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Oscillatory amplification of stochastic resonance in excitable systems
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We study systems which combine both oscillatory and excitable properties, and hence intrinsically possess
two internal frequencies, responsible for standard spiking and for small amplitude oscillatory limit cycles
~Canard orbits!. We show that in such a system the effect of stochastic resonance can be amplified by appli-
cation of an additional high-frequency signal, which is in resonance with the oscillatory frequency. It is
important that for this amplification one needs much lower noise intensities as for conventional stochastic
resonance in excitable systems.
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I. INTRODUCTION

The response of an excitable system to an external si
is a key effect of information processing in a single excita
oscillator or networks of excitable elements. Several intrig
ing phenomena have been found in the study of this eff
One of the most interesting and counterintuitive effect is s
chastic resonance~SR! @1#, initially found in bistable systems
@2#, and later confirmed in a large variety of physical@1# or
biological systems@3#, including also noise-induced struc
tures@4# and excitable systems@5#. In SR an optimal amoun
of noise, acting upon an excitable system, increases the q
ity of the signal received via noise-induced synchronizat
@6#. Noteworthy, SR has been also found not only in exc
able neural systems itself@7# or brain processing area@8#, but
also in the behavior of the whole organisms@9#. In spatially
extended systems SR manifests itself in the signal trans
sion, resulted in a noise-induced propagation in bistable@10#,
excitable@11#, or monostable systems@12,13#.

In SR a part of the noise energy is used for construc
purposes, to cause a form of synchronization between in
and output signals. Several investigations have been
formed to find possibilities for the amplification of this e
fect. Array-enhanced SR has been considered in R
@14,15#, where it has been shown that embedding of the p
cessing element in a network of elements with optimal c
pling and noisy strength@16# can improve the signal. This
effect is closely connected and sometimes conceptually
distinguishable from spatiotemporal SR@17# or SR in ex-
tended bistable systems@18#. Another possibility to amplify
the SR effect has been exploited in Ref.@15# by application
of noninvasive control of SR. In this case, the external fe
back has enhanced the response of a noisy system to a m
chromatic signal. Finally, there were investigations, wh
have shown that with internal colored noise the SR effect
be enhanced in systems with a large memory time@19#.

In this paper we study the SR effect in another class
systems, which differs to already explored ones by the
that this class possesses properties of both oscillatory
excitable behavior. As a paradigmatic model for such s
tems we consider the famous FitzHugh-Nagumo~FHN! os-
cillator, known for its simplicity and rather realistic simula
tion of neural activity.
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al
e
-
t.
-

al-
n
-

is-

e
ut
r-

fs.
-
-

n-

-
no-

n

f
ct
nd
-

Generally, the FHN model is tuned to exhibit either
oscillatory behavior with strongly nonlinear oscillations
the system or an excitable behavior with a stable fix po
and the feature that relatively small perturbations can lea
a large excursion~excursion loop or spike! @20,5,21#. In con-
trast to this we are interested in a FHN model that is tuned
have both oscillatory and excitatory properties. Such dyna
ics takes place in FHN-like models@22# or in biophysical
models@23,24#, if their parameters are chosen in the regi
of the so-called ‘‘Canard’’ bifurcation@25,26#. In these works
a Canard solution is a solution of a singular perturbed sys
which passes close to a bifurcation point and follows a
pelling slow manifold for a considerable amount of time.

For the FHN model the Canard phenomenon means
there are quasiharmonic oscillations with small amplitu
and small periods~see Fig. 1!. The parameter region betwee
pure excitable and oscillatory cases is typically very narr
if the stiffness of the oscillator is large («!1). But the value
of stiffness is not obligatory large and is defined by the
netic parameters of the specific models. A crucial feature
Canard-like behavior is that a very small change in the c
trol parameter may lead to a large difference in the trajec

FIG. 1. The dependence of the trajectories and the appearan
Canard trajectories on the parametera in the FHN model without
noise and without driving forces.
©2003 The American Physical Society14-1
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ries and hence produce oscillations with different frequ
cies. This change can be also induced by the action of no
if the system possesses Canard-like oscillations.

The idea to use a system with several intrinsic frequen
as a signal receiver in the presence of noise has been alr
reported in the literature. For example, in a bistable und
damped system, stochastic resonance may happen both
to intrawell as well as interwell motion@27#. Further on, it
was described that nonadiabatic resonance under the a
of a high frequency can exist in a noisy excitable syst
@28#. In all these works, the improvement of a signal proce
ing occurs due to the resonance interplay between an inc
ing periodic signal and one of the internal frequencies of
oscillating system. In contrast to this case, we consider h
the situation in which an additional high-frequency sign
improves the detection of a low-frequency signal; i.e., it
crucial that the system is under the action of multifrequen
signal. A similar problem formulation was studied in Re
@29#, where it was shown that adding a high-frequency sig
may help the detection of a low-frequency signal and le
to a heterodyning effect in a two-dimensional oscillator w
one internal frequency near a saddle-node bifurcation. H
ever, this effect occurs due to the action of a resonant h
frequency signal on a detection threshold near a saddle-n
bifurcation ~see also a case of coupled oscillators@30#!,
whereas in our case we investigate a noisy system with
different internal frequencies under the action of a tw
frequency signal, and the resonance effect at one highe
ternal frequency leads to the amplification of stochastic re
nance at another low frequency.

We consider FHN system under the action of a subthre
old bichromatic signal, which consists of two parts: the fi
one has the frequency of an investigated signal, and the
ond one has a higher frequency. We demonstrate the effe
SR amplification, when the higher frequency is in resona
with the frequency of the Canard oscillations of our syste
Noteworthy, two-frequency signals are widely used in co
munications@31#, neuroscience@32#, laser physics@33#, or
acoustics @34#. Additionally, the beneficial role of high
frequency~HF! driving has been already found in sever
biological phenomena, such as increased drug uptake
brain cells@35#, improvement of bone and muscle healin
@36#, or enhanced biodegradation of microorganisms@37#.
The effect, presented in this paper, is also closely conne
to vibrational resonance~VR! in excitable systems@38#,
where the high-frequency driving acts as noise and impro
the signal processing. VR demonstrates a resonancelike
havior with respect to the amplitude of the HF signal.
contrast to VR, in Canard-enhanced SR it is crucial that
the amplitude butthe frequencyof the HF signal should be in
resonance with the oscillatory behavior of a system.

II. THE MODEL

We study the following FHN model:

« ẋ~ t !5x~ t !2
x~ t !3

3
2y~ t !, ~1!
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ẏ~ t !5x~ t !1a1j~ t !1Fext~ t !, ~2!

where j(t) is Gaussian white noise of the intensi
^j(t)j(t8)&5sa

2d(t2t8) and the parametera determines the
behavior of the system. Fora.1.0 the FHN model is excit-
able, and fora,1.0 it shows an oscillatory behavior. At th
bifurcation pointa51.0 the stability of the only fix point
xf52a, yf5(a3/3)2a will be changed. Between these tw
cases an intermediate behavior can appear. For values o
parametera slightly beyond the bifurcation point, small os
cillations near the unstable fix point are existing instead
large spikes. To illustrate this, in Fig. 1 trajectories in t
phase space of the FHN system without driving force a
noise are plotted in dependence on the parametera. For a
<0.9862 and«50.1, the FHN model oscillates on the wel
known big excursion loop. In the intermediate parameter
gion 0.9864<a,1 and«50.1, there is also an oscillator
behavior but the loops~Canard-trajectories! in the phase
space are much smaller than the excursion loops. Betw
both possible traces is a clear gap, so that both of these k
of oscillations can be easily distinguished.

The Canard trajectories exist also for smaller«-like 0.01,
but the intermediate parameter region ofa ~where Canard
oscillations exist! tends to zero for decreasing«, and the
period of subthreshold oscillations near the bifurcation po
is Tsth'2pA« @22#. Hence, for«50.01 the subthreshold
oscillations are very fast, and so the trajectory loops are v
small. In the following, we fix the parameter«50.1 to have
a system with a significant intermediate region where Can
oscillations exist. Similar values of« ~parameter to separat
a slow and a fast moving variable! were used also in differ-
ent papers for the modeling of natural processes@39–41#,
and so our choice has natural links. In spite of the fact t
frequently used harmonic and singular approximations
FHN studies are very suitable for the mathematical tracta
ity of the model behavior, in the real processes the stiffnes
in between these two limit cases.

An important fact of the treatment of the Canard oscil
tions is that a very small change in the parametera leads to
a large difference in the trajectories. This change in the
rametera can be caused by some instantaneous influenc
noise. Beside the expected case for the parametera typical
for the Canard phenomenon, Canard-like trajectories can
observed also in the excitable regimea.1 close to the bi-
furcation point if the FHN system is forced by additive noi
j(t). This can be easily seen in Fig. 2, where trajectories
the phase space were plotted for the parameters«50.1, a
51.01,sa

250.0004~in the excitable regime!, and there is no
periodic driving forces. Only the noise drives the FHN sy
tem and leads to the Canard-like trajectories and the spi
and therefore, again the FHN system behaves with two
ferent frequencies of the two cycles, which can be certai
used in signal processing.

These different trajectories manifest themselves in a po
modal interspike interval histogram~ISIH! not only when the
parametera is chosen from the interval corresponding to t
Canard orbits~as in Ref.@22#! but for a which provides an
excitable regime~see Fig. 3!. We have chosen the most pro
4-2
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nounced examples of ISIH polymodality but this type of d
tribution is preserved in some intervals of the essential
rameters: aP@1.021.05#,«P@0.220.02# under the
appropriate noise amplitudes.

Next we add a driving forceFext(t)5bcos(vt) and inves-
tigate the response of the periodic driven system at the in
frequency. To evaluate the amplitude of the input freque
in the output signal, we calculate the Fourier coefficientQ
for the input frequencyv. We use theQ parameter instead o
the power spectrum because we are interested in the tr
port of the information encoded in the frequencyv. For this
task theQ parameter is a much more compact tool than
power spectrum@1,12#:

Qsin5
v

2npE0

2pn/v

2x~ t !sin~vt ! dt,

FIG. 2. Occurrence of spike and Canard trajectories in a n
driven FHN model in the excitable regime.

FIG. 3. ISIH in a noise driven excitable FHN model. The p
rameters area51.01, «50.1.
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v

2npE0

2pn/v

2x~ t !cos~vt ! dt,

Q5AQsin
2 1Qcos

2 .
First we look for the resonance frequencies of the sys

to find both internal frequencies~Canard frequency and fre
quency of the spiking behavior!. Therefore we calculate the
Q parameter versus the circle frequency of the driving for
We consider three cases:~a! a51.01, FHN in a monostable
excitable regime;~b! a51.0, FHN at the bifurcation point
~c! a50.998, FHN in an oscillatory regime with small Ca
nard oscillations around the unstable fix point and small a
plitudes compared with the amplitude of a spike. The am
tude of the periodic driving force is chosen small enough
that the system needs noise to reach the threshold an
produce a spike. Figures 4–6 show the dependence of thQ

e FIG. 4. Resonances for the periodically driven (b50.03) FHN
system in the excitable regime (a51.01) under the influence o
different noise intensities.

FIG. 5. Resonances for the periodically driven (b50.02) FHN
system at the bifurcation point (a51.0) under the influence of dif-
ferent noise intensities.
4-3
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parameter on the input frequency for these three cases
various noise intensitiessa

2 . The Q parameter refers to th
variable input frequency and measures the amplitude of
input frequency in the output signal.

The first peak in Figs. 4–6 atv51.3 corresponds to a
period length ofT54.83 and is caused by the firing of
spike. The second peak at aboutv52.6–2.9 is caused by th
Canard oscillations near the fix pointxf , yf with a small
amplitude compared with the big spike. In opposition to t
resonance frequency of the spike, the position of the Can
resonance frequencyVC depends on the parametera and the
noise intensitysa

2 . This can be also easily seen in the pha
space in Figs. 1 and 2. The trace of the spikes is very st
and narrow, and so the time for one round-trip during a sp
is independent of the parametera and the noise, while the
traces for the Canard oscillations fill a much wider area
the phase space. Hence we can observe a shifting of
Canard-resonance frequency by changinga and sa

2 . It is
important to note that a peak at the Canard frequency ex
even for smaller noise intensities, when the peak at the s
ing frequency is not yet pronounced. This explains the f
that adding the driving force at this Canard frequency can
successfully used in the improvement of a signal receivi
even if the information is carried by another low frequen

Noteworthy, similar high-frequency resonance has b
described recently in the Hodgkin-Huxley model@42# and it
was proposed in the ‘‘resonate-and-fire’’ neuron model@43#,
but its background is the oscillatory convergence to the
state instead of the Canard phenomenon. For a more
FHN oscillator, only the low-frequency peak in ISIH is ob
served, and its coherency is maximal if the period is equa
the time of cycle excursion as it has been shown in Ref.@28#.

III. ENHANCEMENT OF STOCHASTIC RESONANCE

With the knowledge of the Canard-resonance frequen
we demonstrate that the response of the system to a g
input frequency is improved. We force the FHN system w

FIG. 6. Resonances for the periodically driven (b50.01) FHN
system in the oscillatory regime (a50.998) under the influence o
different noise intensities.
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two different but fixed frequencies,

Fext~ t !5bcos~vt !1Ccos~Vt !.

The basic idea is that the information is stored in a lo
frequency input signal with a circle frequencyv and an am-
plitude b. The additional high-frequency input signa
Ccos(Vt) and the noise helps to reach the threshold, so b
are necessary to produce a spike. The amplitude of both
riodic input signals are chosen small enough that they can
produce a spike without noise. A similar situation was in t
study of the vibrational resonance@38#. But the setup of the
parameters in Ref.@38# did not allow use of the Canard reso
nance in the signal processing.

In Fig. 7, two typical time series of thex variable are
plotted for the parameters«50.1, a51.01, sa

250.000 375,

FIG. 7. Time series of thex(t) variable for the excitable FHN
system driven by additive noise and two periodic forces. The hi
frequency input signal is in resonance with the Canard freque
~a! and out of resonance with the Canard frequency~b!. For a better
recognition of the signal processing with the low-frequency inp
signal, this periodic input signal is also plotted~with a ten times
higher amplitude than in the model!.
4-4
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C50.025, b50.007, v50.251, andV52.73 for Fig. 7~a!
and V52.0, respectively, for Fig. 7~b!. The difference be-
tween these two figures is the frequencyV of the high-
frequency input signal: the first one shows the case of re
nant forcing with the Canard frequency (V5VC) and the
second one corresponds to the forcing out of the Can
frequency (VÞVC). As an important result, the amplitude
of the small oscillations around the fix point in the origin
time seriesx(t) are different. Because of the resonance
tween the external high-frequency force and the no
induced small amplitude oscillations in the Canard-reson
case, these small oscillations are enhanced by amplitude
the FHN in this regime can easier reach the threshold of
firing with the help of noise. As a result, we can observe
behavior that is more synchronized with the low-frequen
input signal.

In natural systems with such a spiking behaviorlike ne
rons, only the spikes themselves are important for the in
mation transport. As shown above, small Canard oscillati
near the fix point are very important for the behavior of t
FHN itself, but not for the information transport. To evalua
the information transport, we calculate again the respons
the system,Qth , but replace the original time seriesx(t) by
a reduced time series without oscillations around the
point. In this way we consider only the spikes for the info
mation transport. To distinguish between a spike and the s
threshold oscillations, we set the threshold of detectionxth
50.0. If x(t) is smaller thanxth , we replacex(t) by the
value of the fix pointxf . For x(t)>xth , we use the original
value ofx(t). This replacement is used only for the calcu
tion of the Qth parameter and not for the simulation of th
original time series with the Heun method. The filtered tim
series are also plotted in Fig. 7 by the dashed line. In F
8–10~excitable regime, at the bifurcation point, and oscil
tory regime, respectively! the dependencies of the quality o
the information transport~represented by theQth parameter

FIG. 8. Signal processing at the low-frequency (v) input signal
versus the noise intensity for various frequencies of the hi
frequency input signalsV for the FHN system in the excitabl
regime. Parameters:a51.01, b50.007,C50.025, andv50.251.
The Canard-resonance frequency isVC52.73, see Fig. 4.
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at the low frequencyv) on the noise intensitysa
2 are de-

picted for different frequencies of the high-frequency drivi
force.

All three cases have in common that without noise (sa
2

50) we observe no information transport, becauseQth is
zero. That means that the FHN system does not show a s
ing behavior. These figures demonstrate the bell shaped f
of Qth , well-known SR effect@1#, for all different high fre-
quencies. In the range of lower noise, it can be clearly s
that for the HF part of the signal being in resonance w
Canard frequency, the SR effect at the low frequencyv is
significantly enhanced. In this region there is a significa
difference in theQth parameter between the forcing at th

-
FIG. 9. Signal processing at the low-frequency (v) input signal

versus the noise intensity for various frequencies of the hi
frequency input signalsV for the FHN system at the bifurcation
point. Parameters:a51.0, b50.01, C50.02, andv50.251. The
Canard-resonance frequency isVC52.62, see Fig. 5.

FIG. 10. Signal processing at the low-frequency (v) input sig-
nal versus the noise intensity for various frequencies of the h
frequency input signalsV for the FHN system in the oscillatory
regime. Parameters:a50.998,b50.005,C50.01, andv50.251.
The Canard-resonance frequency isVC52.86, see Fig. 6.
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Canard-resonance frequency (V5VC) and the forcing out
of the Canard resonance (VÞVC). The difference in theQth
parameter is caused only by a change of the frequencyV of
the HF signal because the amplitudes are the same w
one figure. This effect can be understood as the coexiste
of two resonances. The first resonance happens betwee
high frequency of a signal and the frequency of Canard
cillations. If these two frequencies are similar, this resona
amplifies the conventional SR for a signal with low fr
quency.

The demonstration of signal enhancement may be
sented also in the form of interspike interval histograms.
Fig. 11 the ISIH is depicted for the same parametersv
50.251) which are used for both the time series in Figs. 7~a!
and 7~b!. Both ISIHs were calculated with the same length
100 000 time units for the underlying time series in Can
resonance (V52.735VC) and out of resonance (V52.0
ÞVC). In the resonant case, much more spikes occur,
hence, the peaks of ISIH have higher values. The first m
mum in the ISIH for both time series is betweenDt54.8 and
4.9 and corresponds exactly to the resonance frequenc
the spikes with periodT54.83. The time of the first maxi
mum is the minimal time between two adjacent spikes wh
one spike follows the other one without any waiting tim
i.e., without any small Canard oscillation.

For the Canard-resonant case, we observe the expe
multimodal structure with peaks located at multiples of t
period length of the Canard oscillations or high-frequen
force atT52.3 (V52.73). This modulation is very regula
By forcing out of Canard resonance withV52.0 or T
53.14, the first three peaks are approximately at the s
position as in the resonant case. Although we force out of
Canard frequency, one or two Canard periods can occur

FIG. 11. ISI histogram by forcing of the excitable FHN syste
in (V52.735VC) and out of the Canard resonance (V52.0
ÞVC).
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tween two adjacent spikes. Except for these three peak
the ISIH, the multimodal structure with the period of th
Canard period is suppressed. For higher interspike interv
a modulation with the period ofT'3 can be observed
which corresponds to the high-frequency input signal. In t
case the Canard oscillation can succeed only for two per
and lose the competition with the high-frequency forcing
ter this time, and the waiting time will be dominated now b
integer numbers of the high-frequency period.

IV. SUMMARY

In conclusion, we have considered a signal processin
the noisy system which possesses both oscillatory and e
able properties under the action of an additional HF sign
This system was represented by the FHN model with a s
ness between pure excitable and oscillatory regime. We h
demonstrated the possibility to amplify the SR effect in su
systems using the Canard oscillations. In this effect the
signal that is in resonance with the frequency of Canard
cillations strongly improves signal processing of the lo
frequency signal. The effect shows a frequency selectiv
and disappears in the region out of resonance with the
nard frequency.

For supercritical Hopf bifurcation in FHN-like models
this phenomenon is relevant for biology if the stiffness of t
system~a degree of excitability! is limited by the interval«
P@0.220.01# in order to get the observable periods of nois
induced Canard-like orbits. In this interval very small noi
is necessary for a significant improvement of signal proce
ing. It means, e.g., for neurons, the possibility of a new re
lation of signal processing which, in addition to the choice
the value of the bifurcation parameter, can control the sig
transmission under a small noisy environment.

We hope that these theoretical findings will stimulate e
perimental work to find new possibilities of signal receivin
and propagation in systems, which demonstrate Canard
oscillations, especially in nonlinear chemical systems@44# or
in biophysical models@23,24#. Moreover, the dynamical sys
tems, which have some specific regime between excita
and oscillatory states, are not limited by the FHN with C
nard phenomenon. Recently, it has been shown that
modified Oregonator equations have three steady states
excitation occurs via resonance between damped HF osc
tions around the stable fixed point and periodic perturbati
with an appropriate tuning frequency@45#. A similar SR en-
hancement by HF signal may also be expected in this che
cal system with low excitability.
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