoretical findings will stimulate ex-
Fig. 11 the ISIH is depicted for the same parametess ( . ; P . o
perimental work to find new possibilities of signal receiving

=0.251) which are used for both the time series in Figa) 7 and propagation in systems, which demonstrate Canard-like
and 71b). Both ISIHs were calculated with the same length of propag Y '

100000 time units for the underlying time series in CanaraoSC'."at;]on% elspeC|a|IIy in nonlinear cherr;:cal systéfm;l or
resonance ©=2.73=0) and out of resonance(=2.0 in biophysical model$23,24]. Moreover, the dynamical sys-

. tems, which have some specific regime between excitable
#Q¢). In the resonant case, much more spikes occur, an P g

hence, the peaks of ISIH have higher values. The first maxi- nd oscillatory states, are not limited by the FHN with Ca-

mum in the ISIH for both time series is betwe&ibh=4.8 and nard phenomenon. Recently, it has been shown that the

4.9 and corresponds exactly to the resonance frequency g odified Oregonator equations have three steady states and
the spikes with period = 4.83. The time of the first maxi- citation occurs via resonance between damped HF oscilla-

i< the minimal time betw t d t soik h tions around the stable fixed point and periodic perturbations
mum IS the minimal ime between wo adjacent SpIKes WNeR, ., o, appropriate tuning frequen¢45]. A similar SR en-
one spike follows the other one without any waiting time

) ; A "hancement by HF signal may also be expected in this chemi-
i.e., without any small Canard oscillation. y g Y P

cgl system with low excitability.
For the Canard-resonant case, we observe the expecteg y y

multimodal structure with peaks located at multiples of the
period length of the Canard oscillations or high-frequency
force atT=2.3 (1=2.73). This modulation is very regular. E.V. and J.K. acknowledge financial support from SFB
By forcing out of Canard resonance witti=2.0 or T 555 (Germany, E.U. from the International MP Research
=3.14, the first three peaks are approximately at the sam®chool on Biomimetic Systems, and A.Z. from the Micro-
position as in the resonant case. Although we force out of thgravity Application Program/Biotechnogy of the European
Canard frequency, one or two Canard periods can occur b&pace Agency.
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