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Renyi entropies characterizing the shape and the extension of the phase space representation
of quantum wave functions in disordered systems
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We discuss some properties of the generalized entropies, called &eropies, and their application to the
case of continuous distributions. In particular, it is shown that these measures of complexity can be divergent;
however, their differences are free from these divergences, thus enabling them to be good candidates for the
description of the extension and the shape of continuous distributions. We apply this formalism to the projec-
tion of wave functions onto the coherent state basis, i.e., to the Husimi representation. We also show how the
localization properties of the Husimi distribution on average can be reconstructed from its marginal distribu-
tions that are calculated in position and momentum space in the case when the phase space has no structure,
i.e., no classical limit can be defined. Numerical simulations on a one-dimensional disordered system corrobo-
rate our expectations.
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[. INTRODUCTION disordered systems there is no need to calculate the Husimi
distributions themselves, especially because the average lo-
The measure of the extension of phase space distributiogalization properties of the Husimi functions of a set of states
of guantum states tells us important information on the decan be obtained from the average properties of the marginal
gree of ergodicity and at the same time the degree of localdistributions of the Husimi functions.
ization. These information are directly connected to the cao- Using different techniques similar results have been ob-
ticity of the underlying classical dynamics if the latter is tained for a particular quantity, the participation ratio in Refs.
meaningful. In the ergodic regime trajectories visit every cor{6] and[8]. Our approach, however, is more general.
ner of phase space hence the quantum states associated tdn the following section we introduce the basic ideas and
such orbits are expected to be extended. On the other haniols that have been widely used in the literature, namely, the
regular islands trap classical trajectories and the correspongbarticipation numbe(ratio) and the Shannon entropy for the
ing states are localized. Therefore, the extension propertiezase of discrete distributions. We also show that these quan-
of the eigenstates directly reflect the nature of classical dytities give roughly the same information; however, using
namics. For this purpose the Shannon entropy or informatiothese parameters a new quantity, the structural entropy, can
content has been used widely as a measure of complexity dfe defined that contains important information concerning
guantum states. This and other generalized entropic measurée shape of a distribution. It is also shown that these param-
have been invoked byy&zkowsky in Ref[1] as measures eters are nothing but some special cases of the differences of
of chaotic signatures. In subsequent w2 this idea has the Reuyi entropies. Section Il contains merely the revision
been elaborated further and a direct correspondence betweehwhat has been published before and we conclude this sec-
the complexity of quantum states and the underlying dynamtion by analyzing the problem of continuous distributions
ics has been demonstrated, in particular, by projecting thand showing that the above mentioned differences of the
quantum states onto a coherent state basis. Recently oth@enyi entropies are free from the divergences. In Sec. Il we
works have showed the renewed interest in this figld6]. elaborate the appropriate generalization of these parameters
We have to emphasize, however, that even systems withotor continuous distributions. In Sec. IV we introduce the Hu-
classical limit, e.g., disordered systems, have been involvedimi representation of quantum states and describe some of
in such phase space studigs-9]. This latter topic is the its properties. In Sec. V the Rgi entropies are applied for
main motivation of our present work as well. the Husimi distributions, and it is shown that the properties
In the present work we give further arguments in favor ofof its marginal distributions already give a qualitative picture
the application of generalized entropies, theWReentropies, that for special cases may quantitatively be correct, as well.
for the characterization of quantum phase space distribun Sec. VI numerical simulations for the one-dimensional
tions; however, we point out some problems in connectiorAnderson model provide important verification of the results
with the calculation of these parameters for continuous dispresented in Sec. V. Finally some concluding remarks are left
tributions. As a remedy for these problems we show that théor Sec. VII.
differences of Reyi entropies are, on the other hand, free
from these anomalles._ . . Il. BASIC IDEAS
Furthermore, we will show that indeed these entropic
measures give important information concerning the local- The extension of a discrete distribution of a state is often
ization properties of phase space distributions, especially theharacterized by its entrop§ or by its second momerid.
Husimi distribution. We will also give arguments and nu- Both of these quantities, i.e., eX(and D practically mea-
merical proofs that, in fact, in the case of wave functions ofsure the same thing, namely the number of amplitudes that
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mainly contribute to the expansion of the state over a suitwhich has been termed as the participation ratio in the litera-

able basis. ture. These two quantities satisfy the following inequalities
Let us consider a wave functiol that is represented by [12]:

its expansion over a complete basis set on a finite gri of

statese; : 0<gs1, (79

N 0<S,,<-1Inq. (7b)
V= 2 Ci i
=1 Generalized entropies have been introduced byyRd 7]
with in the form of

N - 1 % i
2, ef?=1. (1) Rn=1—mn2 Q" ®)

which monotonously decreases for increasimg-or the spe-

. . _ 2 .
Note that each of the coefficien@=c;| obey the condi- cial cases om=0, 1, and 2 we recover the total number of

tion components, the Shannon-entropy, and the participation
0=Q,=1, ?) number
and they sum up to unity. Then the usual definitions of par- Ro=InN, nl]iTlRm:S’ Rp=InD. ©

ticipation numbeiD and entropysS are

N Notice that the ordem in Eq. (8) is not necessarily integer.
D-1= 2 Q? We can readily realize that the parameters, Efsand(6),
= ! are nothing but the differencég43] of the special cases of
Ro, Ry, andRy, i.e.,
and
) Ssu=Ri=R,, (10a

S= —Z,l QInQ;. ) ~Ing=Ro—R,. (10b

A number of applications have been presented to fE3¢
showing their diverse applicability starting from quantum
chemistry[14] up to localization in disordered and quasip-
eriodic systemg$15] up to the statistical analysis of spectra
[16].

In the present work we are going to extend this formalism
continuous distributions and show again that the differ-
S~InD, (4) ences of the Reyi entropies are good candidates for the
characterization of them.

i.e., bothS and InD describe the extension of the discrete ~ The problem with a continuous distributiga(x) is that
distribution. That is the reason for callifyas the number of ~€ven though normalization requires

principal components. The close relation betw&eand D,

Eq. (4), has often been overlooked and presentedj1]] as J dx p(x)=1 (11)
an interesting similarity. However, as it has been demon- '

strated in Ref[12] and applied in several studies lafg2— _ ) o )
16], the difference it is clear thatp(x) is a density of probabilities; therefore, it

is the quantityp(x)Ax, the probability associated with the
S¢y=S—-InD (5) interval[ x,x+ Ax] that is restricted to thg0,1] interval and
not the value ofp(x) itself. Hence, even though we may
is a meaningful and most importantly a non-negative quanalways expecp(x)=0 the conditionp(x)<1 is generally
tity that turns out to be very useful in the characterization ofnot fulfilled.
the shape of the distribution of the probabilit@®s. That is Then the obvious generalization of thérigeentropies8)
the reason why it has been termed as structural entropy of far normalized continuous distributions would read as
distribution. Moreover, the value of the participation number

The parameteb tells us how many of the numbe(; are
significantly larger than 0. For example, if only one of them
is unity and the rest is 0, theD=1. Otherwise, ifQ;
=1/N homogeneously, then we get=N. Similar properties
can be shown to hold for eX§ therefore, it is easy to show
that the two quantities provide roughly the same informatio%

normalized to the number of available components is an im- 1 "
portant partner quantity Rn=1=mIn | dXPOOT™ (12
_ E 6) Hence, the definitions of the participation number and en-
=N tropy (3) would look as
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- 2\m [®(¢8)]?
D1= f dx[p(x)1?, (13) - 20
d
S=— f dx p(x)In p(x). (14 an
ST i (L R
Let us apply this definition to a Gaussian distribution with &)= Sstr ™ n ,
zero mean and variance \/ﬂq)(gl\@) (I)(gl\/§)
) whereSS, is given in Eq.(17). The participation ratia(&)
p(x)= exp( _ X_) (15) in the limit £&—o (L—oo for fixed o or c—0 for fixed L)
270 202 tends to 0 asy(¢)~2\n/¢ while S (¢)—SS,. On the

other hand, in the other limit cf—0 (00— for fixed L or
The formulas derived using thig(x) will be useful when | -0 for fixed o) we see thatq(¢)~(1—&%720) and
applying for the problem of the Husimi distributions later s, (£)~ ¢*/1440; therefore, the relatioBg,~(1—q)/2 is
due to the Gaussian smearing contained in those phase spageo fulfilled[12]. We would like to emphasize that no diver-
functions. Putting Eq(15 in Eq. (12) we obtain, form  gences are found for parametersand Sy, and they show
>0, well-defined behavior in either limit.

Inym
Ra(0)= —— +In( Rro), (16) Ill. COARSE GRAINING
Now let us turn to a more general investigation of our

which tells us that agr—0 or o— the Rewi entropies Parameters. In this section we provide a natural generaliza-
diverge. However, they do that uniformly, i.e., independenttion of the calculation of the parametegsand Sy, for con-

of m; hence their differences remain finite. This is an impor-tinuous distributions. _

tant advantage of our formulation that will be elaborated L€t us consider a disjoint division of the interv@l over
further in the subsequent part. In particular, in the case oyhich the distributionp(x) is defined. Each of these sub-

Gaussian(15) we obtaing=0 and intervals have an indexrunning from 1 toN and a size of
wj, such thatX;w;=. Then let us define a characteristic
S¢.=R;—R,=%(1-In2)=0.1534 - - . (17 function x;(x):

This is the value of the structural entropy that describes a _ 1, Xeow

Gaussian distribution in one dimension. Xi(x)_[o, otherwise.
Next let us consider the above Gaussian on a finite inter-

val —L/2=x=<L/2 and assume that beyond this interval These functions are orthogonal,

p(x)=0. This construction allows us to study how the limit

of Eq. (16) or (17) is approached as for fixed the interval .

tends to infinity(or for a fixedL the width c—0). To this J dx xi(X) xj(X) = ;& , (23)

end the normalization is taken over the finite interval

[ —L/2,L/2] so the distribution functiol5) should be modi- whereg;; is the Kronecker delta. The coarse-grained value of

fied as the distributionp(x) in intervali is p(X)w;=Q;, If Xe w;,

more precisely

(22

1 e—)<2/20'2
PO = o B(E/ B

where ®(x) denotes the error function and the scaling pa-This way our coarse-grained approximation to the density
rameteré=L/c has been introduced. The Re entropies  fynction is

will depend onL ando as

(19 Q- f dx PO i (%)- (24)

~ Qi
®(£/\8)] PO =2 — xi(X), (25)
Rn(L,0)=Rp(%,0) + n [0(£1\8)] , (19 b
m—1"1 ®d(&/m/8)
which obviously satisfies the normalization condition
where Ry («<,0) is given in Eg. (16). Again the
mrindependent—In o divergence appears. Turning to the f ~ N _
special cases af andS;, as deduced fromRy, Ry, andR,, dx p(x) Z Q=1 (28

using Egs.(10), as before we find that they are uniquely
determined by and are free from this type of divergence. In On the other hand, the integral of the square of this function
particular, sinceRy=InL, using Egs.(23) and(25) is
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2
| axpoor=3 %=%Z Q. @ | acwpr=lom (32b)

For the sake of simplicity we have uséahd will use from Where#(p) denotes the Fourier transform ¢{x),

now on an equipartition.w;=w=Q/N. Now let us calcu- 1

late the participation numbdd and entropyS, using Egs. _ f dx w(x) e~ 1PxX/h 33
(13) from the discrete sums over the probabilit@s. First, ¢(p) J2mh w(x) ' 33
it is clear from Eq.(27) that

The only major disadvantage of the Wigner distribution is
9 ~ that it may attain negative values albeit in a region of phase
—In D=In2i Qi =Inf dxpO)I*+Inw. (28) space smaller thah. It has been shown already by Wigner
[19] that there exists no phase space distribution that would
Similar procedure leads to have all the above properties and besides that to be non-
negative.
~ ~ Another very popular phase space distribution is the Hu-
S=- Z QilnQi=— f dxpO)Inp(X)—Inw. (29 gimj function[18], which is obtained as the Gaussian smear-
ing of the Wigner functiodV(x,p),

The appearance of the termdrin both of these equations ( %
shows another type of divergence originating from the sub- :f ey - _ X=X
division of the interval(), since the limit ofN—c corre- P(X.p) dx'dp"W(x',p’)ex 5
sponds tow—0. Therefore, a naive application of these

20

quantities may encounter severe conceptual and also numeri- (p—p')?
cal difficulties depending on the value af. On the other - 7 . (34)
hand, we may conclude once again that the paramegtensl P

S, are free from this type of divergence, as well as usin

9vhere =#/2 ensures minimum uncertainty.
Egs.(3), (5), and(6), oo y

It is known[18] that the Husimi function is bilinear, real
valued, and non-negative, but unfortunately produces an
(309  overcomplete set of functions and moreover the marginal
distributions do not have such a transparent meaning as in
Eq. (32). In fact, the latter point can be refined. Let us cal-
_ ~ ~ ~ 2 culate these marginal distributions and will find that indeed
Ssr= f dx p0oln p(x)+|nf dx[p()]%. (30 they are the Gaussian smeared distributiong &nd p rep-
resentations, respectivelg0]. In order to show this we write
This way we have shown how to apply the formalism devel-Eq. (34) in the form of a convolution ofV(x,p) with two
oped for discrete sums for the problem of continuous distriGaussian functiongggx(x) and gap(p), of the form of Eq.

~Ing=1In Qf dx[p(x)]?

butions. (15)
IV. PHASE SPACE REPRESENTATION OF QUANTUM L , ) L,
STATES P(Xup):f dx'dp ggx(x—x )go'p(p_p YW(x",p").
One of the most well-known phase space distributions (35
that is widely applied in statistical physics is the Wigner Then similar to Eq(32),
function associated with the quantum stgt8] y(x):
. X’ X’ f dpp(X,p)={(x), (363
W(x,p):J dx’ e PX/hyx X= =¥ x+ = |. (31
From now onp denotes momentum and for the sake of sim- dxp(x,p)=7(p), (36b)
plicity we consider only one degree of freedom, resulting in
a two-dimensional phase space &fff). where the marginal distributions are nothing but smeared dis-

It is known thatW(x,p) is bilinear, real, and for a com- tribution obtained from quantum stategx) and ¢(p), re-
plete orthonormal set of}; functions the corresponding spectively,
Wigner transforms also form a complete orthonormal set

[18]. The marginal distributions d#V(x,p) have an impor- _ , , ,
tant physical meaning, {(x)—f dx Go, (X=X el (379
f dp W(x,p) = [(x)|%, (329 n(p)=f dp’ g, (P—p")b(p")I% (37b
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It is clear from the definition of the Husimi distribution that These are in accordance with Boltzmann’'s original defini-

it is normalized as tion, since for a distribution that is constant over a volume
I'< () and 0 otherwise, we obtain
J dxdpp(x,p)=1, (38 S=In(I'/h), q=T/Q, (45)

therefore the smearedrepresentation of/(x), £(x) and the i.e., Smeasures the size of phase spHogherep is nonzero

smeared representation o ’ are normalized as in _unit_s ofh andq measures the portion of phase space where
P rep (P, n(p) p is different from O.

In order to relate the entropy of the total Husimi function
f dx g(x)zf dpn(p)=1. (39 to that of the marginal distributions let us invoke an impor-
tant relation that has been proven for the Shannon ent®py,

To complete this section we mention that the Husimi repre-ConSIder a distributiop(x,p), which in our case is the Hu-

. : . ; . imi distribution, see Eq(34) or Eqg. (40). Its information
sentation of a quantum stae(x) is nothing but its projec- S'™
tion onto (i.e., the overlap witha coherent state with mini- CONtent, or Shannon entropg2] (43) can be related to the

; - Shannon entropy of the marginal distributio®§{] and
I taintyf4,5,8,2 : , .
mal uncertainty 1 Bxp(x) 9 7] defined in Eq.(14) for ¢(x) and (p) [Eq. (37)], re-
2 spectively. Let us note that the Husimi distribution can be
p¢(x,p)=l<ﬁ(x,p)l¢>lz=fdx’ﬁf,p(X’)w(X’) : written in the form
40 p(X,p)=L(X) n(P)+ B(X,P), (46)

the coherent state is a Gaussian centered around the phaggere
space pointX,p),

1/4 (X' —x)2 J' dxé(x,p)=fdp5(x,p)=0. (47)
Bxp(X')= exp ————+ipx'/h]|.
' 2mo* 40° The Sh tropy then obe the following relation:
(41) e Shannon entropy then obey the following relation:
, Spl+Inh=8 ]+ n]+ S, (48)
V. RENYI ENTROPIES OF PHASE SPACE
DISTRIBUTIONS whereéS<0. Equality is achieved ib(x,k) =0 everywhere.

. . _ _ ~ This statement can be generalized to thenReentropies,
In this section we describe how to characterize localizayhere

tion or ergodicity using the ingredients explained in the pre-
ceding sections{1) the Husimi representation of the quan- Rulpl+Inh=R,[{]+ Ryl 7]+ 6Ry, (49
tum statesy and (2) the Rayi entropies, especially their
differences. with 6R,<0. Unfortunately there is no general law for the
First of all let us introduce the Rgi entropies of the size of thesR,,, however, for the differences of the’ Re
Husimi function. In analogy with definitiof12) entropies it may become only a small corrections{i,p)
<{(X)n(p). Furthermore, for the parametersing=R,
1 xdp " —Ry and S;;,=R;— R, we should have corrections @R,
Rm:m'”f —5 [he(x,p)]™, (42— 5R,andsR,— SR,. These differences, especially after av-
eraging over several wave functions, can be neglected; there-
which now contains the arbitrary parametethat naturally ~ fore, we arrive at the following approximate relation for the
behaves as the minimum possible volume provided by th@verage values of Inq andSs;,
Heisenberg uncertainty principle, i.e., it should be chosen as

Planck’s constant. We have to note that eRghcontains I ~Inglpl~=Inql{]=Inql~], (508
additively, which diverges in the classical limit—0 but _
drops out when differences of the entropies are taken. Defi- Ssulp]~Ssul £1+ Ssul 7] (50D

nition (42) for a compact phase space of volurfie for
instance, provides for the special caBg~=In(Q/h), i.e., it
measures the size of the full phase space in units &fur-
thermore,

Such relations reduce the calculations considerably as there
would be no need to calculate the Husimi functions them-
selves and then calculate the rige entropies thereof. In a
numerical application we will show below that indeed these
relations do hold with small error.

R,=S= _f dxdpp(x,p)In[hp(x,p)], (43) We have to stress that these approximate relations may
hold apart from the trivial case of the wave packmesented
nexy for the average properties of a suitably chosen set of

_ 2 states and most importantly in the case of the lack of under-
Ry= In(hj dxdp p(x,p)] ) (44 lying classical dynamics. These limitations reduce its appli-
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cability for the investigation of the states of disordered sys- 0.4 T T T
tems, which is nevertheless the main aim of our study. £ a T do
As a simple example we elaborate the case of a distribu- «n T 100
tion that is a Gaussian in both coordinateandp, ? 0.3k PR LI IE DN 4
e il \,‘
p) 1 ex —x%202—2(aplh)?] 50 g i i F 1
Xp)=_— \ — [ E
PP IR T (B0 (V2 mp) Eoaf /Ly
3 /l. ‘\’\.
and normalized over the phase space bounded la®<x g .\ /
w

<L/2 and —whl/asp=<mwhla, where two cutoff length
scales]. anda, have been introduced. Therefore, the volume

of the phase space will @ =hL/a= yh. The ratios of the <
cutoff scales to the spreading widthyield the two dimen- S
sionless parameters in E¢1), a=L/o and B=oc/a. In g
terms of these quantities we obtain the relatips oS3, g
which counts the number of cells of sihdn phase space. =

Since in Eq.(51) oy,=0 and o,=%/20, the uncertainty .g- \
relation oo, =%/2 is fulfilled. This p(x,p) is in fact the =
Husimi distribution of a real space Gaussian wave packet 8 F ]
and it is a product of the limit distributions as given (46) 10-3 A R R R
with 8(x,p)=0. Consequently thg and S, values of the 102 100 10° 10 10>
corresponding limit distributiong(x) and n(p) obey the rescaled parameter t

additivity property (50) exactly. Distribution{(x), for in- FIG. 1. The parametelS,,, [(a) semilog ploi andq [(b) log-log
stance, is obtained by using E6a and yields Eq(18). Its  pjof] for a Gaussian wave packet as a function of the paranteter

q[£] andSg[ ] parameters are given in Eq0) and(21).  =a/a,, wherea=L/a, L is the system size andlis the spreading
A straightforward calculation yields|[ »] and Ss,[ 7], as  of the Gaussianay= \47y. The different curves are parametrized
well. according toy, the number of cells withim.

Putting the Husimi distributiof51) into Eq.(42) we find

Inm that by keepingy fixed q(«) andSs,(«) functions are sym-

Ry(a@,8)= ———In2 metrical aboutrg= 47y on a logarithmic scale. Therefore,
" m-1 rewriting Eqgs.(53) in the variablet= a/ay we obtain
N 1 N CD(a\/m/S)(IJ(Bﬂ'\/Zm) . e 1 [(D(Cl/t)q)(clt)]z
m=1"{[®(a/B)D(Bm2)]" = B, iD(cy)
(52)
¥ te*(clt)2 e*(cllt)2
This expression correctly yield8,=In(e8)=In(y), the log s (t)=1-In(2)- 513 + i BcT
of the number of cells of sizh. Through relationg10) pa- () td(cy/t)
rametersq andS;;, can be obtaineq. Equivalently using the D(c, /1) D(Cot)
definition (51) and Eq.(30) generalized for the case of the +In W , (54)
Husimi distribution like in Eqs(42) and(43) we obtain 1 1
[D (ol \8)D(BV27)]? wherec, = \/7y/2 andc,=\/2c;. These functions are plot-

d(a,B)= , (538  ted in Fig. 1. Att=1, functionq(t) is maximum and its
apP(al2)®(2mp) value decreases witl asq(1)xy 1. Only the physically
T —2(ap)? 28 relevanty=1 are plotted. The participation ratio has some
Sele,)=1—In(2)— mse _ @€ very nice, simple behaviog™(t)— (t\/y) ! for t—o and
Y O(27B)  8md(al\8) q(t)—t/\/y for t—0. On the other hand, in the same
limits Sg,,— SS, independently fromy showing that these
O2mB)P(al2) limits correspond to one-dimensional Gaussians {p) di-
O (\27B)DP(al\8) rections fort—e« (t—0). It can also be viewed as if a
squeezing parameter made the distribution more coordinate-
There are a number of remarkable features of Es@.and  like (momentumlikg [23]. For intermediate values ¢f i.e.,
(53b). None of them contain Planck’s constanexplicitly; if 1/\Jy<t<\y with y>1 the participation ratio isg
however, the scaling variables and 8 cannot be chosen =~y ! and Sstr~28§r, indicating that this distribution is a
independently, as their product is just the number of cells ofsaussian in both dimensionsand p. This is the regime
size h. Therefore, let us keep as a running variable and where the Husimi function is a Gaussian in both directions
parametrize the functions witl. Furthermore, let us note and therefore shows a two-dimensional character. Both

+In : (53b)
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curvesq and S;, are symmetrical about=1 on a logarith- S I A A

mic scale oft, which is a direct consequence of the geometry m"‘io,so
of the phase space. o I
& 0.45
VI. APPLICATION TO DISORDERED SYSTEMS "é 3
Now we calculate the Husimi functions of the eigenstates 7,3 0°30_
of a disordered one-dimensional system. To be more precise B
we use a tight binding modéR4] :_5 0.15
“ 0.00
H=2 eoln)(n|+VX (In)(n+1[+[n+1)n)), (55 -
n n 1.0
£ b
whereV=1 is set as the unit of energy amr¢ are random ?,3
numbers distributed uniformly over the interval g
[—WI/2,... W/2], where W characterizes the strength of =
disorder. Such a model has been investigated in phase space i
in Refs.[7] and [8]. The Husimi functions are calculated ;:.f
using Eqgs.(40) and (41) from the eigenstates of E@55). g

The participation ratiay and the structural entrop$;;, are

canonl ooy PRI B R R TIT B W RITT
calculated according to E€B0). We also calculated the Fou- 001 01 1 10 100 1000
rier transforms of the eigenstates and obtained smeared dis- disorder W/V
tributions according to Eq(37) both in real and Fourier FIG. 2. Structural entropgg,, [(a) semilog plof and participa-
space. Periodic boundary conditions were considered usini#pn ratioq [(b) log-log plof as a function of disordewVin units of
L=512. The phase space extends ovdr/2<x<L/2 and V, for a one-dimensional Anderson model with=512. The
—m<p<m, its area i) =2=L (=1 and the lower cutoff squares stand for the states smeared irepresentation, the tri-

angles for the states smeared grrepresentation, the circles are
Falculated according to Eg450). The dotted lines are simply
uides for the eye. The solid curve corresponds to the valu8g,of
ndq for the states in the Husimi representation. The circles and the
solid curve differ only a little.

scale, the lattice spacing is set to uniys 1). Averaging is
done over the middle half of the band. In fact, as pointed ou
by Ref.[8], as well, there is no need to average over manyg1
realizations of the disordered potential.

When the full Husimi distributions of all states are calcu-
lated, the computational time grows with. However, using
the approximate relation of Eq50), it reduces to roughly
L3. This is obviously a considerable gain and is comparable In this paper we have presented some important results
to that achieved in Ref$6] and[8]. concerning the applicability of the Rgi entropies for the

The results are reported in Fig. 2. Here we have plottedharacterization of localization or ergodicity in phase space,
the behavior of parametef80) versus disorder strengilv, using the Husimi representation of the quantum states. In
and compared to the approximate values obtained using Efact, it has been shown that the differences of theyRe
(50). The region where the most important variationsgof entropies are free from those divergences that would natu-
and S, take place isW;<W<W,, where the localization rally arise due to their application on continuous distribu-
length matches the systems sig24,25, A\~L, i.e., W; tions.
~/105L =0.453 or its inverse approaches the size of phase The marginal distributions of the Husimi function are
space inp direction, 2rA~1, i.e.,W,~ \27105=25.68. pointed out to have important properties and simple connec-

Let us analyze the expectations for the limiting cases ofion to the states ix andp representations.

W—0 andW_)oc_ It iS easy to see that the eigenstates for We have also shown numerica”y that for disordered SyS'
vanishing disorder are plane waves whose Fourier transforfgms the limiting distributions of the Husimi function pro-

is a Dirac delta(in fact two, due to the symmetry of the Vide most of the information that is needed to describe the
—p andp states. In a “smeared” representation we obtain Hu3|m|.funct|ons themselves. Figure 2 provides a goold dem-
two Gaussians ip representation. Using Eq&t1) and(30a onstration of the dual_lty between tireandp representations _
we obtain tha'q=2/\/f for the states both ip and the Hu- transparently. A detailed study over the Anderson model in
simi representation. Due to the Gaussian smearing in thigne dimension and the Harper mo@26] are left for forth-
limit the structural entropy attains its value $§, as givenin  CoMing publications.

Eq. (17). The other limit of W— is very similar. In that
case the eigenstate Xrepresentation has a Dirac delta char-
acter_that is smeared to a Gaussian. This resultsjin  One of the authorgl.V.) acknowledges enlightening dis-
=1/JL and again a value B, (W)—Sg,. All these limit-  cussions with B. Eckhardt, P. Hggi, G-L. Ingold, and A.
ing cases are recovered in Fig. 2. The figure shows that apAobst. This work was supported by the Alexander von Hum-
proximation(50) works very well. It is clear that thg, p, and  boldt Foundation, the Hungarian Research F(@TKA) un-
Husimi representations are, therefore, linked very simply. der T032116, T034832, and T042981.
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