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Period locking due to delayed feedback in a laser with saturable absorber
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We consider laser with saturable absorber operating in the pulsating regime that is subject to delayed
feedback. Alone, both the saturable absorber and delayed feedback cause the clockwise output to become
unstable to periodic output via Hopf bifurcations. The delay feedback causes the laser pulse period to lock to
an integer fraction of the feedback time. We derive a map from the original model to describe the periodic
pulsations of the laser. Equations for the period of the laser predict the occurrence of the different locking states
as well as the value of the pump when there is a switch between the locked states.
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[. INTRODUCTION the effect of DF in self-pulsing semiconductor lasers; their
purpose was to better quantify the statistical properties of the
In this paper we investigate the effect of delayed feedbackulse amplitude and repetition rate due to stochastic noise. In
(DF) on a laser containing an intracavity saturable absorbe® recent study{10] we determined the conditions for the
(LSA). Lasers with a saturable absorlgA) have long been onset of oscillations and pulsations due to the presence of a
used to generate high-intensity pulses. The effect of the alSA and delay feedback. Both the SA and DF cause the laser’s
sorber is to passively modulate the cavity losses so that thelockwise (CW) output to become unstable through Hopf
LSA is “self-pulsing.” The pulsed output is of practical in- bifurcations. The main result of that study was that the SA
terest for applications that require extremely short high-peakean increase the sensitivity of the laser to DF. Or, the DF can
power pulses of light such as spectroscdpge Refs[1,2]  cause self-pulsations outside the normal range of pump val-
for background and historical referenged/e introduce DF  ues for the LSA.
in the intensity-loss term of a rate-equation model of the In the high-intensity pulsating regime there is a lack of
classB LSA as a first step to understanding the combined SAheoretical results concerning the combined effects of a SA
and DF effects; clasB-lasers are those where the polariza-and DF. In numerical simulations the pulsations require
tion variable can be adiabatically eliminat®] and includes  highly accurate computations that take long times. From an
solid-state, C@ and semiconductor lasers. Our results will analytical perspective, the pulsating output is highly nonlin-
describe the locking phenomena of the LSA period to integegar and typical perturbation approximation techniques fail.
fractions of the delay time. Grigorieva et al[11-13 and Pieroux and ErneUd4] have
The study of the effect of delay on optical systems hagleveloped asymptotic methods to analyze pulsating laser
produced important theoretical practical and results. For exoutput with delay, which are based on ideas from boundary-
ample, the effect of delay on the pulses in a passive rindayer theory. In this paper we use this general technique to
cavity was studied by Ikeda,5]; the resulting “lkeda Map”  obtain our first results concerning the effect of DF on the
is ubiquitous in introductory studies of dynamical systemsLSAs pulsating output. In particular, we investigate the ef-
[6]. Arecchiet al. [7] studied delay in a clasB-CO, laser fect of DF on the period and intensity of the pulses produced
and found complex dynamics that, for certain parameter valby the LSA.
ues, were describable by Ikeda map. Of great current interest We consider a nondimensionalized model for the cBss-
is the effect of delay on semiconductor lasers because dfSA with the addition of a delay terf2,15,16:
their widespread use in applications such as telecommunica-
tions and optical data storage devices. Lang and Kobayashi dl
[8] formulated a rate-equation model for semiconductor la- —=(D+
sers, subject to delay that is the starting point for many of dt
today’s theoretical studies. Common to the above systems is
period locking(or frequency locking where the period of
the oscillations is related by an integer to the delay time. In T y[A;—(1+1)D], (1)
lasers, this is understood to result from an interference effect
between the laser-cavity modes and external-cavity modes,
the latter formed by the laser facet and the exterior reflectingvherel is the intensity and is the population inversion.
surface[8]. Parametery is the inversion-decay rate normalized by the
For LSAs with high-intensity pulsations, some results re-cavity-decay rate and is typically small; the strongly pulsat-
garding the effect of delay have been discussed by vaing behavior of the LSAis directly related to the small values
Tartwijk and San Migue[9]. They numerically investigated of y [17]. A; is the pump or injected current in the case of
semiconductor lasers\, <0 is defined as the absorber-pump
parameter and describes the relative saturability of the ab-
*Email address: tcarr@mail.smu.edu sorber with respect to the active media. The feedback
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FIG. 1. Bifurcation diagrani23] of the LSA
without feedback y=0). Solid(dotted lines are
stable(unstable solutions.A,,=4.5 is the bifur-
cation of the zero steady state to the nonzero
steady stateA;,=4.1. A;,=7.8 is the Hopf bi-
furcation to periodic solutions that are unstable.
Pulsating solutions occur on the upper branch be-
tweenAqp,,=9.6 andAy,, where they terminate
in a homoclinic orbit A,=-3.5, a=2, y
=0.05).
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strength is given byy and delay byr. Equations(1) are  comparing to numerical simulations in Sec. IV. We finish
commonly referred to as delay differential equatigp®E)  with a discussion in Sec. V.
due to the DF term.

In Eqs.(l) the DF corresponds to a delayed loss in the 1. PERIOD LOCKING
real-valued intensity. A delayed-loss term is possible to _ o
implement with an electro-optic feedback logfj. However, In the LSA without DF (7=0), as the pump is increased

a delayed version of the real intensity may be more difficultfrom thresholdA,,, the period decreases smoothly to a fi-
to realize experimentally. A field reinjected due to reflectionnite value near the upper Hopf-bifurcation point. This is
from an external surface, is properly modeled by consideringhown by the thick decreasing curve in Figa)3 This curve
the complex-valued electric field. This requires evolutionserves as a reference for the thick stepped curves which are
equations for both the field's amplitude and phase andhe result of numerical simulations of the LSA with Db (
greatly complicates the analysis. As a first step in this inves#0) when 7=50. The steps in the period correspond to
tigation we consider the simpler equatiois. period locking that we will describe in detail below. We used
Self-pulsation of the LSA without feedbacky&0) ap-  the MATLAB routine DDE23[18] to numerically integrate
pears through a bifurcation mechanism that we briefly reEgs. (1) rewritten in terms of the electric field, whete
view for the case shown in Fig. 1. The laser-first threshold=|E|?. The latter is done to avoid accuracy problems result-
occurs whem\,; =A;;,=1—A,, and the nonzero steady state ing from the high-amplitude pulsations. All parameters val-
(NZSS may appear through either a supercritical or subcriti-ues are the same as Fig. 2 unless otherwise noted.
cal bifurcation. In Fig. 1 we show the bifurcation diagram for ~ As stated above, the thick-solid stepped curve in Fig) 3
the subcritical case. A Hopf bifurcation to pulsating solutionsis the period of the LSA with DF ¢+ 0). When the pump is
appear on the nonzero branch of solutionsAgt and is  near threshold the laser locks to a period determined by the
subcritical so that the oscillatory solutions are unstable. Thelelay,P~ 7. As the pump is increased the period approaches
oscillations become stable pulsations as the branch passtmt of the LSAs natural period. Before exceeding the natu-
the turning point aiA;,,. As A, is decreased, the oscilla- ral period, the laser’s period jumps down and locksPto
tions become increasingly pulsating with increasing inter-~ 7/2. We will show later that, in general, the period locks to
pulse periods. The branch terminates at a homoclinic orbit oén integer fraction of the delag=m+1, m an integer.
infinite period asA; approache#\,,. We note that the un- If the pump is such that the laser is initially locked o
stable branch of oscillatory solutions serves as a basir-7/2 then as the pump is decreased we find a region of
boundary between the NZSS and the pulsating solutions fdnysteresis. That is, the period stays lockedPts /2 for
A1n<A1<Aihip- values of the pump lower than when the period step down
In the following section, we describe period locking for from P~ 7. As the pump is decreased further, there is a
long delays using results from numerical simulations. Thengritical value when the period steps up and lockPter. As
in Sec. Il we present a map that describes the dynamics ain additional demonstration of period locking, Fig. 4 shows
the pulsating output. The map is derived from the DDEthe case ofr=100. Because the delay is longer, the period-
model (1) and the details of the derivation are shown inlocking phenomena is even more dramatic. In this case the
Appendix A. We derive simplified results for periodic pulsa- lock states correspond =~ 100, 50, 33, and 25. The LSAs
tions in Sec. Ill B and then analyze these in detail whilenatural period is an upper bound on the period of the LSA
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FIG. 2. For two subsequent pulses the map
variablesT,, andD, are shown. The electric field,
equal to the square root of the intensity, is plotted
so that its magnitude is comparable to the inver-
sion and they can be seen on the same graph. The
time-delayed pulse is shown as a dashed line (

3r =0.047=20,A;=8,A,=—35, a=2, vy
=0.05).
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with DF. Hence, as the pump is increased the period steps Depending on the operating conditions of the laser, it is
down from one locked state to another as the natural periodften the case that the delay is longer than the time between
curve is approach. There is again a hysteresis effect as thmilses. In this case, the large delayed pulse that occurs in the
pump is decreased. The period stays locked to a lower stequrrent interval of time is not due to the pulse at the start of
for pump values smaller than where the step down occurredhat interval. Instead, it is due to the delayed pulse from an
In fact, the pump regions for locking to a particular period doearlier interval of time. This introduces a retarded or delayed
not even overlap. index in the map because intervatiepends on a pulse from
interval n—m.
The map we obtain is

IIl. PULSING DDES TO A MAP _
Dhi1=A1+(G,—Ape Pn, (2

A. Derivation of the map

The pulsing behavior of the laser is analyzed by using Thi1=Ta+ Py, 3
approximation techniques based on matched asymptotic ex-
pansions[19] to derive a map. We previously used this
method to analyze pulsations in driven clé&sdasers[20]
and LSAs[15]. We also benefited from the work of Grig-
orievaet al.[11-13 as a guide to handling the DF. We will
only summarize the method and present the details in Appe
dix A.

During the interval of time from one pulse to the next,
there are subintervals where different terms in Hds.are
large or small. From Fig. 2 we see that the intensity is large
during the initial short subinterval reminiscent of a boundary O:In(&) —(G,-D,)
layer or inner solution. After the pulse there is a longer sub- D, noone
interval where the intensity is very small corresponding to
the outer solution. However, during this time there is a short
subinterval where the delayed-pulse term becomes large. In
each of these subintervals, we solve approximate equations
for the laser with the appropriate assumptions regarding large
and small terms. The initial conditions for each subinterval D,—p,=D,e P,
are determined by the terminal conditions from the previous
subinterval. By patching the results from one subinterval to
the next, we determine the state of the systerii ;atbased
on the state of the system 8§. In general, this results in a
map fromT,, to T, ;. Coy=Né+(G— A (1—e ),

where T, is the time when population inversioD, is a
maximum.[Time has been rescaled accordingTie yt so
that the interval between pulses@{1).] The time and in-
version atn+1 are determined by their previous values and
he period of time between pul$g, and inversion minimum
G,,. These latter quantities are determined by a set of im-
plicit equations given by

n
;pnfm: e“1—e%,

Ciy=—N(Py— &) +(Gy—Ap)(e "n—eén),
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FIG. 3. In both(a) and(b), thin curves corre-
spond to analytical results while the thick curves
are from numerical simulationga) Period vs.
pump. The right-most decaying curves are for the
case of no DF;=0. The map predicts that the
period becomes large as—0 and the ho-
moclinic orbit is approached. In the presence of
DF (n»#0) there is exponential decay of the pe-
riod until it locks. When the period equals the
natural period,n=0, it switches from then=0
curve to them=1 curve.(b) Intensity vs. pump.
As the pump is increased, the intensity of the
pulses increases. At the switch point, the intensity
abruptly decreases and then follows the new
branch of solutions for increasing pump. Param-
eter values are the same as Fig. 2 exceptfand
A

B. Periodic pulsations

m
77_12’1 Poj, M=1

(4) One motivation for deriving a map is that iterating the
map is typically much easier and quicker than numerically
simulating the original flow from which it was derived. In
the present case, however, the map consists of nonlinear,

whereN=A;— A1, [see Eq.(A10)] is how far the laser is coupled implicit equations that are very difficult to solve.

pumped beyond threshold. The delay time is accounted foTransients or chaotic behavior are better simulated using the
by variableé, which is the subinterval of time from the most original differential equation. However, the map is very use-
recent pulse to the delayed pulse in that interval. Theful for studying periodic solutions that correspond to fixed
strength of the delayed pulse is accounted fopRy, which  points of the map. The resulting equations are still difficult to
is related to the energy of the pulse at tifig_, [see Eq. solve, but with further approximations we will obtain excel-

(A6)]. Finally, we note that if the DF is removed by setting lent results.

7=0 and7,= 7y=0 then the simplified map is identical to  As stated above, fixed points of the map correspond to

the one we derived in Ref15]. periodic solutions of the original system. Thus, all variables

én=

T m=0,

Y
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FIG. 4. Large delay allows for more locking
o sof iy regions, P~r,/(m+1). Analytical predictions
for the switch points are indicated. Thin curves,

¢\\ analytical; thick curves, numerical.

m=3
6'5 ; 7i5 é 8I5 SIB
A
1
(except for timeg are constants independent of index Some algebra and the assumption tBat0 (see next para-
b graph leads to the conclusion th#&<Pg; the period with
D=A1+(G-Ape ", feedback must be less than the LSAs natural period without
feedback. In Appendix A we show that this is identical to the
Thr1=Ta P, ) condition for asymptotic validity of the map-construction
technique.
0= |n<E) —(G-D), (6) We now use the result th&tis less than the natural period
D and make two approximations that greatly simplify the con-
ditions for periodicity. The first is that for pulsating solu-
zpzecl—ecz ) tions, where the minimum of the inversion is very close to
v ' zero,G~0. Second, the energy in the pulse is large so that
exp(—p)<1l. We discuss the details and validity of the ap-
D—p=De P, (8)  proximations further in Appendix B. Their application leads
to a single implicit equation for the period that then deter-
Ciy=—NP-&+(G—A)(e P-e9), mines the inversion:

Coy=Mé+(G—Ay(1-e 9,
ANP—§&)+A (e P—e =—yIn

n P
yAl(l e )},

&= TV_mP’ m=0,1,2 ... . (10

Our first qualitative result for the period is determine by
Eq. (7), which can be written as D=A;(1-eP). (11

A numerical solution for period® is now much easier to

obtain than if we had used the original fixed-point equations.

However, we can obtain explicit results fBrwith two addi-

t(ijpnal approximations.

n Suppose thaP - {=(m+1)P—7,<1. We refer to this

as the locking approximation because the laser period is an
AP+(G—A,)(1—e P)<0. (9) integer multiple of the delay. To find® we let P=(7,

+P,)/(m+1) and solve foP;<1. The final result folP is

This equation, when made an equality, is exactly the equa-

tion for the LSA's natural period without DEL5]. That is, if

Py is the LSAs natural period\Py+(G—A)[1—exp

(=Pg)]=0. By combining these last two equations we obtain LA: P=

1
2p=eCl l—ex;{—[)\P+(G—A1)(1—eP)]]
Y Y
The right-hand side must be positive becapse related to
the energy of the pulse. Thus, the exponent on the right-ha
side must be negative:

In| LAy (1— e 7/(m+ D)
Ty Y Y

M+l ML A (1-e /™ D)~ Ay

AP+(G—A;)(1-e P)<APy+(G—Ay)(1—e Po),
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0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 FIG. 5. Period as a function of the feedback
strength for two different values of the pump.
Thin curves, analytical; thick curves, numerical.
60 ' ' ' ' ' ' ' The dotted curve is a shifted version of the ana-
lytical result for better visual comparison.

1
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

where we have dropped & y) term in the denominator of A. Long delay: locked period
the correction. We will refer to the locking-approximation  \y/a begin with the case of=50 in Fig. 3a). The thick

resllfJI:JorlP in Eq. (12) ?SI L'li" d th iod is tvpically | smoothly decreasing curve is the natural period of the LSA
€ 1asers are not focked, the period 1S typicaty 1arge, i, . ¢ DF; the nearby thin curve is from the map for

enough so thae~P<1. Also, in general, we need only con- —0 and fits the numerical result very well
sider casen=0 because whem=1 the solutions are locked . y wer.
As the pump is increased from the initial locked state of

and better described by LA. Now we find that P~ r, the period approaches that of the LSA's natural period.
Before exceeding the natural period, the laser’s period jumps
down and locksP~ 7/2. The left-most thin curve is the ana-
lytical approximation of the period from UA. For values of
the pump close to threshold;— Ay, A—0, and UA is
dominated by thé\; /\ term. As the pump is increased, the
period quickly asymptotes to the locked staesr (m
=0). For higher pump values thm=0 curve intersects with
the curve for the LSA's natural period. EquatiOnprovided

) i ; a condition for the maximum period, which states that the
Eq. (13), P=A;/), is the large-periodR>1) approxima- | sag natural period is an upper bound. Thus, for higher

tion to the LSAs natural period. However, if,=0, the ;15 values we use the lowest thin curve for the period,
feedback term in the DDEs E¢l) becomes a modification determined by the locking approximation LA, whefe

to the linear dissipation in the LSA ODEs. Rederiving the _ /5 (m=1).

map in Ref[15] with this additional dissipation will recover Figure 4 shows the case af=100, where the period
the log term shown above. Thus, nonzero delay time affectg, | toP~100, 50, 33, and 25 fom=,0, 1,2, and 3. We

the map through the terms with, . again see an excellent fit between numerical results and the
map’s prediction for the period. The step, or switch between
analytical curves, is determined by the intersection of the
locking curve with the curve for LSAs natural period.

The analytical approximations derived in the preceding The map does an excellent job of predicting the lock
section can be used to determine the period as a function states and provides a condition for when the situation there is
the pump,P(A;). We will compare the analytical results a step down, i.e., the LSA's natural period is an upper bound.
from the map(shown as thin lines in the figureso the  However, the present analysis cannot predict the step up
results of numerically simulating the original DDEshown  from a lower period to a higher period.
as thick line$. We will first present results for long delays of ~ As has been demonstrated, the period of the laser in the
7=50 and 100, where period locking occudescribed in  presence of DF is determined by delay timeThe strength
Sec. ll), followed by short delays that do not exhibit locking. of feedbackn modifies periodP through the smallO(vy)
Finally, the intermediate regime that exhibits characteristiczorrection terms that we analyze in Fig. 5. We have plotted
of both will be discussed. periodP as a function of feedback strengthfor two differ-

Ay e
UA: P:7'7+ Te V—Xln

7
;Al} . (13)

We will refer to this “unlocked” approximation for the pe-
riod, Eq.(13), as UA. The LA and UA results are equivalent
in limit 7,—c (Mm=0).

We note that in Ref.15] we found that the second term in

IV. ANALYTICAL PREDICTIONS
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100 (a)
80
o 60f
40
201
8 4{5 é 5{5 é 6{5 ; 7{5 é gfs é FIG. 6. For short delay, the period is shifted
from the =0 curve. The period does not be-
come small enough before the upper Hopf bifur-
120 T cation locks to an integer fraction of the delay.
100 (b) Thin curves, analytical; thick curves, numerical.
80
o 60f
40
20
0 1 L 1 1 1 1 1 1 1 1
45 5 55 6 6.5 7 75 8 85 9

ent values of the pump. In Fig(&®, we compare numerical further, the period becomes more closely locked. The drop in
results (thick) to the analytical resul{thin) of LA (period the period is not a switch between two locked states,msay
locking), while in Fig. 5b), we compare to UAdecaying =0 andm=1. Rather, it occurs when the delay is long
period. The dotted curves are shifted versions of the analytienough so that the trailing edge of the pul$e— 7) begins

cal result so that the slopes of the numerical and analyticab overlap with the leading edge of the next pulsel (.
results can be visually compared. In both cases there is @ur analysis is not yet refined enough to capture the phe-
very good fit, except when feedback strengtis small. The  nomena.

analytical results determine théP/d n~ 1/(»\) and predict The map result for UA captures the decaying period for
that » versusP curve decreases for increasimg However, low pump but asymptotes to a value that is too large. How-
limit »—0 is singular and would require a more preciseever, the LA (n=0) is more appropriate when the period is

analysis to achieve a better fit in this regime. locked and gives a reasonable fit for larger pump. The main
difference is due to terms exp(,) in LA, which are signifi-
B. Short delay: unlocked period cant for low values of delay time.

Figure 6 shows the case of short delay; 2, where the
LSAs natural period is always greater than the delay time,
and hence, no locking will occufThe LSA's natural period The maximum intensity of the pulses is an important de-
is not shown in this figurg.The analytical result UA is sign quantity that can also be determined from the map. The
shown in Fig. 6a). UA was derived with approximatioR maximum occurs in the first subinterval wheli/dT=0,
>1 and for large period UA follows the result of numerical and so, from Eq(A2), this requireD =1. The latter is sub-
simulation quite well. However, it loses some fidelity for stituted in Eqg.(A3) to obtain a formula for the maximum
small period(large pump. This error is due to the large- pulse intensity in terms of the initial value of inversidn,.
period approximation used to derive UA rather than an in-For periodic solutions, the inversion is found from the period
trinsic difficulty of the map. In Fig. @) we show the result with Eq. (11), so that we have
of numerically solving the implicit equation for the period,
Eqg. (10), before the large-period approximation is made.
Here, the map result follows the numerical result extremely
well, even for large pump.

D. Maximum pulse intensity

1
|max:;{A1(l— e P)—1-In[A(1-e )]}, (19

where we have kept only the larg¥ 1/y) terms. The maxi-
mum intensity is affected by the delay through perfadn

For long delays we see that the period locks to a fractiorfact, the equation for the maximum period is the same
of the delay time, while for short delays the period is a perwhether delay is considered or not. That is, the maximum
turbation of the LSAs natural period approximated By intensity depends directly on the period of the pulsations and
=A;/\. Moderate delays exhibit both of these characteris-only indirectly on the delay. Furthermore, for large period
tics. Figure 7 is the case af=20. For pump values not far the dependence is weak because exg)<1.
from threshold, the period decays. Then, ndar=5.9, the In Fig. 3(b) we compare the analytical and numerical re-
period drops to the vicinity oP~ 7. As the pump increases sults for the pulse amplitude wher50. From Fig. 1 we

C. Moderate delay
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120

80

FIG. 7. For moderate delays the period first

B e decays as the pump is increased and then abruptly
drops to then=0 locked state. Thin curves, ana-
Iytical; thick curves, numerical.
40}
201
0 1 1 1 1 1
45 5 55 6 6.5 7

observe that as the pump is increased, the intensity of thi#on, nonlinear damping of the active and passive regions and
LSA pulses increases. Then, there is a step down in the ireross-diffusion of the carriers between active and passive
tensity coincident with when there is a step in the periodregions. More importantly, the linewidth enhancement factor
from one locked state to another. There is also a hysteres§WEF) or Henry parametei [21] is absent from our

effect when the pump is decreased. model. Including the LWEF requires that we consider the
complex electric field and the evolution of the phase. Pre-
V. DISCUSSION liminary numerical simulations indicate that the locking phe-

nomena we describe here remains valid. However, that

Our numerical simulations illustrate locking of the LSAto analysis is more difficult and we postpone this consideration
the delay. We see that the LSAs natural perigib DF  to a future work.
serves as an upper bound for the period in the presence of DF has been used in applications to reduce frequency jit-
delay. This causes the period to switch between differenter due to stochastic noig@2]. The period locking we de-
locked states as the pump is increased. There is a hysteresisribe also indicates how DF can be used to reduce the po-
effect as the pump is decreased and the laser again switchgstially deleterious effects of parameter drift due to noise.
between locked states. Our analysis accurately predicts theor example, the natural period of the laser is highly depen-
locked states as well as the step down in period for increasdent on the pump as it varies from unbounded at threshold to
ing pump; however, we are not yet able to describe hysteranO(1) value at the upper Hopf bifurcation point. With DF,
esis. For moderate and low delay times, we can accuratelhe period is locked to a fixed value over a wide range of
described the smooth decay in the period for increasingump values. On the other hand, the hysteresis effect is the
pump. basic dynamical mechanism on which to design an optical

There are two transition regions where more detailed andwitch. When the pump is tuned near the switch point, only
specialized analysis is warranted. The first is the transitiosmall variations of the pump would be needed to switch the
between different locked regions, for example, wimr 0  period of the pulsating output.
andm=1. Our analysis assumes that the real and delayed
pulses occur in nonoverlapping time intervals. However, the ACKNOWLEDGMENT
transition between locked states occurs when the period is
nearly a multiple of the delay so that there is overlap be- This work was supported by the National Science Foun-
tween the next pulse and the delayed pulse. A second type dftion through Grant No. DMS-9803207.
transition occurs for intermediate delays such as case
=20. There was a jump down from an exponential decaying APPENDIX A: CONSTRUCTION OF THE MAP
period to a locked period fan=0. Here again, this transi-
tion occurs as the delayed-pulse interval overlaps with the In this section we describe the details of constructing the
next pulse. Analysis of these transitions will require reexamimap. This involves approximating the LSA DDEs on each
ining inner regions in the matched asymptotics constructiorsubinterval to account for small or large terms. The subinter-
of the map. vals are referenced according to Fig. 2.

For self-pulsing semiconductor lasers the models can in- The pulse period is typically very large with(1) pulse
clude additional terms to account for nonlinear gain saturawidths. It is more convenient for our analysis to rescale time
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so that the period iO(1) while the pulse width is very 7 D
small. We letT= yt and obtain a7 ;'(T— ™) g7 A~ D. (AS5)

with initial conditions 1(To+7,) and D(To+7,). Each
equation can be solved independently to give

d_Yior P2 a)iemer
aT |\ PT e )T

dD ! — _ *(T’*T)
g7 =A—(1+1)D, (A1) D(To+ 7)) =A1+[D(To+7,)—Agle o 10,
Tyt 7)~1(Tot )= 2 [ 1m)aT="p. (n6)
wherer, = yr. (To+71,)—1(To T'y)_y . (T) —yp-

Te[Ty,T(]: Define timeT=T, and T=T| as the start
and end of the present pulse; in geneflg),and T, are the  The effect of the delay is to cause a jump in the intensity,
start and end of pulses=1,2, etc. During the first pulse the proportional to the area of the original pulse. The latter can
intensity is very largel(T)>1, and we assume the delayed pe thought of as the energy in the pulse. If there is no feed-
pulse has not yet been reinjected into the laser and is smalyack (,=0), there is effectively no change in the intensity

I(T—r,)<1. The LSA equations are approximated as over the very small time interval defined by the width of the
q q pulse.
_IZ E(D—l)l, _D:|D' (A2) Te[Ty+7,,T1]. Finally, the last time interval is from
dT vy dT the end of the delayed puls&=T{+ 7, to the start of the

. . next real pulse af=T,. Time T, is defined as when the
These can be solved in the phase plane by determining tfiensity is equal to that at the start of the preceding pulse,
equation ford1/dD, whose solution is i.e.,1(T1)=1(To). Both the pulse and the delayed pulse are
& ” small and we solve the same equations as during

H(T)—I (To)=$[ —[D(T)—D(Tg)]+In [[))(TTO) e[T4,To+7,]. We find that

(A3) D(Ty)=Ay+[D(Ty+7,)— AgJe (T1-To-7),

Time T; is defined as when the intensity has returned to its

initial value, | (Ty)=1(T,). Thus, the inversion evolves dur- 1(To) )\ o
ing the pulse according to I(T—(’)+ ) =[A1—(1=A) (T, —=To—7,)
D(T, ,
0=—[D(T)—D(Tg)]+In Q) : —(D(Tp)—Ap[e (T —e™ 7],
D(To)

The map is determine by finding a relationship B{T,)
and T, in terms of D(Ty) and Ty. These values oD,
y=D(Tn), n=0,1,2 ... correspond to the maximum of the
population inversion. The minimum values of the inversion

Te[Ty,Tot+ 7,]. The next interval fromT=T; to T
=Ty+ 7, is when both the intensity and the delayed intensit
are small;1(T)<1 andI(T—7,)<1. On this interval we

solve are given byG,=D(T;), n=0,1,2 . ... Inconstructing the
1d 1 D map we use the fact that the width of the pulse in time scale
TF- —(D+A,—1), T =A,-D, T is O(y) and thus, can be ignored. Also, timég are de-
Y

fined by when the intensity reaches a fixed value, which, for
ithiniti " / , , algebraic convenience, we set such th@f,)=1(Ty)=1.

with initial conditions 1(To) =I(Ta) and D(Tg) =D(To).  [analysis of the map shows thdP/dI(Te)=O(3). Thatis,
which are determined by the terminal values of the previoughanging the value of the intensity that is used as the starting
interval. The equation fob can be solved first and the result point of the pulse causes only small changes in the périod.
used to solve fof. The solutions are After eliminating as many intermediate variables as possible,
, the map is given by

D(To+7,)=A;+[D(Ty)— A le (Tot 7y~ To),

Dpi1=A1+(Gr—Aye ™, (A7)
I(T0+ Ty) ,
yIn Ty =[A1=(1=A)(To+ 7,— Tp) Toii=To+Ps, (A8)
~[D(Tg)—Agl(e”Tor T 1), (A4) Ozln(?)—(Gn—Dn),

Te[To+7,,To+ 7,]. The effect of the delayed pulse oc-
curs during intervalT=Ty+ 7, to T=Ty+ 7, when I(T) n — eC1_ e
<1 butl(T—7,)>1. On this interval we solve yp” '
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Dy—py=Dne P, (A9)
C1y=—N(Py—7,)+(Gy—Ay)(e”"r—e™ ™),
Coy=A7,+(G,—A)(1l-e ),
AN=A1— A=A~ (1-Ay). (A10)

The effect of the delay is accounted for by variaple
defined in Eq(A6). However, instead of computing this in-
tegral, we follow the approach in Reffl1-13; use Eq.
(A2) in the pulse interval e[ Ty, Ty] to determine Eg(A9)
above.

The map in Eq(A7)—(A10) assumes that the delay pulse
occurs before the next pulse, i.e,,<P,. These are referred
to as “slowly oscillating” (SO) solutions by Grigorievat al.
[11-13. For longer delays there may be two or more pulse
per delay interval; these are referred to as “fast oscillating’
(FO) solutions. For FO solutions, R,<7,<P,+P,_; then
the pulse afl,,_, affects the evolution fronT,, to T, ;. For
a givenr, it may be the pulse starting at,_, that affects
the present interval starting af, .

PHYSICAL REVIEW E 68, 026212 (2003

sponding to the energy of the pulse®t . Likewise, 7,
has been replaced h§, defined by Eq.(4). The FO map
reduces to the SO map when=0. Hence, our attention will
focus on Eqs(2)—(4) for further analysis.

Last, the asymptotic validity of the map provides a con-
dition on the period. Interval [T, To+ 7,/] is the time
after the end of the pulse and before the delayed pulse be-
comes large. Both(T) andl(T—7,) are small 1) on this
interval. However, the pulse grows exponentially on this in-
terval, according to EqA4). At first, the net increase is very
small. However, it will eventually become large enough to
initiate the next pulse al;. For the map construction to
remain valid, we require that the delayed pulse occurs before
the intensity starts to grow. This will be true if the right-hand
side of Eq.(A4) remains negative on the interval. To analyze
this condition, we assume periodic solutions andGet 0

S(the minimum of the inversion We obtain

N(7,~mP)—Ay(1—e (v ™P) <0, (A1)

For locked solutionan=1, (m+1)P—7~0, and for un-
locked solutionsn=0 with large pumpz,~P. In each case

The method used to construct the map for FO solutions ighe condition reduces to

the same as that for SO solutions, under the assumption that

the energy in the previous pulses,_ m,Pn—m+1s - - - Pn-1.
and the time intervals between themP, .,
Ph_(m+1)s -+ - ,Pn_1, are known.

Dn+1:A1+(Gn—Al)e7Pn,
Thi1=Tat Py,

Gn
_) _(Gn_Dn),

0=In(Dn

U

C C
~Pr-m=€"1—€72
Y

Dn— pnane*pn,
C1y=—MPy— &)+ (G~ Ay (e Pn—e ),

Coy=MNé+(Gr—Ap(1—e %),

=

=

m
En= 77_121 Po-j, M1

T m=0.

’yl
The map determines the next value of inversi@p, ; and
time T, In terms of previous values, as defined by E@3.
and(3). The delay is accounted for by varialpg 4, corre-

AP—A,(1-e P)<0,

which is identical to Eq(9).

APPENDIX B: APPROXIMATIONS

Periodic solutions of the laser correspond to fixed points
of the map that are described by conditigbg and the aux-
iliary equations that follow. Three approximations are used
to simplify the conditions to obtain a single implicit equation
for the periodP given by Eq.(10).

The first approximation is to assume that the period is
bound away from and below thge=0 curve. Specifically,
assume that the ekp term on the right-hand side is small.
Then the equation for the period reduces @ (P)
=In[(7/y)p]. This equation is undefined fop=0 and we
expect that subsequent results will be singular in this limit.
Proper examination the case gp/y—0 requires that the
contribution of[ 1—exp(C,—C,)] be included.

The second approximation applies to Ef) for G, the
minimum of the population inversion. For pulsating solu-
tions the minimum is very close to zero. Th@&s|In G| in
Eq. (6) leads to approximatio~De P, which fits Eq.(6)
for even moderate values Bt For physically realistic values
of D, say,D>3.5, we can také&~0.

Finally, we assume that the energy in the pulses is large
enough so that exp(p)<<1. Then,p~D. Again, this ap-
proximate result fits Eq:8) well for reasonable values &.
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