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Front explosions in three-dimensional resonantly-forced oscillatory systems
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Interface dynamics in a three-dimensional coupled map lattice with a period-3 local map is studied. The
system possesses a parameter regime where one typically finds three-phase patterns consisting of spatially
uniform domains which follow the period-3 cycle and oscillate among the three different phases. The interfaces
where these domains meet may exhibit complex irregular dynamics. The system also has a parameter regime
of “turbulent” dynamics, which is a chaotic transient with a superexponentially long lifetime. The transition
from the three-phase pattern regime to the turbulent regime is studied. As a control parameter is tuned, the
interfaces between domains develop turbulent structure. The thickness of the turbulent zone remains finite up
to a critical parameter value after which it is infinite. We characterize this “front explosion” transition in
three-dimensional systems and compare it with the analogous transition in two-dimensional systems where the
critical properties are markedly different. The front explosion in the three-dimensional resonantly-forced
complex Ginzburg-Landau equation is also investigated briefly and its character differs from that in the
three-dimensional coupled map lattice.
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I. INTRODUCTION
sa(N=(1-2De)f(s(N)+e X fs(r'), (2
If a nonlinear oscillatory medium is subjected to periodic reN
forcing with frequency near a multiple of the natural oscilla- . . . .
tion period, the forcing may lock the phase of the oscilIationsvivnr;zrte ?i(sr)a I(i:)?]ﬁr:g;?r:;at(fau?cttirc]ﬁ\ gﬁgcgj'aﬁeﬂsgﬁﬁ
to discrete values. In this circumstance, the medium exhibit ’ P ’

patterns consisting of spatially uniform domains separated b y of t.h(.a Ia:';:ce, and/\ft IS 'Fh(ra]bvon l\ﬁﬁmg?ghnelghborhfod
interfaces or domain walls where the phase of the oscillatiofy®Pr1SIng the nearest neighbors ot the site ne parameter

exhibits sharp jumps. Systems of this type arise in a numbet is_proportional to the strength of the diffusive spatial

of different physical contexts including liquid crystals in the couphng_. . L .
presence of magnetic fielfi—5], instabilities in optical sys- .A Series of |pve§t|gat|on$27—3q of this CML model
tems[6-9], and oscillatory chemical medjd0-13. Such with the piecewise linear map,
studies of resonantly-forced oscillatory media have shown
that a complicated phenomenology of spatiotemporal pat- f(s)= bs, 0O=s<1hb
terns exists. a, 1lb<s<i1,
Resonantly-forced systems may be described by
“reaction-diffusion” equations giving the time evolution of demonstrated the existence of phenomena analogous to those
local dynamical variablex(r,t), seen in the resonantly-forced CGL equation. In particular, for
an appropriate choice of the parameteendb, the map has
a period-3 attractoA=a—B=ab—C=ab? and models
the behavior of a 3:1 resonantly-forced system. An especially
interesting feature of the spatiotemporal dynamics in two-
dimensional(2D) systems is the existence of “turbulent”
fronts where a turbulent zone separates any two of the three
whereF(x(r,t),t) specifies the local dynamicB,is a matrix homogeneous, B, or C phase$28,29. An example of such
of diffusion or coupling coefficients, ang® is a periodic  a turbulent interface is shown in Fig. (left pane). As the
external forcing term with amplitude). There have been system parameters are tuned, the width of the turbulent zone
extensive studies of the resonantly-forced complexgrows as a power law until the front “explodes” and the
Ginzburg-LandayCGL) equation, as well as other reaction- turbulent phase fills the entire domain. Similar front explo-
diffusion models, which have provided schemes to interpresions have been shown to exist in simulations of the 3:1
the experimental studies and predicted the existence of nevesonantly-forced CGL equatiof81,32, making it likely
phenomen4gl4-26. that this phenomenon can be found in the laboratory.
Insights into the behavior of resonantly-forced systems Analysis of the front explosion suggests tHat=3 is a
can be gained by studying simpler but more abstract coupledritical dimension. Consequently, it is of interest to examine
map lattice(CML) models of the form turbulent front dynamics in 3D systems, and this is the aim
of this paper. The outline of the paper is as follows. In Sec.
II, we introduce the relevant notation and sketch the analysis
*Electronic address: rkapral@chem.utoronto.ca of the front explosion using a stochastic modaB] that

()

%x(r ) =F(X(r,t),t)+ DV2X(r,t) + d(x(r,t),t), (1)
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dhg(r,1)

A Y turbulent phase
at

=—v+DV?hg+Fr(hg—hy )+ &r(r,1). (5)

i Here,D and & (g, are the diffusion coefficient and Gaussian
‘ohase" white noise terms that appear in the EW model for a diffu-
sively rough interface, anél gy are the repulsive forces that
prevent the complete collapse of the turbulent zone. The ve-
locity v is the mean velocity of an interface separating a
semi-infinite turbulent phase from a semi-infinite uniform
e ot phase; fow >0, the uniform phase is more stable and propa-
- gates into the turbulent phase, while o0 the turbulent

phase consumes the uniform phase. The front explosion oc-

FIG. 1. (Left): Interfacial structure in the 2D CML system, Egs. CUrs when the sign of changes from positive to negative.
(2) and (3), for b=2.545,a=0.1, e=0.173. The gray scale indi- For v>0, the system is in the confined front regime; the
cates the value of the order paramesg(r). System size: 200 relative stability of the turbulent and uniform phases leads
% 200. (Right): Schematic depiction of the turbulent interface the interfacial zone to shrink. The width of the interfacial
showing the quantitiel, , hg, andA, 3 for the system configu- zone fluctuates about a mean intrinsic width determined
ration shown on the left. by a balance between the contraction due to the positive sign
of v and the repulsive force.

represents the front in terms of coupled left and right profiles From this pair of equations, a closed evolution equation
that separate the turbulent phase from the homogeneodi@r the intrinsic widthA(r,t) =hg(r,t) —h (r,t) of the form
phases. The structure and dynamics of turbulent fronts in the

CML system in 3D geometries are discussed in Sec. Ill. We IA(r,1) )

show that qualitative and quantitative characteristics of the o~ UFDVIA+F(A)+E(rY (6)
front explosion differ from those in 2D geometries. The con-

clusions of the investigation are given in Sec. IV where com-

parisons with simulations of the front explosion in the CGL ¢an be obtaine@29]. Here,u=2v, {=£{r— &, andF=Fg
equation in 3D geometries are made. —F_. Introducing a bifurcation parametar and defining
A>0 to correspond to the confined regime,as:0", A,
diverges and the mean interface veloaity(the velocity of
1I. TWO-DIMENSIONAL CML SYSTEM the mean interfac&) vanishes. Characteristic lengthand
] S ) time scalesr diverge at this nonequilibrium phase transition.
The turbulent zone in the front shown in Fig.(Bft) is  The following critical exponents may be introduced for the
separated from the homogeneous phases by left and righkhavior ash —0*: a for the intrinsic width divergence,
profilesh, (y,t) andhg(y,t), respectively, which delimit the A ~\"% v for the vanishing ofu=2v, u~\"; 8 for the
left and right edges of the turbulent zone. Letting the valu

0
© ) ) LR &patial scale divergencé~\"#; andz for the time scale
of sin the uniform phases on the lefight) besg™ , where  givergencer~\ 2

s5¥ e{A,B,C}, thenhg)(y,t) is defined to be the least  Letting the dimensiord of a front in a system with di-
(greatest value ofx such thats,(x,y,t) #sg®. We define  mensionD bed=D—1, one may use scaling arguments to
the intrinsic width of the interface ad(y,t)=hg(y,t) obtain these exponents. Assuming that the repulsive force
—h.(y,t) and the mean interface profile aX(y,t) has the formF(A)=c/A” and requiring that Eq(6) be in-
=[hg(y,t)+h_(y,t)]/2. Figure 1(right) shows these quan- variant as\—0" leads to the following values for the criti-
tities for the system configuration of Fig.(left). The mean cal exponentsia=[(2—d)/(2+d)]v, B=[2/(2+d)]v, z
intrinsic width at timet, A(t)=L"'S\_;A(y,t), fluctuates =[4/(2+d)]v. For d=1, the exponents are=wv/3, B

in time but is statistically stationary and has mean valye = =2v/3, andz=4v/3. If an<wv the force term will diverge,

If one starts from initial conditions where the width of the hence invariance requireg=3v. For >3, the force term
turbulent zone is greater than the mean intrinsic widigy ~ renormalizes to an infinite barrier at=0. This model
the homogeneous phases are observed to consume the turipigkes no prediction about the exponenbut simulations
lent zone and its width shrinks untl achieves the statisti- show thatv=1 for d=1. For the 2D CML, the measured
cally stationary value\,. Based on this observation and the values of the exponents, 3, andz satisfied the predictions
front geometry in Fig. Xright), a coupled profile model was of the coupled profile mod¢R9].
proposed in which the left and right Edwards-Wilkinson  For fronts in 3D systems, the scaling exponents are pre-
(EW) fronts [33,34 interact with each other via a repulsive dicted to bea=0, B=v/2, andz=v. Regardless of the
force[29], value of 7, ap=0 and the force term renormalizes to be-
come an infinite barrier aA=0 and zero forA>0. Thus,
d=2 is a critical dimension for this model and it is of inter-
est to examine the nature of the front explosion in 3D sys-
tems where the interface has dimensin2.

if
s

ohy (r,t)

(9t :U+DV2hL_FL(hR_hL)+§L(r,t), (4)
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FIG. 2. K(t) vs t for realizations starting from random initial
conditions in the interfacial zone. System size-100. Left: b FIG. 3. A confined interfacial zone in a system with

=2.5476, initial random zone widthV=100 and 200. Rightb =2.5476 andL=1200. The upper panel shows the left and right
=2.54824 andV=5. front profiles. The lower two panels are cross sections through the
planesx= 600 (middle) andy =100 (botton); the horizontal scale

IIl. THREE-DIMENSIONAL CML SYSTEM has been compressed by a factor of 2 in these panels.

The simulations of the 3D, period-3 CML were performed
keeping the parametees=0.1, e=0.117 fixed and the con- characteristics of deterministic chaos such as rapid decay of
trol parameterb was varied. As for 2D, initial conditions correlations in space and time.
were chosen where uniform regions Wﬁg(r) equa| to dif- In 3D SyStemS with small Spatial extent normal to the
ferent points in the period-3 cycle of the local mapf Eq.  Propagation direction, the thish=2 interface eventually col-
(3) were separated by a zone of widj Whereso(r) takes Iapses to a more regular S@te in which the intrinsic width
on values randomly chosen from a uniform distribution onAy~4. Figure 4(left) showsA(t) versust for a realization
[0,1]. This initial condition rapidly relaxes to a turbulent in which this collapse happens. While we have not attempted
interface with intrinsic widthA ~W. to determine if the collapsed state in the 3D system is peri-
Consider the behavior at value=2.5476. If we start odic, it is clear that the interface dynamics in the collapsed
from a thick initial random zone/V=100 or 200, the zone state are much simpler than in the confined turbulent state.
shrinks until the intrinsic width is smallA(t)~5—8, after ~ The average lifetime of the turbulent state before collapse,
7., IS shown as a function df in Fig. 4 (right) for a fixed

which a statistically stationary state is achieved whi(e€) ﬁalue ofb=2.5476. We find thatr, increases with system

fluctuates around a small mean value in this range. Figure

e . _c,L258
(left) shows some typical plots af(t) versust for realiza- S'Z_T_he.‘STtC) he o ts that . ine the turbulent
tions at this parameter value. For the 3D system, the front IS behavior suggests thal we can imagine the turbuien

propagation is chosen to be in tkelirection and the func- zone as being r_nade up qf some_nunilsl_(at) of independent
tionsh, , hg, 3, andA depend on the spatial variableand randomly gvolvmg domains within which the spatlotemporal
y as well as time. We continue to refertip as the left profile dynamics is strongly correlated. At the collapse point, the
and hg as the right profile even though in figures we showN(L) random processes must simultaneously take on the

. N Y A : ~eN(b) isti-
the z-axis pointing in the upwards direction. The statistically salr;wg \:jalue, gentcsc € Iheldnumtl)er c;fh StECh St?t'St' .
stationary state, where the interfacial zone is thin and concd!ly Independent domains should scale wi € system size

. . - . . . ~L 9+ gj i i i i
fined, is also reached from initial conditions with a thin ran- &3 N(L)~L since the mterfa.ce area In the dlmenilons
dom zone with\/=5. Figure 3 shows a typical thin interface transverse to the front propagation direction increasds“as
for b=2.5476 and the contribution.¢ arises from the effective thickness of

the interface, depending on both the intrinsic width of the

A. Transient behavior and front collapse

16 ~
In the 2D CML, collapse of turbulent fronts to periodic 6 | yad
attractors was observed for small system s[28. The pe- ',,x’
riods of these attractors could be quite large and the particu- 12 7 &

A1)
i
Int,

lar attractor to which the collapse occurred depended on the 1 >
initial conditions. The average time for collapse to a periodic
attractor was found to depend superexponentially on the lin-

ear system dimensionzc~e‘31Ll'5 where c; is a constant 0 5 10 15 0 3 6
[28]. Consequently, although the rough fronts observed in -4 4 ;24
. ) - 107 ¢ 107 L
these systems are simply transients, for sufficiently large sys-
tem sizes they are the only physically relevant states. Asimi- FG_ 4. Left: Intrinsic widthA(t) vst for a realization in which
lar exponential dependence on the system size was found {Re collapse from the confined turbulent state occurs. Parameters:
1D systemg27]. The CML model also exhibits stable chaos p=2.5476, system size=55; Right: Plot of Inr, againstL2*¥,
[27,35,3§ since the largest Lyapunov exponent is negativewhere {=0.56, with b=2.5476. The dashed best-fit line is4n
for the turbulent state, although this state has all the othes1.52x 107 4x L2*¢+6.96.
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FIG. 5. Interface velocityu vs b in systems of sizd.=100
(filled circles and L =800 (open circles The solid line isu=
—0.805 25% (b—2.547 87); this is the linear term of a cubic poly-
nomial fit to theL =100 data in the interval 2.54%8<2.548. The
dashed line has equatian= —0.970 98 (b—2.547 83) and is the
linear term of the cubic fit to thé. =800 data. The dotted line

indicatesu=0. state in whichA (t)~5-8 and fluctuates around an average
interface and the roughness of the profile. valueA ,. We define the lifetimer,,, of this metastable con-

These results show that the transient turbulent fronts witﬁir_‘ed state to be the Iarge!stf_or ‘_Nhi_Ch A_(t):& a value
superexponentially long lifetimes are the relevant systenslightly larger than the mean intrinsic width,,. We let 7,

FIG. 6. Dependence ofu| on system sizel for b=2.5481
(filled circles and b=2.5476 (open circles For b=2.5481, u
<0; for b=2.5476,u>0. The smooth curves plotted through the
data are guides to the eye.

states also in sufficiently large 3D systems. be the average of,, over realizations. The average lifetime
T decreases ab increases and we move farther into the
B. Front explosion in 3D expanding regiméFig. 8, righy. For b only slightly greater

" I .
From observations of the contraction of the interfacialthanb (L), the lifetime of the metastable confined state can

zone like those shown in Fig. @eft), the mean contraction Pe quite lond37]. As the system size increaseg, decreases

velocity u= —(dA/dt), where the average ) is taken over (Fig. 8, lef. _ —

time and realizations of the evolution process, may be deter- The fact thatdA(t)/dt does not depend oi(t) for suf-
mined. With this definitiony has the same meaning as in Eq. ficiently large front profile separations suggests that there is
(6) of the coupled profile model. Measuringas a function ~NO interaction between the left and right profiles for large
of b at a fixed system sizé&, we see in Fig. 5 that ab distancgs. The center of mass position of the mean front
increases, the contraction rate passes through zero at profile 2(t)=L*22)L(,y:12(x,y,t) can have a nonzero net
b*(L). Forb>b*(L), the turbulent zone grows rather than velocity only when the left and right profiles interact. Figure

shrinks. Figure Qright) shows typicalA (t) versust curves 9 showsA (t) and(t) versust for a realization of the front
for a few realizations at & value within the expanding in-
terface regime where>b* (L) andu<0. As for a contract-
ing interfacial zone,u can be estimated from the linear

growth of A(t).

From Fig. 5, we findb* (100)=2.547 87 andb* (800)
=2.547 83 indicating a weak dependence lonTo further
investigate the system size dependence, Fig. 6 pldtser-
susL for two values ofb in the contracting and expanding
regimes. FoiL>400, |u| is independent of. showing that,
for large enough systems, arindependent critical value*
can be defined.

Sinceu<0 for b>b*(L), the intrinsic widthA(t) will
grow without bound. Consistent with this, in simulations, we
see no sign of saturation of the intrinsic width whew 0.
F_igure 7 shows the typical structure of an expanding interfa- £,5 7. The interfacial zone in a system with 2.5479 and_
cial zone. _ =400. The upper panel shows the left and right interface profiles.

One can see in Fig. Zight) that the state wherd (t) The arrow indicates the plane=199. The lower panel is a cross
grows linearly in time is preceded by a transient confinedsection through this plane.
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FIG. 8. Left: Dependence of the mean lifetime of the confined 10 5 0 5
state,r,, on system sizé in simulations withb=2.548 05. Right: 4
> 107 (b-b*)

Dependence of,, on the parameteb for system size. = 200.

. . . FIG. 10. Average intrinsic widthAy vs b—b*(L) in the con-
evolution process. We see that in the metastable conflneﬁjned regimeb<b* (L), and averagg intrinsic widtt, for the

state, the average (?Ff'nter of mass Ve'OCiFV is a nonzerlo Valuﬁ’etastable confined state in the expanding regimeb* (L),
but when the transition to the state of ]lnear expansion 0C\'Nhereb*(L) is the critical parameter value for the front explosion
curs, the average center of mass velocity falls to zero.  yangition. Values for 3D systems with =100, for which

For the 2D CML, the intrinsic widthA, diverges ash e« (100)=2.547 87, are shown by filled circles forb* (100) and
—b*~. In contrast, for the 3D CML, the transition is dis- py open circles fob>b* (100) while data for. =800, for which
continuous, at least for finite system sizég: remains finite  p* (800)=2.547 83, are shown as open squares. Values for 2D sys-
for b<b* (L) and infinite forb>b*(L). Forb>Db*(L), itis  tems with L=100 (open triangles and L =800 (asterisky for
possible to measure the averageAoin the metastable con- which b* =2.545 662(independent of ) are also shown for com-
fined stateA,,. Figure 10 showd ; andA, as a function of  parison. Smooth curves have been fit through the 3D data as guides
b. The results in this figure demonstrate that the character db the eye; the fit to the two-dimensional data indicates power law
the front explosion is qualitatively different in the 2D and 3D divergence with exponent 1/3.
CML systems, and this is one of the important observations

of this study. is the mean profile position at tintefor a particular realiza-
tion, and the averagg ) is taken over realizations. The lead-
C. L dependence of interfacial properties ing (right) profile widths(wg) for b in the expandingE) and

contracting(C) regimes are plotted in Fig. 11 as a function of

The coupled profile model used to analyze the front ex- : : h h : idth
plosion was based on the observation that the interfaces thit FOF comparison, we also show the corresponding widt

separated the turbulent zone from the homogeneous phases
satisfied EW scaling29]. The interfacial profile widths are
defined as

. 1/2 /§\~1
(wpm=(L9 > (hoyn-h®)?| ), (@ =
(xy) i
=
wherel =L,R, the sums are taken over a#t,{), 2
=
h(H=L"> hi(xyt) ®)
(xy) .
: 700 4.5 6 7.5
40 1 InL
32} FIG. 11. Plot in logarithmic coordinates of the average width of
= = the leading interface profile against system diz&he curves are
5 1600 ¥ labeled indicating the system’s dimensionality, and whetherbthe
6l value lies within the confine@C) or expandingE) regime. For 3D
systems(wpg) is shown for the parameter values 2.5476[C(3D),
g | filled circles andb=2.5481[E(3D), open circles A smooth curve
X 500 is plotted as a guide to the eye for t8€3D) data. The straight lines
0 2 4 have slopes 0.35 and 0.09, respectively, for these two parameter
107 ¢ values. TheC(3D) straight line is obtained from a fit to the data for

_ L=1000. For two-dimensional systeméw,) is shown forb
FIG. 9. Plot ofA(t)_(Iower curve, left-hand ordinateand the =2 545[C(2D), asterisk} and b= 2.54575[E(2D), crossek The
center-of-mass positioB (t) (upper curve, right-hand ordinates t straight lines have slopes 0.51 and 0.44, respectively, for these two
for a realization in a system of size=150 withb=2.5481. parameter values.
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FIG. 12. Dependence on system sizéor mean intrinsic width 0 0 0 '01 062 0.03
A, (Ieft) and center-of-mass velocity (right). Data are shown for ) ) )
b=2.547(filled circles andb=2.5476(open circleg Errorbars on -y

data points are smaller than the marker circles. The curves plotted

through the data are guides to the eye. FIG. 13. Average intrinsic widtl\y vs y—y* for the 2D 3:1

forced complex Ginzburg-Landau equati@mollow squareks and

. . . 3D (filled circles. For 2D, y*=0.458, for 3D, y* =0.520. The
data for 2D systems. The profile width data for 3D Conflnedsmooth curves represent power law divergence with exponents

fronts[C(3D)] show a crossover, for system sizes larger than_ g 49 for 2D and-0.33 for 3D. The exponent for the 3D curve is
approximatelyL =600, to a scaling forniwg)~L%%, which  gptained from a fit to the data for— y* <0.005.

is close to the exponent of 0.38 for Kardar-Parisi-Zhang

(KPZ) fronts in 3D (@=2) systems[38,39. The 2D data the average intrinsic widthh,=(A), where(-) is a spa-
[C(2D)] show no such evidence of a crossover in this systemiotemporal average, is independent.oisL becomes large.
size range. In contrast, the expanding front profile widthsthe |eft and right profiles in the CML do not interact when
[E(3D)] show a very weak power law behavidwg)  their separation is sufficiently large, and therefore this model
~L%%, reasonably close to the EW prediction otlibehav-  should capture the essential features affecting the bounded-
ior. In summary, for 2D systems, in the chosen parametepess or divergence ok, asL becomes large. This model

range, the front profiles approximately satisfy EW scaling inpredicts thatA, remains bounded ds— .
both the confined and expanding front regimes. For 3D sys-

tems, the front profiles in the expanding regime satisfy EW
scaling approximately; however, the profiles of the confined
fronts show strond- dependence with a crossover to ap-  The manner in which the front explosion occurs in the 3D
proximate KPZ scaling for largé. These results signal a period-3 CML system is qualitatively different from that in
change in behavior fod=2 as predicted by the coupled 2D systems. In 2D, the interface width diverges according to
profile model but the results further indicate that the EWa power law as the transition point is approached from the
coupled profile model should lose its validity for the=2  confined front side of the bifurcation, but in 3D, for a fixed
confined fronts in 3D systems. system size, the front explosion transition occurs directly
The intrinsic width of the confined fronts in the 3D sys- from a finite value ofAq(L). If the intrinsic width remains
tem has only a weak dependence on the bifurcation paranfinite as L—o, as suggested by the analysis of the 3D
eter(see Fig. 10 However, like the profile width, the intrin-  coupled profile model, one expects a first-order phase transi-
sic width exhibits a strond. dependence and crossover tion in this limit in contrast to the continuous transition ob-
behavior. The mean intrinsic interface widily and the cen- served in the 2D CML.
ter of mass interface velocity; were measured as functions  The scaling properties of the front explosion were inves-
of system size (Fig. 12, left and right panels, respectively tigated for the 2D 3:1 resonantly forced Ginzburg-Landau
for two values ofb for which confined interfaces exist. Each equation in the Benjamin-Feir unstable regifisd,32. Al-
of these properties shows different behaviors at small anéhough the scaling exponents differed, both the 2D period-3
large system sizes, with the crossover between the two reeML and 2D 3:1 forced CGL systems showed similar front
gimes occurring ak ~600. explosion phenomenology and, in particular, power law di-
Whether or not, there is a phase transition between coryergence of the intrinsic width. Consequently, it is interesting
fined and exploding interface regimes in the lithit-c de-  to compare the results obtained in this study with the corre-
pends on whether lim A, is finite. The results presented sponding front explosion phenomenon in the 3D 3:1 forced
in Fig. 12 (left) do not allow a definitive prediction as to CCL system. Simulations of the front explosion are lengthy,
whetherA , remains bounded or divergeslabecomes large. "€auiring large 3D. system sizes and long integration times to
In numerical simulations of Eq(6) of the coupled profile Gy out the statistical averages. Consequently, our results

model, where the repulsive foréeis taken to be a hard wall &€ limited in scope. Figure 13 shows the results of such
repulsion simulations for the 3D 3:1 forced CGL equation carried out

for a system with a turbulent front propagating along the
direction. As in earlier studies in 2[31,32), a moving frame
o, A=<0 . L L

' 9) with no-flux boundary conditions along and periodic
0, A>0, boundary conditions along andy was used. Simulations

IV. CONCLUSIONS

F(A)=
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were carried out for a single system size with linear dimen-mal Lyapunov exponent associated with the turbulence is
sionL =50 alongx andy. The results of an earlier 2D study, positive, although the 2D results suggest that this difference
carried out in systems of size=200, are also shown in the does not affect the existence of the front explosion phenom-
figure for comparison. In contrast to the CML results whichenon. Both the systems possess both a turbulent state and a
indicate a different front explosion character in 2D and 3Dspatially uniform state which is stable to inhomogeneous per-
dimensions, the 3:1 forced CGL results show power law dityrbations. When the relative stability of these two states
vergence as a function of the forcing intensityin both 2D changes, the front explosion occurs.

and 3D, although the exponents are differdit,~(y The results of this study should provide additional stimu-
—y*)7 %% and Ag~(y—y*)"%*in 2D and 3D systems, |ys for further investigations, both theoretical and experi-
respectively. These differences are likely due to the different mental, of the nature of nonequilibrium phase transitions in
nature of the correlations in the turbulent state in the CMLyesonantly forced oscillatory media. Since 2:1, 3:1, and 4:1
and forced CGL systems as well as the fact that the froniesonantly forced reaction-diffusion systems have been in-

profiles separating the turbulent and homogeneous states alggstigated experimentallyl1-13, these systems are likely
have different character, exhibiting EW scaling for the CML candidates for the observation of turbulent fronts.

and KPZ scaling for the forced CGL equation.

The CML system and the forced CGL equation share gen-
eral qualitative features but differ in other respects such as
the nature of the nonlinearity giving rise to turbulence. The
turbulent state in the CML possesses a negative maximal This work was supported in part by a grant from the Natu-
Lyapunov exponent, while in forced CGL equation the maxi-ral Sciences and Engineering Research Council of Canada.
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