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Period locking due to delayed feedback in a laser with saturable absorber

T. W. Carr*
Department of Mathematics, Southern Methodist University, Dallas, Texas 75275-0156, USA

~Received 18 February 2003; published 21 August 2003!

We consider laser with saturable absorber operating in the pulsating regime that is subject to delayed
feedback. Alone, both the saturable absorber and delayed feedback cause the clockwise output to become
unstable to periodic output via Hopf bifurcations. The delay feedback causes the laser pulse period to lock to
an integer fraction of the feedback time. We derive a map from the original model to describe the periodic
pulsations of the laser. Equations for the period of the laser predict the occurrence of the different locking states
as well as the value of the pump when there is a switch between the locked states.
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I. INTRODUCTION

In this paper we investigate the effect of delayed feedb
~DF! on a laser containing an intracavity saturable absor
~LSA!. Lasers with a saturable absorber~SA! have long been
used to generate high-intensity pulses. The effect of the
sorber is to passively modulate the cavity losses so that
LSA is ‘‘self-pulsing.’’ The pulsed output is of practical in
terest for applications that require extremely short high-pe
power pulses of light such as spectroscopy~see Refs.@1,2#
for background and historical references!. We introduce DF
in the intensity-loss term of a rate-equation model of
class-B LSA as a first step to understanding the combined
and DF effects; class-B lasers are those where the polariz
tion variable can be adiabatically eliminated@3# and includes
solid-state, CO2 and semiconductor lasers. Our results w
describe the locking phenomena of the LSA period to inte
fractions of the delay time.

The study of the effect of delay on optical systems h
produced important theoretical practical and results. For
ample, the effect of delay on the pulses in a passive r
cavity was studied by Ikeda@4,5#; the resulting ‘‘Ikeda Map’’
is ubiquitous in introductory studies of dynamical syste
@6#. Arecchi et al. @7# studied delay in a class-B CO2 laser
and found complex dynamics that, for certain parameter
ues, were describable by Ikeda map. Of great current inte
is the effect of delay on semiconductor lasers because
their widespread use in applications such as telecommun
tions and optical data storage devices. Lang and Kobay
@8# formulated a rate-equation model for semiconductor
sers, subject to delay that is the starting point for many
today’s theoretical studies. Common to the above system
period locking~or frequency locking!, where the period of
the oscillations is related by an integer to the delay time
lasers, this is understood to result from an interference ef
between the laser-cavity modes and external-cavity mo
the latter formed by the laser facet and the exterior reflec
surface@8#.

For LSAs with high-intensity pulsations, some results
garding the effect of delay have been discussed by
Tartwijk and San Miguel@9#. They numerically investigated
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the effect of DF in self-pulsing semiconductor lasers; th
purpose was to better quantify the statistical properties of
pulse amplitude and repetition rate due to stochastic noise
a recent study@10# we determined the conditions for th
onset of oscillations and pulsations due to the presence
SA and delay feedback. Both the SA and DF cause the las
clockwise ~CW! output to become unstable through Ho
bifurcations. The main result of that study was that the
can increase the sensitivity of the laser to DF. Or, the DF
cause self-pulsations outside the normal range of pump
ues for the LSA.

In the high-intensity pulsating regime there is a lack
theoretical results concerning the combined effects of a
and DF. In numerical simulations the pulsations requ
highly accurate computations that take long times. From
analytical perspective, the pulsating output is highly nonl
ear and typical perturbation approximation techniques f
Grigorieva et al.@11–13# and Pieroux and Erneux@14# have
developed asymptotic methods to analyze pulsating la
output with delay, which are based on ideas from bounda
layer theory. In this paper we use this general technique
obtain our first results concerning the effect of DF on t
LSA’s pulsating output. In particular, we investigate the e
fect of DF on the period and intensity of the pulses produc
by the LSA.

We consider a nondimensionalized model for the clasB
LSA with the addition of a delay term@2,15,16#:

dI

dt
5S D1

A2

11aI
21D I 1hI ~ t2t!,

dD

dt
5g@A12~11I !D#, ~1!

where I is the intensity andD is the population inversion
Parameterg is the inversion-decay rate normalized by t
cavity-decay rate and is typically small; the strongly puls
ing behavior of the LSA is directly related to the small valu
of g @17#. A1 is the pump or injected current in the case
semiconductor lasers.A2,0 is defined as the absorber-pum
parameter anda describes the relative saturability of the a
sorber with respect to the active media. The feedb
©2003 The American Physical Society12-1
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FIG. 1. Bifurcation diagram@23# of the LSA
without feedback (h50). Solid~dotted! lines are
stable~unstable! solutions.A1th54.5 is the bifur-
cation of the zero steady state to the nonze
steady state.A1lp54.1. A1h57.8 is the Hopf bi-
furcation to periodic solutions that are unstab
Pulsating solutions occur on the upper branch b
tweenA1hlp59.6 andA1th , where they terminate
in a homoclinic orbit (A2523.5, a52, g
50.05).
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SA
strength is given byh and delay byt. Equations~1! are
commonly referred to as delay differential equations~DDE!
due to the DF term.

In Eqs. ~1! the DF corresponds to a delayed loss in t
real-valued intensity. A delayed-loss term is possible
implement with an electro-optic feedback loop@7#. However,
a delayed version of the real intensity may be more diffic
to realize experimentally. A field reinjected due to reflecti
from an external surface, is properly modeled by consider
the complex-valued electric field. This requires evoluti
equations for both the field’s amplitude and phase a
greatly complicates the analysis. As a first step in this inv
tigation we consider the simpler equations~1!.

Self-pulsation of the LSA without feedback (h50) ap-
pears through a bifurcation mechanism that we briefly
view for the case shown in Fig. 1. The laser-first thresh
occurs whenA15A1th[12A2, and the nonzero steady sta
~NZSS! may appear through either a supercritical or subcr
cal bifurcation. In Fig. 1 we show the bifurcation diagram f
the subcritical case. A Hopf bifurcation to pulsating solutio
appear on the nonzero branch of solutions atA1h and is
subcritical so that the oscillatory solutions are unstable. T
oscillations become stable pulsations as the branch pa
the turning point atA1hlp . As A1 is decreased, the oscilla
tions become increasingly pulsating with increasing int
pulse periods. The branch terminates at a homoclinic orb
infinite period asA1 approachesA1th . We note that the un-
stable branch of oscillatory solutions serves as a ba
boundary between the NZSS and the pulsating solutions
A1h,A1,A1hlp .

In the following section, we describe period locking f
long delays using results from numerical simulations. Th
in Sec. III we present a map that describes the dynamic
the pulsating output. The map is derived from the DD
model ~1! and the details of the derivation are shown
Appendix A. We derive simplified results for periodic puls
tions in Sec. III B and then analyze these in detail wh
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comparing to numerical simulations in Sec. IV. We fini
with a discussion in Sec. V.

II. PERIOD LOCKING

In the LSA without DF (h50), as the pump is increase
from thresholdA1th , the period decreases smoothly to a
nite value near the upper Hopf-bifurcation point. This
shown by the thick decreasing curve in Fig. 3~a!. This curve
serves as a reference for the thick stepped curves which
the result of numerical simulations of the LSA with DF (h
Þ0) when t550. The steps in the period correspond
period locking that we will describe in detail below. We us
the MATLAB routine DDE23@18# to numerically integrate
Eqs. ~1! rewritten in terms of the electric field, whereI
5uEu2. The latter is done to avoid accuracy problems res
ing from the high-amplitude pulsations. All parameters v
ues are the same as Fig. 2 unless otherwise noted.

As stated above, the thick-solid stepped curve in Fig. 3~a!
is the period of the LSA with DF (hÞ0). When the pump is
near threshold the laser locks to a period determined by
delay,P't. As the pump is increased the period approac
that of the LSA’s natural period. Before exceeding the na
ral period, the laser’s period jumps down and locks toP
't/2. We will show later that, in general, the period locks
an integer fraction of the delay,P'm11, m an integer.

If the pump is such that the laser is initially locked toP
't/2 then as the pump is decreased we find a region
hysteresis. That is, the period stays locked toP't/2 for
values of the pump lower than when the period step do
from P't. As the pump is decreased further, there is
critical value when the period steps up and locks toP't. As
an additional demonstration of period locking, Fig. 4 sho
the case oft5100. Because the delay is longer, the perio
locking phenomena is even more dramatic. In this case
lock states correspond toP'100, 50, 33, and 25. The LSA’s
natural period is an upper bound on the period of the L
2-2
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PERIOD LOCKING DUE TO DELAYED FEEDBACK IN A . . . PHYSICAL REVIEW E68, 026212 ~2003!
FIG. 2. For two subsequent pulses the m
variablesTn andDn are shown. The electric field
equal to the square root of the intensity, is plott
so that its magnitude is comparable to the inve
sion and they can be seen on the same graph.
time-delayed pulse is shown as a dashed lineh
50.04,t520, A158, A2523.5, a52, g
50.05).
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with DF. Hence, as the pump is increased the period s
down from one locked state to another as the natural pe
curve is approach. There is again a hysteresis effect as
pump is decreased. The period stays locked to a lower
for pump values smaller than where the step down occur
In fact, the pump regions for locking to a particular period
not even overlap.

III. PULSING DDES TO A MAP

A. Derivation of the map

The pulsing behavior of the laser is analyzed by us
approximation techniques based on matched asymptotic
pansions@19# to derive a map. We previously used th
method to analyze pulsations in driven class-B lasers@20#
and LSAs@15#. We also benefited from the work of Grig
orievaet al. @11–13# as a guide to handling the DF. We wi
only summarize the method and present the details in App
dix A.

During the interval of time from one pulse to the nex
there are subintervals where different terms in Eqs.~1! are
large or small. From Fig. 2 we see that the intensity is la
during the initial short subinterval reminiscent of a bounda
layer or inner solution. After the pulse there is a longer s
interval where the intensity is very small corresponding
the outer solution. However, during this time there is a sh
subinterval where the delayed-pulse term becomes large
each of these subintervals, we solve approximate equat
for the laser with the appropriate assumptions regarding la
and small terms. The initial conditions for each subinter
are determined by the terminal conditions from the previo
subinterval. By patching the results from one subinterva
the next, we determine the state of the system atT1, based
on the state of the system atT0. In general, this results in a
map fromTn to Tn11.
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Depending on the operating conditions of the laser, it
often the case that the delay is longer than the time betw
pulses. In this case, the large delayed pulse that occurs in
current interval of time is not due to the pulse at the start
that interval. Instead, it is due to the delayed pulse from
earlier interval of time. This introduces a retarded or delay
index in the map because intervaln depends on a pulse from
interval n2m.

The map we obtain is

Dn115A11~Gn2A1!e2Pn, ~2!

Tn115Tn1Pn , ~3!

where Tn is the time when population inversionDn is a
maximum.@Time has been rescaled according toT5gt so
that the interval between pulses isO(1).# The time and in-
version atn11 are determined by their previous values a
the period of time between pulsePn and inversion minimum
Gn . These latter quantities are determined by a set of
plicit equations given by

05 lnS Gn

Dn
D2~Gn2Dn!,

h

g
pn2m5eC12eC2,

Dn2pn5Dne2pn,

C1g52l~Pn2jn!1~Gn2A1!~e2Pn2e2jn!,

C2g5ljn1~Gn2A1!~12e2jn!,
2-3
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T. W. CARR PHYSICAL REVIEW E 68, 026212 ~2003!
FIG. 3. In both~a! and~b!, thin curves corre-
spond to analytical results while the thick curve
are from numerical simulations.~a! Period vs.
pump. The right-most decaying curves are for t
case of no DF,h50. The map predicts that the
period becomes large asl→0 and the ho-
moclinic orbit is approached. In the presence
DF (hÞ0) there is exponential decay of the p
riod until it locks. When the period equals th
natural period,h50, it switches from them50
curve to them51 curve.~b! Intensity vs. pump.
As the pump is increased, the intensity of th
pulses increases. At the switch point, the intens
abruptly decreases and then follows the ne
branch of solutions for increasing pump. Param
eter values are the same as Fig. 2 except fort and
A1.
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m

Pn2 j , m>1

tg , m50,

~4!

wherel5A12A1th @see Eq.~A10!# is how far the laser is
pumped beyond threshold. The delay time is accounted
by variablejn which is the subinterval of time from the mo
recent pulse to the delayed pulse in that interval. T
strength of the delayed pulse is accounted for bypn2m which
is related to the energy of the pulse at timeTn2m @see Eq.
~A6!#. Finally, we note that if the DF is removed by settin
h50 andtg5tg50 then the simplified map is identical t
the one we derived in Ref.@15#.
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B. Periodic pulsations

One motivation for deriving a map is that iterating th
map is typically much easier and quicker than numerica
simulating the original flow from which it was derived. I
the present case, however, the map consists of nonlin
coupled implicit equations that are very difficult to solv
Transients or chaotic behavior are better simulated using
original differential equation. However, the map is very us
ful for studying periodic solutions that correspond to fix
points of the map. The resulting equations are still difficult
solve, but with further approximations we will obtain exce
lent results.

As stated above, fixed points of the map correspond
periodic solutions of the original system. Thus, all variab
2-4
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FIG. 4. Large delay allows for more locking
regions, P'tg /(m11). Analytical predictions
for the switch points are indicated. Thin curve
analytical; thick curves, numerical.
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~except for time! are constants independent of indexn.

D5A11~G2A1!e2P,

Tn115Tn1P, ~5!

05 lnS G

D D2~G2D !, ~6!

h

g
p5eC12eC2, ~7!

D2p5De2p, ~8!

C1g52l~P2j!1~G2A1!~e2P2e2j!,

C2g5lj1~G2A1!~12e2j!,

j5tg2mP, m50,1,2, . . . .

Our first qualitative result for the period is determine
Eq. ~7!, which can be written as

h

g
p5eC1S 12expH 1

g
@lP1~G2A1!~12e2P!#J D .

The right-hand side must be positive becausep is related to
the energy of the pulse. Thus, the exponent on the right-h
side must be negative:

lP1~G2A1!~12e2P!,0. ~9!

This equation, when made an equality, is exactly the eq
tion for the LSA’s natural period without DF@15#. That is, if
P0 is the LSA’s natural period,lP01(G2A1)@12exp
(2P0)#50. By combining these last two equations we obta

lP1~G2A1!~12e2P!,lP01~G2A1!~12e2P0!.
02621
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Some algebra and the assumption thatG'0 ~see next para-
graph! leads to the conclusion thatP,P0; the period with
feedback must be less than the LSA’s natural period with
feedback. In Appendix A we show that this is identical to t
condition for asymptotic validity of the map-constructio
technique.

We now use the result thatP is less than the natural perio
and make two approximations that greatly simplify the co
ditions for periodicity. The first is that for pulsating solu
tions, where the minimum of the inversion is very close
zero,G'0. Second, the energy in the pulse is large so t
exp(2p)!1. We discuss the details and validity of the a
proximations further in Appendix B. Their application lead
to a single implicit equation for the period that then det
mines the inversion:

l~P2j!1A1~e2P2e2j!52g lnFhg A1~12e2P!G ,
~10!

D5A1~12e2P!. ~11!

A numerical solution for periodP is now much easier to
obtain than if we had used the original fixed-point equatio
However, we can obtain explicit results forP with two addi-
tional approximations.

Suppose thatP2j5(m11)P2tg!1. We refer to this
as the locking approximation because the laser period is
integer multiple of the delay. To findP we let P5(tg
1P1)/(m11) and solve forP1!1. The final result forP is

LA: P5
tg

m11
2

g

m11

lnFhg A1~12e2tg /(m11)!G
@A1~12e2tg /(m11)!2A1th#

,

~12!
2-5
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FIG. 5. Period as a function of the feedbac
strengthh for two different values of the pump
Thin curves, analytical; thick curves, numerica
The dotted curve is a shifted version of the an
lytical result for better visual comparison.
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where we have dropped anO(g) term in the denominator o
the correction. We will refer to the locking-approximatio
result forP in Eq. ~12! as LA.

If the lasers are not locked, the period is typically lar
enough so thate2P!1. Also, in general, we need only con
sider casem50 because whenm>1 the solutions are locked
and better described by LA. Now we find that

UA: P5tg1
A1

l
e2tg2

g

l
lnFhg A1G . ~13!

We will refer to this ‘‘unlocked’’ approximation for the pe
riod, Eq.~13!, as UA. The LA and UA results are equivale
in limit tg→` (m50).

We note that in Ref.@15# we found that the second term i
Eq. ~13!, P5A1 /l, is the large-period (P@1) approxima-
tion to the LSA’s natural period. However, iftg50, the
feedback term in the DDEs Eq.~1! becomes a modification
to the linear dissipation in the LSA ODEs. Rederiving t
map in Ref.@15# with this additional dissipation will recove
the log term shown above. Thus, nonzero delay time affe
the map through the terms withtg .

IV. ANALYTICAL PREDICTIONS

The analytical approximations derived in the preced
section can be used to determine the period as a functio
the pump,P(A1). We will compare the analytical result
from the map~shown as thin lines in the figures! to the
results of numerically simulating the original DDEs~shown
as thick lines!. We will first present results for long delays o
t550 and 100, where period locking occurs~described in
Sec. II!, followed by short delays that do not exhibit lockin
Finally, the intermediate regime that exhibits characteris
of both will be discussed.
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A. Long delay: locked period

We begin with the case oft550 in Fig. 3~a!. The thick,
smoothly decreasing curve is the natural period of the L
without DF; the nearby thin curve is from the map forh
50 and fits the numerical result very well.

As the pump is increased from the initial locked state
P't, the period approaches that of the LSA’s natural peri
Before exceeding the natural period, the laser’s period jum
down and locksP't/2. The left-most thin curve is the ana
lytical approximation of the period from UA. For values o
the pump close to threshold,A1→A1th , l→0, and UA is
dominated by theA1 /l term. As the pump is increased, th
period quickly asymptotes to the locked stateP't (m
50). For higher pump values them50 curve intersects with
the curve for the LSA’s natural period. Equation~! provided
a condition for the maximum period, which states that t
LSA’s natural period is an upper bound. Thus, for high
pump values we use the lowest thin curve for the peri
determined by the locking approximation LA, whereP
't/2 (m51).

Figure 4 shows the case oft5100, where the period
locks to P'100, 50, 33, and 25 form50, 1, 2, and 3. We
again see an excellent fit between numerical results and
map’s prediction for the period. The step, or switch betwe
analytical curves, is determined by the intersection of
locking curve with the curve for LSA’s natural period.

The map does an excellent job of predicting the lo
states and provides a condition for when the situation ther
a step down, i.e., the LSA’s natural period is an upper bou
However, the present analysis cannot predict the step
from a lower period to a higher period.

As has been demonstrated, the period of the laser in
presence of DF is determined by delay timet. The strength
of feedbackh modifies periodP through the smallO(g)
correction terms that we analyze in Fig. 5. We have plot
periodP as a function of feedback strengthh for two differ-
2-6
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FIG. 6. For short delay, the period is shifte
from the h50 curve. The period does not be
come small enough before the upper Hopf bifu
cation locks to an integer fraction of the dela
Thin curves, analytical; thick curves, numerica
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ent values of the pump. In Fig. 5~a!, we compare numerica
results ~thick! to the analytical result~thin! of LA ~period
locking!, while in Fig. 5~b!, we compare to UA~decaying
period!. The dotted curves are shifted versions of the anal
cal result so that the slopes of the numerical and analyt
results can be visually compared. In both cases there
very good fit, except when feedback strengthh is small. The
analytical results determine thatdP/dh;1/(hl) and predict
that h versusP curve decreases for increasingh. However,
limit h→0 is singular and would require a more preci
analysis to achieve a better fit in this regime.

B. Short delay: unlocked period

Figure 6 shows the case of short delay,t52, where the
LSA’s natural period is always greater than the delay tim
and hence, no locking will occur.~The LSA’s natural period
is not shown in this figure.! The analytical result UA is
shown in Fig. 6~a!. UA was derived with approximationP
@1 and for large period UA follows the result of numeric
simulation quite well. However, it loses some fidelity f
small period~large pump!. This error is due to the large
period approximation used to derive UA rather than an
trinsic difficulty of the map. In Fig. 6~b! we show the result
of numerically solving the implicit equation for the perio
Eq. ~10!, before the large-period approximation is mad
Here, the map result follows the numerical result extrem
well, even for large pump.

C. Moderate delay

For long delays we see that the period locks to a fract
of the delay time, while for short delays the period is a p
turbation of the LSA’s natural period approximated byP
5A1 /l. Moderate delays exhibit both of these characte
tics. Figure 7 is the case oft520. For pump values not fa
from threshold, the period decays. Then, nearA1'5.9, the
period drops to the vicinity ofP't. As the pump increase
02621
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further, the period becomes more closely locked. The dro
the period is not a switch between two locked states, sam
50 and m51. Rather, it occurs when the delay is lon
enough so that the trailing edge of the pulseI (t2t) begins
to overlap with the leading edge of the next pulse ofI (t).
Our analysis is not yet refined enough to capture the p
nomena.

The map result for UA captures the decaying period
low pump but asymptotes to a value that is too large. Ho
ever, the LA (m50) is more appropriate when the period
locked and gives a reasonable fit for larger pump. The m
difference is due to terms exp(2tg) in LA, which are signifi-
cant for low values of delay time.

D. Maximum pulse intensity

The maximum intensity of the pulses is an important d
sign quantity that can also be determined from the map.
maximum occurs in the first subinterval whendI/dT50,
and so, from Eq.~A2!, this requiresD51. The latter is sub-
stituted in Eq.~A3! to obtain a formula for the maximum
pulse intensity in terms of the initial value of inversionDn .
For periodic solutions, the inversion is found from the peri
with Eq. ~11!, so that we have

I max5
1

g
$A1~12e2P!212 ln@A1~12e2P!#%, ~14!

where we have kept only the largeO(1/g) terms. The maxi-
mum intensity is affected by the delay through periodP. In
fact, the equation for the maximum period is the sa
whether delay is considered or not. That is, the maxim
intensity depends directly on the period of the pulsations
only indirectly on the delay. Furthermore, for large peri
the dependence is weak because exp(2P)!1.

In Fig. 3~b! we compare the analytical and numerical r
sults for the pulse amplitude whent550. From Fig. 1 we
2-7
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FIG. 7. For moderate delays the period fir
decays as the pump is increased and then abru
drops to them50 locked state. Thin curves, ana
lytical; thick curves, numerical.
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observe that as the pump is increased, the intensity of
LSA pulses increases. Then, there is a step down in the
tensity coincident with when there is a step in the per
from one locked state to another. There is also a hyster
effect when the pump is decreased.

V. DISCUSSION

Our numerical simulations illustrate locking of the LSA
the delay. We see that the LSA’s natural period~no DF!
serves as an upper bound for the period in the presenc
delay. This causes the period to switch between differ
locked states as the pump is increased. There is a hyste
effect as the pump is decreased and the laser again swi
between locked states. Our analysis accurately predicts
locked states as well as the step down in period for incre
ing pump; however, we are not yet able to describe hys
esis. For moderate and low delay times, we can accura
described the smooth decay in the period for increas
pump.

There are two transition regions where more detailed
specialized analysis is warranted. The first is the transi
between different locked regions, for example, whenm50
and m51. Our analysis assumes that the real and dela
pulses occur in nonoverlapping time intervals. However,
transition between locked states occurs when the perio
nearly a multiple of the delay so that there is overlap
tween the next pulse and the delayed pulse. A second typ
transition occurs for intermediate delays such as cast
520. There was a jump down from an exponential decay
period to a locked period form50. Here again, this transi
tion occurs as the delayed-pulse interval overlaps with
next pulse. Analysis of these transitions will require reexa
ining inner regions in the matched asymptotics construc
of the map.

For self-pulsing semiconductor lasers the models can
clude additional terms to account for nonlinear gain satu
02621
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tion, nonlinear damping of the active and passive regions
cross-diffusion of the carriers between active and pass
regions. More importantly, the linewidth enhancement fac
~LWEF! or Henry parametera @21# is absent from our
model. Including the LWEF requires that we consider t
complex electric field and the evolution of the phase. P
liminary numerical simulations indicate that the locking ph
nomena we describe here remains valid. However,
analysis is more difficult and we postpone this considerat
to a future work.

DF has been used in applications to reduce frequency
ter due to stochastic noise@22#. The period locking we de-
scribe also indicates how DF can be used to reduce the
tentially deleterious effects of parameter drift due to noi
For example, the natural period of the laser is highly dep
dent on the pump as it varies from unbounded at threshol
anO(1) value at the upper Hopf bifurcation point. With DF
the period is locked to a fixed value over a wide range
pump values. On the other hand, the hysteresis effect is
basic dynamical mechanism on which to design an opt
switch. When the pump is tuned near the switch point, o
small variations of the pump would be needed to switch
period of the pulsating output.
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APPENDIX A: CONSTRUCTION OF THE MAP

In this section we describe the details of constructing
map. This involves approximating the LSA DDEs on ea
subinterval to account for small or large terms. The subin
vals are referenced according to Fig. 2.

The pulse period is typically very large withO(1) pulse
widths. It is more convenient for our analysis to rescale ti
2-8
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so that the period isO(1) while the pulse width is very
small. We letT5gt and obtain

dI

dT
5

1

g F S D1
A2

11aI
21D I 1hI ~T2tg!G ,

dD

dT
5A12~11I !D, ~A1!

wheretg5gt.
TP@T0 ,T08#: Define timeT5T0 and T5T08 as the start

and end of the present pulse; in general,Tn and Tn8 are the
start and end of pulsesn51,2, etc. During the first pulse th
intensity is very large,I (T)@1, and we assume the delaye
pulse has not yet been reinjected into the laser and is sm
I (T2tg)!1. The LSA equations are approximated as

dI

dT
5

1

g
~D21!I ,

dD

dT
5ID . ~A2!

These can be solved in the phase plane by determining
equation fordI/dD, whose solution is

I ~T!2I ~T0!5
1

g F2@D~T!2D~T0!#1 lnS D~T!

D~T0! D G .
~A3!

Time T08 is defined as when the intensity has returned to
initial value, I (T08)5I (T0). Thus, the inversion evolves du
ing the pulse according to

052@D~T08!2D~T0!#1 lnS D~T08!

D~T0!
D .

TP@T08 ,T01tg8#. The next interval fromT5T08 to T
5T01tg is when both the intensity and the delayed intens
are small; I (T)!1 and I (T2tg)!1. On this interval we
solve

1

I

dI

dT
5

1

g
~D1A221!,

dD

dT
5A12D,

with initial conditions I (T08)5I (T0) and D(T08)5D(T08),
which are determined by the terminal values of the previ
interval. The equation forD can be solved first and the resu
used to solve forI. The solutions are

D~T01tg!5A11@D~T08!2A1#e2(T01tg2T08),

g lnS I ~T01tg!

I ~T0! D5@A12~12A2!#~T01tg2T08!

2@D~T08!2A1#~e2(T01tg2T08)21!. ~A4!

TP@T01tg ,T081tg#. The effect of the delayed pulse oc
curs during intervalT5T01tg to T5T081tg when I (T)
!1 but I (T2tg)@1. On this interval we solve
02621
ll,

he

s

y

s

dI

dT
5

h

g
I ~T2tg!,

dD

dT
5A12D, ~A5!

with initial conditions I (T01tg) and D(T01tg). Each
equation can be solved independently to give

D~T081tg!5A11@D~T01tg!2A1#e2(T082T0),

I ~T081tg!2I ~T01tg!5
h

gET0

T08I ~T!dT5
h

g
p. ~A6!

The effect of the delay is to cause a jump in the intens
proportional to the area of the original pulse. The latter c
be thought of as the energy in the pulse. If there is no fe
back (h50), there is effectively no change in the intensi
over the very small time interval defined by the width of t
pulse.

TP@T081tg ,T1#. Finally, the last time interval is from
the end of the delayed pulse,T5T081tg to the start of the
next real pulse atT5T1. Time T1 is defined as when the
intensity is equal to that at the start of the preceding pu
i.e., I (T1)5I (T0). Both the pulse and the delayed pulse a
small and we solve the same equations as duringT
P@T08 ,T01tg#. We find that

D~T1!5A11@D~T081tg!2A1#e2(T12T082tg),

g lnS I ~T0!

I ~T081tg!
D 5@A12~12A2!#~T12T082tg!

2~D~T08!2A1!@e2(T12T08)2e2tg#.

The map is determine by finding a relationship forD(T1)
and T1 in terms of D(T0) and T0. These values ofDn
5D(Tn), n50,1,2, . . . correspond to the maximum of th
population inversion. The minimum values of the inversi
are given byGn5D(Tn8), n50,1,2, . . . . In constructing the
map we use the fact that the width of the pulse in time sc
T is O(g) and thus, can be ignored. Also, timesTn are de-
fined by when the intensity reaches a fixed value, which,
algebraic convenience, we set such thatI (Tn)5I (T0)51.
@Analysis of the map shows thatdP/dI(T0)5O(g). That is,
changing the value of the intensity that is used as the star
point of the pulse causes only small changes in the peri#
After eliminating as many intermediate variables as possi
the map is given by

Dn115A11~Gn2A1!e2Pn, ~A7!

Tn115Tn1Pn , ~A8!

05 lnS Gn

Dn
D2~Gn2Dn!,

h

g
pn5eC12eC2,
2-9
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Dn2pn5Dne2pn, ~A9!

C1g52l~Pn2tg!1~Gn2A1!~e2Pn2e2tg!,

C2g5ltg1~Gn2A1!~12e2tg!,

l5A12A1th5A12~12A2!. ~A10!

The effect of the delay is accounted for by variablepn
defined in Eq.~A6!. However, instead of computing this in
tegral, we follow the approach in Refs.@11–13#; use Eq.
~A2! in the pulse intervalTP@T0 ,T08# to determine Eq.~A9!
above.

The map in Eq.~A7!–~A10! assumes that the delay puls
occurs before the next pulse, i.e.,tg,Pn . These are referred
to as ‘‘slowly oscillating’’~SO! solutions by Grigorievaet al.
@11–13#. For longer delays there may be two or more puls
per delay interval; these are referred to as ‘‘fast oscillatin
~FO! solutions. For FO solutions, ifPn,tg,Pn1Pn21 then
the pulse atTn21 affects the evolution fromTn to Tn11. For
a giventg it may be the pulse starting atTn2m that affects
the present interval starting atTn .

The method used to construct the map for FO solution
the same as that for SO solutions, under the assumption
the energy in the previous pulses,pn2m ,pn2m11 , . . . ,pn21,
and the time intervals between them,Pn2m ,
Pn2(m11) , . . . ,Pn21, are known.

Dn115A11~Gn2A1!e2Pn,

Tn115Tn1Pn ,

05 lnS Gn

Dn
D2~Gn2Dn!,

h

g
pn2m5eC12eC2,

Dn2pn5Dne2pn,

C1g52l~Pn2jn!1~Gn2A1!~e2Pn2e2jn!,

C2g5ljn1~Gn2A1!~12e2jn!,

jn5H tg2(
j 51

m

Pn2 j , m>1

tg , m50.

The map determines the next value of inversionDn11 and
time Tn11 in terms of previous values, as defined by Eqs.~2!
and~3!. The delay is accounted for by variablepn21, corre-
s

pt

02621
s
’’

is
at

sponding to the energy of the pulse atTn2m . Likewise, tg
has been replaced byjn defined by Eq.~4!. The FO map
reduces to the SO map whenm50. Hence, our attention will
focus on Eqs.~2!–~4! for further analysis.

Last, the asymptotic validity of the map provides a co
dition on the period. IntervalTP@T08 ,T01tg8# is the time
after the end of the pulse and before the delayed pulse
comes large. BothI (T) andI (T2tg) are small (!1) on this
interval. However, the pulse grows exponentially on this
terval, according to Eq.~A4!. At first, the net increase is ver
small. However, it will eventually become large enough
initiate the next pulse atT1. For the map construction to
remain valid, we require that the delayed pulse occurs be
the intensity starts to grow. This will be true if the right-han
side of Eq.~A4! remains negative on the interval. To analy
this condition, we assume periodic solutions and letG'0
~the minimum of the inversion!. We obtain

l~tg2mP!2A1~12e2(tg2mP)!,0. ~A11!

For locked solutionsm>1, (m11)P2t'0, and for un-
locked solutionsm50 with large pump,tg'P. In each case
the condition reduces to

lP2A1~12e2P!,0,

which is identical to Eq.~9!.

APPENDIX B: APPROXIMATIONS

Periodic solutions of the laser correspond to fixed poi
of the map that are described by conditions~5! and the aux-
iliary equations that follow. Three approximations are us
to simplify the conditions to obtain a single implicit equatio
for the periodP given by Eq.~10!.

The first approximation is to assume that the period
bound away from and below theh50 curve. Specifically,
assume that the exp@ # term on the right-hand side is smal
Then the equation for the period reduces toC1(P)
5 ln@(h/g)p#. This equation is undefined forh50 and we
expect that subsequent results will be singular in this lim
Proper examination the case ofhp/g→0 requires that the
contribution of@12exp(C22C1)# be included.

The second approximation applies to Eq.~6! for G, the
minimum of the population inversion. For pulsating sol
tions the minimum is very close to zero. Thus,G!u ln Gu in
Eq. ~6! leads to approximationG'De2D, which fits Eq.~6!
for even moderate values ofD. For physically realistic values
of D, say,D.3.5, we can takeG'0.

Finally, we assume that the energy in the pulses is la
enough so that exp(2p)!1. Then, p'D. Again, this ap-
proximate result fits Eq.~8! well for reasonable values ofD.
m.
@1# A. E. Siegman,Lasers~University Science Books, 1986!.
@2# P. Mandel.Theoretical Problems in Cavity Nonlinear Optic

~Cambridge University Press, New York, 1997!.
@3# F.T. Arecchi, G.L. Lippi, G.P. Poccioni, and J.R. Tredicce, O
 .

Commun.51, 308 ~1984!.
@4# K. Ikeda, Opt. Commun.30, 257 ~1979!.
@5# S. Hammel, C.K.R.T. Jones, and J. Moloney, J. Opt. Soc. A

B 2, 552 ~1985!.
2-10



s.

c-

-

n

es/

a

-

z-

PERIOD LOCKING DUE TO DELAYED FEEDBACK IN A . . . PHYSICAL REVIEW E68, 026212 ~2003!
@6# E. Ott, Chaos in Dynamical Systems~Cambridge University
Press, Cambridge, 1993!.

@7# F.T. Arecchi, G. Giacomelli, A. Lapucci, and R. Meucci, Phy
Rev. A43, 4997~1991!.

@8# R. Lang and K. Kobayashi, IEEE J. Quantum Electron.16, 347
~1980!.

@9# G.H.M. van Tartwijk and M.S. Miguel, IEEE J. Quantum Ele
tron. 32, 1191~1996!.

@10# T.W. Carr, Eur. Phys. J. D19, 245 ~2002!.
@11# E.V. Grigorieva, S.A. Kahchenko, N.A. Loiko, and A.M. Sam

son, Physica D59, 297 ~1992!.
@12# E.V. Grigorieva and S.A. Kashchenko, Int. J. Bifurcatio

Chaos Appl. Sci. Eng.3, 1515~1993!.
@13# E.V. Grigorieva, Opt. Commun.102, 182 ~1993!.
@14# D. Pieroux and T. Erneux, Phys. Rev. A53, 2765~1996!.
@15# T.W. Carr and T. Erneux, Eur. Phys. J. D17, 67 ~2001!.
02621
@16# T.W. Carr and T. Erneux, IEEE J. Quantum Electron.37, 1171
~2001!.

@17# T. Erneux, J. Opt. Soc. Am. B5, 1063~1988!.
@18# L.F. Shampine and S. Thompson, Appl. Numer. Math.37, 441

~2001!; see also http://www.cs.runet.edu/thompson/webdd
index.html

@19# J. Kevorkian and J. D. Cole,Multiple Scale and Singular Per-
turbation Methods~Springer-Verlag, New York, 1996!.

@20# T.W. Carr, L. Billings, I.B. Schwartz, and I. Triandaf, Physic
D 147, 59 ~2000!.

@21# C.H. Henry, IEEE J. Quantum Electron.18, ~1982!.
@22# G. P. Agrawal and N. K. Dutta,Long-Wavelength Semiconduc

tor Lasers~Reinhold, New York, 1986!.
@23# E. J. Doedel, A. R. Champneys, T. F. Fairgrieve, Y. A. Ku

netsov, B. Sandstede, and X. Wang,AUTO97; see http://
indy.cs.concordia.ca/auto
2-11


