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Rényi entropies characterizing the shape and the extension of the phase space representation
of quantum wave functions in disordered systems
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We discuss some properties of the generalized entropies, called Re´nyi entropies, and their application to the
case of continuous distributions. In particular, it is shown that these measures of complexity can be divergent;
however, their differences are free from these divergences, thus enabling them to be good candidates for the
description of the extension and the shape of continuous distributions. We apply this formalism to the projec-
tion of wave functions onto the coherent state basis, i.e., to the Husimi representation. We also show how the
localization properties of the Husimi distribution on average can be reconstructed from its marginal distribu-
tions that are calculated in position and momentum space in the case when the phase space has no structure,
i.e., no classical limit can be defined. Numerical simulations on a one-dimensional disordered system corrobo-
rate our expectations.
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I. INTRODUCTION

The measure of the extension of phase space distribu
of quantum states tells us important information on the
gree of ergodicity and at the same time the degree of lo
ization. These information are directly connected to the c
ticity of the underlying classical dynamics if the latter
meaningful. In the ergodic regime trajectories visit every c
ner of phase space hence the quantum states associa
such orbits are expected to be extended. On the other h
regular islands trap classical trajectories and the corresp
ing states are localized. Therefore, the extension prope
of the eigenstates directly reflect the nature of classical
namics. For this purpose the Shannon entropy or informa
content has been used widely as a measure of complexi
quantum states. This and other generalized entropic meas
have been invoked by Z˙yczkowsky in Ref.@1# as measures
of chaotic signatures. In subsequent work@2# this idea has
been elaborated further and a direct correspondence bet
the complexity of quantum states and the underlying dyna
ics has been demonstrated, in particular, by projecting
quantum states onto a coherent state basis. Recently
works have showed the renewed interest in this field@3–6#.
We have to emphasize, however, that even systems wit
classical limit, e.g., disordered systems, have been invo
in such phase space studies@7–9#. This latter topic is the
main motivation of our present work as well.

In the present work we give further arguments in favor
the application of generalized entropies, the Re´nyi entropies,
for the characterization of quantum phase space distr
tions; however, we point out some problems in connect
with the calculation of these parameters for continuous
tributions. As a remedy for these problems we show that
differences of Re´nyi entropies are, on the other hand, fr
from these anomalies.

Furthermore, we will show that indeed these entro
measures give important information concerning the loc
ization properties of phase space distributions, especially
Husimi distribution. We will also give arguments and n
merical proofs that, in fact, in the case of wave functions
1063-651X/2003/68~2!/026202~8!/$20.00 68 0262
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disordered systems there is no need to calculate the Hu
distributions themselves, especially because the averag
calization properties of the Husimi functions of a set of sta
can be obtained from the average properties of the marg
distributions of the Husimi functions.

Using different techniques similar results have been
tained for a particular quantity, the participation ratio in Re
@6# and @8#. Our approach, however, is more general.

In the following section we introduce the basic ideas a
tools that have been widely used in the literature, namely,
participation number~ratio! and the Shannon entropy for th
case of discrete distributions. We also show that these qu
tities give roughly the same information; however, usi
these parameters a new quantity, the structural entropy,
be defined that contains important information concern
the shape of a distribution. It is also shown that these par
eters are nothing but some special cases of the difference
the Rényi entropies. Section II contains merely the revisi
of what has been published before and we conclude this
tion by analyzing the problem of continuous distributio
and showing that the above mentioned differences of
Rényi entropies are free from the divergences. In Sec. III
elaborate the appropriate generalization of these param
for continuous distributions. In Sec. IV we introduce the H
simi representation of quantum states and describe som
its properties. In Sec. V the Re´nyi entropies are applied fo
the Husimi distributions, and it is shown that the propert
of its marginal distributions already give a qualitative pictu
that for special cases may quantitatively be correct, as w
In Sec. VI numerical simulations for the one-dimension
Anderson model provide important verification of the resu
presented in Sec. V. Finally some concluding remarks are
for Sec. VII.

II. BASIC IDEAS

The extension of a discrete distribution of a state is of
characterized by its entropyS, or by its second momentD.
Both of these quantities, i.e., exp(S) andD practically mea-
sure the same thing, namely the number of amplitudes
©2003 The American Physical Society02-1
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mainly contribute to the expansion of the state over a s
able basis.

Let us consider a wave functionC that is represented b
its expansion over a complete basis set on a finite grid oN
statesf i :

C5(
i 51

N

cif i

with

(
i 51

N

uci u251. ~1!

Note that each of the coefficientsQi5uci u2 obey the condi-
tion

0<Qi<1, ~2!

and they sum up to unity. Then the usual definitions of p
ticipation numberD and entropyS are

D215(
i 51

N

Qi
2

and

S52(
i 51

N

Qi ln Qi . ~3!

The parameterD tells us how many of the numbersQi are
significantly larger than 0. For example, if only one of the
is unity and the rest is 0, thenD51. Otherwise, if Qi
51/N homogeneously, then we getD5N. Similar properties
can be shown to hold for expS; therefore, it is easy to show
that the two quantities provide roughly the same informat

S' ln D, ~4!

i.e., bothS and lnD describe the extension of the discre
distribution. That is the reason for callingD as the number of
principal components. The close relation betweenS and D,
Eq. ~4!, has often been overlooked and presented@10,11# as
an interesting similarity. However, as it has been dem
strated in Ref.@12# and applied in several studies later@12–
16#, the difference

Sstr5S2 ln D ~5!

is a meaningful and most importantly a non-negative qu
tity that turns out to be very useful in the characterization
the shape of the distribution of the probabilitiesQi . That is
the reason why it has been termed as structural entropy
distribution. Moreover, the value of the participation numb
normalized to the number of available components is an
portant partner quantity

q5
D

N
, ~6!
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which has been termed as the participation ratio in the lite
ture. These two quantities satisfy the following inequaliti
@12#:

0,q<1, ~7a!

0<Sstr<2 ln q. ~7b!

Generalized entropies have been introduced by Re´nyi @17#
in the form of

Rm5
1

12m
ln(

i 51

N

Qi
m , ~8!

which monotonously decreases for increasingm. For the spe-
cial cases ofm50, 1, and 2 we recover the total number
components, the Shannon-entropy, and the participa
number

R05 ln N, lim
m→1

Rm5S, R25 ln D. ~9!

Notice that the orderm in Eq. ~8! is not necessarily integer
We can readily realize that the parameters, Eqs.~5! and ~6!,
are nothing but the differences@13# of the special cases o
R0 , R1, andR2, i.e.,

Sstr5R12R2 , ~10a!

2 ln q5R02R2 . ~10b!

A number of applications have been presented to date@13#
showing their diverse applicability starting from quantu
chemistry@14# up to localization in disordered and quasi
eriodic systems@15# up to the statistical analysis of spect
@16#.

In the present work we are going to extend this formali
to continuous distributions and show again that the diff
ences of the Re´nyi entropies are good candidates for t
characterization of them.

The problem with a continuous distributionp(x) is that
even though normalization requires

E dx p~x!51, ~11!

it is clear thatp(x) is a density of probabilities; therefore,
is the quantityp(x)Dx, the probability associated with th
interval @x,x1Dx# that is restricted to the@0,1# interval and
not the value ofp(x) itself. Hence, even though we ma
always expectp(x)>0 the conditionp(x),1 is generally
not fulfilled.

Then the obvious generalization of the Re´nyi entropies~8!
for normalized continuous distributions would read as

Rm5
1

12m
lnE dx@p~x!#m. ~12!

Hence, the definitions of the participation number and
tropy ~3! would look as
2-2
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D215E dx @p~x!#2, ~13!

S52E dx p~x!ln p~x!. ~14!

Let us apply this definition to a Gaussian distribution w
zero mean and variances:

p~x!5
1

A2ps2
expS 2

x2

2s2D . ~15!

The formulas derived using thisp(x) will be useful when
applying for the problem of the Husimi distributions lat
due to the Gaussian smearing contained in those phase s
functions. Putting Eq.~15! in Eq. ~12! we obtain, form
.0,

Rm~s!5
lnAm

m21
1 ln~A2ps!, ~16!

which tells us that ass→0 or s→` the Rényi entropies
diverge. However, they do that uniformly, i.e., independ
of m; hence their differences remain finite. This is an imp
tant advantage of our formulation that will be elaborat
further in the subsequent part. In particular, in the case
Gaussian~15! we obtainq50 and

Sstr
G 5R12R25 1

2 ~12 ln 2!50.1534••• . ~17!

This is the value of the structural entropy that describe
Gaussian distribution in one dimension.

Next let us consider the above Gaussian on a finite in
val 2L/2<x<L/2 and assume that beyond this interv
p(x)50. This construction allows us to study how the lim
of Eq. ~16! or ~17! is approached as for fixeds the interval
tends to infinity~or for a fixedL the width s→0). To this
end the normalization is taken over the finite interv
@2L/2,L/2# so the distribution function~15! should be modi-
fied as

p~x!5
1

A2ps2

e2x2/2s2

F~j/A8!
, ~18!

whereF(x) denotes the error function and the scaling p
rameterj5L/s has been introduced. The Re´nyi entropies
will depend onL ands as

Rm~L,s!5Rm~`,s!1
1

m21
lnF @F~j/A8!#m

F~jAm/8!
G , ~19!

where Rm(`,s) is given in Eq. ~16!. Again the
m-independent2 ln s divergence appears. Turning to th
special cases ofq andSstr as deduced fromR0 , R1, andR2,
using Eqs.~10!, as before we find that they are unique
determined byj and are free from this type of divergence.
particular, sinceR05 ln L,
02620
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q~j!5
2Ap

j

@F~j/A8!#2

F~j/2!
~20!

and

Sstr~j!5Sstr
G 2

je2j2/8

A8pF~j/A8!
1 lnF F~j/2!

F~j/A8!
G , ~21!

whereSstr
G is given in Eq.~17!. The participation ratioq(j)

in the limit j→` (L→` for fixed s or s→0 for fixed L)
tends to 0 asq(j)'2Ap/j while Sstr(j)→Sstr

G . On the
other hand, in the other limit ofj→0 (s→` for fixed L or
L→0 for fixed s) we see thatq(j)'(12j4/720) and
Sstr(j)'j4/1440; therefore, the relationSstr'(12q)/2 is
also fulfilled @12#. We would like to emphasize that no dive
gences are found for parametersq and Sstr and they show
well-defined behavior in either limit.

III. COARSE GRAINING

Now let us turn to a more general investigation of o
parameters. In this section we provide a natural general
tion of the calculation of the parametersq andSstr for con-
tinuous distributions.

Let us consider a disjoint division of the intervalV over
which the distributionp(x) is defined. Each of these sub
intervals have an indexi running from 1 toN and a size of
v i , such that( iv i5V. Then let us define a characterist
function x i(x):

x i~x!5H 1, xPv i

0, otherwise.
~22!

These functions are orthogonal,

E dx x i~x!x j~x!5v id i j , ~23!

whered i j is the Kronecker delta. The coarse-grained value
the distributionp(x) in interval i is p(x)v i5Qi , if xPv i ,
more precisely

Qi5E dx p~x!x i~x!. ~24!

This way our coarse-grained approximation to the den
function is

p̃~x!5(
i

Qi

v i
x i~x!, ~25!

which obviously satisfies the normalization condition

E dx p̃~x!5(
i

Qi51. ~26!

On the other hand, the integral of the square of this funct
using Eqs.~23! and ~25! is
2-3
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E dx @ p̃~x!#25(
i

Qi
2

v i
5

1

v (
i

Qi
2 . ~27!

For the sake of simplicity we have used~and will use from
now on! an equipartition,v i5v5V/N. Now let us calcu-
late the participation numberD and entropyS, using Eqs.
~13! from the discrete sums over the probabilitiesQi . First,
it is clear from Eq.~27! that

2 ln D5 ln(
i

Qi
25 lnE dx@ p̃~x!#21 ln v. ~28!

Similar procedure leads to

S52(
i

Qi ln Qi52E dxp̃~x!ln p̃~x!2 ln v. ~29!

The appearance of the term lnv in both of these equation
shows another type of divergence originating from the s
division of the intervalV, since the limit ofN→` corre-
sponds tov→0. Therefore, a naive application of the
quantities may encounter severe conceptual and also num
cal difficulties depending on the value ofv. On the other
hand, we may conclude once again that the parametersq and
Sstr are free from this type of divergence, as well as us
Eqs.~3!, ~5!, and~6!,

2 ln q5 lnFVE dx @ p̃~x!#2G , ~30a!

Sstr52E dx p̃~x!ln p̃~x!1 lnE dx @ p̃~x!#2. ~30b!

This way we have shown how to apply the formalism dev
oped for discrete sums for the problem of continuous dis
butions.

IV. PHASE SPACE REPRESENTATION OF QUANTUM
STATES

One of the most well-known phase space distributio
that is widely applied in statistical physics is the Wign
function associated with the quantum state@18# c(x):

W~x,p!5E dx8 e2 ipx8/\c* S x2
x8

2 DcS x1
x8

2 D . ~31!

From now onp denotes momentum and for the sake of si
plicity we consider only one degree of freedom, resulting
a two-dimensional phase space of (x,p).

It is known thatW(x,p) is bilinear, real, and for a com
plete orthonormal set ofc i functions the correspondin
Wigner transforms also form a complete orthonormal
@18#. The marginal distributions ofW(x,p) have an impor-
tant physical meaning,

E dp W~x,p!5uc~x!u2, ~32a!
02620
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E dx W~x,p!5uf~p!u2, ~32b!

wheref(p) denotes the Fourier transform ofc(x),

f~p!5
1

A2p\
E dx c~x!e2 ipx/\. ~33!

The only major disadvantage of the Wigner distribution
that it may attain negative values albeit in a region of ph
space smaller than\. It has been shown already by Wigne
@19# that there exists no phase space distribution that wo
have all the above properties and besides that to be n
negative.

Another very popular phase space distribution is the H
simi function@18#, which is obtained as the Gaussian sme
ing of the Wigner functionW(x,p),

r~x,p!5E dx8dp8W~x8,p8!expS 2
~x2x8!2

2sx
2

2
~p2p8!2

2sp
2 D , ~34!

wheresxsp5\/2 ensures minimum uncertainty.
It is known @18# that the Husimi function is bilinear, rea

valued, and non-negative, but unfortunately produces
overcomplete set of functions and moreover the marg
distributions do not have such a transparent meaning a
Eq. ~32!. In fact, the latter point can be refined. Let us ca
culate these marginal distributions and will find that inde
they are the Gaussian smeared distributions inx and p rep-
resentations, respectively@20#. In order to show this we write
Eq. ~34! in the form of a convolution ofW(x,p) with two
Gaussian functions,gsx

(x) and gsp
(p), of the form of Eq.

~15!

r~x,p!5E dx8dp8 gsx
~x2x8!gsp

~p2p8!W~x8,p8!.

~35!

Then similar to Eq.~32!,

E dpr~x,p!5z~x!, ~36a!

E dx r~x,p!5h~p!, ~36b!

where the marginal distributions are nothing but smeared
tribution obtained from quantum statesc(x) and f(p), re-
spectively,

z~x!5E dx8 gsx
~x2x8!uc~x8!u2, ~37a!

h~p!5E dp8 gsp
~p2p8!uf~p8!u2, ~37b!
2-4
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It is clear from the definition of the Husimi distribution tha
it is normalized as

E dxdpr~x,p!51, ~38!

therefore the smearedx representation ofc(x), z(x) and the
smearedp representation off(p), h(p) are normalized as

E dx z~x!5E dp h~p!51. ~39!

To complete this section we mention that the Husimi rep
sentation of a quantum statec(x) is nothing but its projec-
tion onto ~i.e., the overlap with! a coherent state with mini
mal uncertainty@4,5,8,21# bx,p(x8):

rc~x,p!5u^b~x,p!uc&u25U E dx8bx,p* ~x8!c~x8!U2

,

~40!

the coherent state is a Gaussian centered around the p
space point (x,p),

bx,p~x8!5S 1

2ps2D 1/4

expS 2
~x82x!2

4s2
1 ipx8/\ D .

~41!

V. RÉNYI ENTROPIES OF PHASE SPACE
DISTRIBUTIONS

In this section we describe how to characterize locali
tion or ergodicity using the ingredients explained in the p
ceding sections:~1! the Husimi representation of the qua
tum statesc and ~2! the Rényi entropies, especially thei
differences.

First of all let us introduce the Re´nyi entropies of the
Husimi function. In analogy with definition~12!

Rm5
1

12m
lnE dxdp

h
@hr~x,p!#m, ~42!

which now contains the arbitrary parameterh that naturally
behaves as the minimum possible volume provided by
Heisenberg uncertainty principle, i.e., it should be chosen
Planck’s constant. We have to note that eachRm contains lnh
additively, which diverges in the classical limith→0 but
drops out when differences of the entropies are taken. D
nition ~42! for a compact phase space of volumeV, for
instance, provides for the special case,R05 ln(V/h), i.e., it
measures the size of the full phase space in units ofh. Fur-
thermore,

R15S52E dxdpr~x,p!ln@hr~x,p!#, ~43!

R252 lnS hE dxdp@r~x,p!#2D . ~44!
02620
-

ase

-
-

e
s

fi-

These are in accordance with Boltzmann’s original defi
tion, since for a distribution that is constant over a volum
G<V and 0 otherwise, we obtain

S5 ln~G/h!, q5G/V, ~45!

i.e.,Smeasures the size of phase spaceG wherer is nonzero
in units ofh andq measures the portion of phase space wh
r is different from 0.

In order to relate the entropy of the total Husimi functio
to that of the marginal distributions let us invoke an impo
tant relation that has been proven for the Shannon entropS.
Consider a distributionr(x,p), which in our case is the Hu
simi distribution, see Eq.~34! or Eq. ~40!. Its information
content, or Shannon entropy@22# ~43! can be related to the
Shannon entropy of the marginal distributionsS@z# and
S@h# defined in Eq.~14! for z(x) and h(p) @Eq. ~37!#, re-
spectively. Let us note that the Husimi distribution can
written in the form

r~x,p!5z~x!h~p!1d~x,p!, ~46!

where

E dx d~x,p!5E dp d~x,p!50. ~47!

The Shannon entropy then obeys@3# the following relation:

S@r#1 ln h5S@z#1S@h#1dS, ~48!

wheredS,0. Equality is achieved ifd(x,k)50 everywhere.
This statement can be generalized to the Re´nyi entropies,
where

Rm@r#1 ln h5Rm@z#1Rm@h#1dRm ~49!

with dRm,0. Unfortunately there is no general law for th
size of thedRm , however, for the differences of the Re´nyi
entropies it may become only a small correction ifd(x,p)
!z(x)h(p). Furthermore, for the parameters2 lnq5R2
2R0 and Sstr5R12R2 we should have corrections ofdR2
2dR0 anddR12dR2. These differences, especially after a
eraging over several wave functions, can be neglected; th
fore, we arrive at the following approximate relation for th
average values of2 ln q andSstr :

2 ln q@r#'2 ln q@z#2 ln q@h#, ~50a!

Sstr@r#'Sstr@z#1Sstr@h#. ~50b!

Such relations reduce the calculations considerably as t
would be no need to calculate the Husimi functions the
selves and then calculate the Re´nyi entropies thereof. In a
numerical application we will show below that indeed the
relations do hold with small error.

We have to stress that these approximate relations
hold apart from the trivial case of the wave packet~presented
next! for the average properties of a suitably chosen se
states and most importantly in the case of the lack of und
lying classical dynamics. These limitations reduce its ap
2-5
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cability for the investigation of the states of disordered s
tems, which is nevertheless the main aim of our study.

As a simple example we elaborate the case of a distr
tion that is a Gaussian in both coordinatesx andp,

r~x,p!5
1

p\

exp@2x2/2s222~sp/\!2#

F~a/A8!F~A2pb!
, ~51!

and normalized over the phase space bounded as2L/2<x
<L/2 and 2p\/a<p<p\/a, where two cutoff length
scales,L anda, have been introduced. Therefore, the volum
of the phase space will beV5hL/a5gh. The ratios of the
cutoff scales to the spreading widths yield the two dimen-
sionless parameters in Eq.~51!, a5L/s and b5s/a. In
terms of these quantities we obtain the relationg5ab,
which counts the number of cells of sizeh in phase space.

Since in Eq.~51! sx5s and sp5\/2s, the uncertainty
relation sxsp5\/2 is fulfilled. This r(x,p) is in fact the
Husimi distribution of a real space Gaussian wave pac
and it is a product of the limit distributions as given in~46!
with d(x,p)50. Consequently theq and Sstr values of the
corresponding limit distributionsz(x) and h(p) obey the
additivity property ~50! exactly. Distributionz(x), for in-
stance, is obtained by using Eq.~36a! and yields Eq.~18!. Its
q@z# andSstr@z# parameters are given in Eqs.~20! and~21!.
A straightforward calculation yieldsq@h# and Sstr@h#, as
well.

Putting the Husimi distribution~51! into Eq. ~42! we find

Rm~a,b!5
ln m

m21
2 ln 2

1
1

m21
lnH F~aAm/8!F~bpA2m!

@F~a/A8!F~bpA2!#mJ .

~52!

This expression correctly yieldsR05 ln(ab)5ln(g), the log
of the number of cells of sizeh. Through relations~10! pa-
rametersq andSstr can be obtained. Equivalently using th
definition ~51! and Eq.~30! generalized for the case of th
Husimi distribution like in Eqs.~42! and ~43! we obtain

q~a,b!5
@F~a/A8!F~bA2p!#2

abF~a/2!F~2pb!
, ~53a!

Sstr~a,b!512 ln~2!2
A2pbe22(pb)2

F~A2pb!
2

ae2a2/8

A8pF~a/A8!

1 lnF F~2pb!F~a/2!

F~A2pb!F~a/A8!
G . ~53b!

There are a number of remarkable features of Eqs.~52! and
~53b!. None of them contain Planck’s constanth explicitly;
however, the scaling variablesa and b cannot be chosen
independently, as their product is just the number of cells
size h. Therefore, let us keepa as a running variable an
parametrize the functions withg. Furthermore, let us note
02620
-
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e
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that by keepingg fixed q(a) andSstr(a) functions are sym-
metrical abouta05A4pg on a logarithmic scale. Therefore
rewriting Eqs.~53! in the variablet5a/a0 we obtain

q(g)~ t !5
1

g

@F~c1 /t !F~c1t !#2

F~c2 /t !F~c2t !
.

Sstr
(g)~ t !512 ln~2!2Ag

2H te2(c1t)2

F~c1t !
1

e2(c1 /t)2

tF~c1 /t !J
1 lnFF~c2 /t !F~c2t !

F~c1 /t !F~c1t !G , ~54!

wherec15Apg/2 andc25A2c1. These functions are plot
ted in Fig. 1. At t51, function q(t) is maximum and its
value decreases withg as q(1)}g21. Only the physically
relevantg>1 are plotted. The participation ratio has som
very nice, simple behavior,q(g)(t)→(tAg)21 for t→` and
q(g)(t)→t/Ag for t→0. On the other hand, in the sam
limits Sstr→Sstr

G independently fromg showing that these
limits correspond to one-dimensional Gaussians inx ~p! di-
rections for t→` (t→0). It can also be viewed as if a
squeezing parameter made the distribution more coordin
like ~momentumlike! @23#. For intermediate values oft, i.e.,
if 1/Ag,t,Ag with g@1 the participation ratio is,q
'g21 and Sstr'2Sstr

G , indicating that this distribution is a
Gaussian in both dimensionsx and p. This is the regime
where the Husimi function is a Gaussian in both directio
and therefore shows a two-dimensional character. B

FIG. 1. The parametersSstr @~a! semilog plot# andq @~b! log-log
plot# for a Gaussian wave packet as a function of the paramett
5a/a0, wherea5L/s, L is the system size ands is the spreading
of the Gaussian.a05A4pg. The different curves are parametrize
according tog, the number of cells withinh.
2-6
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curvesq andSstr are symmetrical aboutt51 on a logarith-
mic scale oft, which is a direct consequence of the geome
of the phase space.

VI. APPLICATION TO DISORDERED SYSTEMS

Now we calculate the Husimi functions of the eigensta
of a disordered one-dimensional system. To be more pre
we use a tight binding model@24#

H5(
n

«nun&^nu1V(
n

~ un&^n11u1un11&^nu!, ~55!

whereV51 is set as the unit of energy and«n are random
numbers distributed uniformly over the interv
@2W/2, . . . ,W/2#, where W characterizes the strength o
disorder. Such a model has been investigated in phase s
in Refs. @7# and @8#. The Husimi functions are calculate
using Eqs.~40! and ~41! from the eigenstates of Eq.~55!.
The participation ratioq and the structural entropySstr are
calculated according to Eq.~30!. We also calculated the Fou
rier transforms of the eigenstates and obtained smeared
tributions according to Eq.~37! both in real and Fourier
space. Periodic boundary conditions were considered u
L5512. The phase space extends over2L/2<x<L/2 and
2p,p<p, its area isV52pL (\51 and the lower cutoff
scale, the lattice spacing is set to unity,a51). Averaging is
done over the middle half of the band. In fact, as pointed
by Ref. @8#, as well, there is no need to average over ma
realizations of the disordered potential.

When the full Husimi distributions of all states are calc
lated, the computational time grows withL4. However, using
the approximate relation of Eq.~50!, it reduces to roughly
L3. This is obviously a considerable gain and is compara
to that achieved in Refs.@6# and @8#.

The results are reported in Fig. 2. Here we have plot
the behavior of parameters~30! versus disorder strengthW,
and compared to the approximate values obtained using
~50!. The region where the most important variations oq
and Sstr take place isW1,W,W2, where the localization
length matches the systems size@24,25#, l'L, i.e., W1

'A105/L50.453 or its inverse approaches the size of ph
space inp direction, 2pl'1, i.e.,W2'A2p105525.68.

Let us analyze the expectations for the limiting cases
W→0 andW→`. It is easy to see that the eigenstates
vanishing disorder are plane waves whose Fourier transf
is a Dirac delta~in fact two, due to the symmetry of th
2p and p states!. In a ‘‘smeared’’ representation we obta
two Gaussians inp representation. Using Eqs.~41! and~30a!
we obtain thatq52/AL for the states both inp and the Hu-
simi representation. Due to the Gaussian smearing in
limit the structural entropy attains its value ofSstr

G as given in
Eq. ~17!. The other limit ofW→` is very similar. In that
case the eigenstate inx representation has a Dirac delta cha
acter that is smeared to a Gaussian. This results inq
51/AL and again a value ofSstr(W)→Sstr

G . All these limit-
ing cases are recovered in Fig. 2. The figure shows that
proximation~50! works very well. It is clear that thex, p, and
Husimi representations are, therefore, linked very simply
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VII. CONCLUDING REMARKS

In this paper we have presented some important res
concerning the applicability of the Re´nyi entropies for the
characterization of localization or ergodicity in phase spa
using the Husimi representation of the quantum states
fact, it has been shown that the differences of the Re´nyi
entropies are free from those divergences that would n
rally arise due to their application on continuous distrib
tions.

The marginal distributions of the Husimi function a
pointed out to have important properties and simple conn
tion to the states inx andp representations.

We have also shown numerically that for disordered s
tems the limiting distributions of the Husimi function pro
vide most of the information that is needed to describe
Husimi functions themselves. Figure 2 provides a good de
onstration of the duality between thex andp representations
transparently. A detailed study over the Anderson mode
one dimension and the Harper model@25# are left for forth-
coming publications.
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FIG. 2. Structural entropySstr @~a! semilog plot# and participa-
tion ratioq @~b! log-log plot# as a function of disorder,W in units of
V, for a one-dimensional Anderson model withL5512. The
squares stand for the states smeared inx representation, the tri-
angles for the states smeared inp representation, the circles ar
calculated according to Eqs.~50!. The dotted lines are simply
guides for the eye. The solid curve corresponds to the values ofSstr

andq for the states in the Husimi representation. The circles and
solid curve differ only a little.
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@1# K. Życzkowski, J. Phys. A23, 4427~1990!.
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@17# A. Rényi, Rev. Int. Statist. Inst.33, 1 ~1965!.
@18# H.-W. Lee, Phys. Rep.259, 147 ~1995!.
@19# E.P. Wigner, Phys. Rev.40, 749 ~1932!.
@20# L.E. Ballantine,Quantum Mechanics: A Modern Developme

~World Scientific, Singapore, 1999!, p. 414.
@21# K.E. Cahill and R.J. Glauber, Phys. Rev.177, 1882~1969!; K.

Husimi, Proc. Phys. Math. Soc. Jpn.22, 264 ~1940!; it is also
known as the Gabor transform: D. Gabor, J. Inst. Electr. En
Part 193, 429 ~1946!.

@22# A. Wehrl, Rev. Mod. Phys.50, 221 ~1978!.
@23# H.J. Korsch, C. Mu¨ller, and H. Wiescher, J. Phys. A30, L677

~1997!.
@24# B. Kramer and A. MacKinnon, Rep. Prog. Phys.56, 1469

~1993!, and references therein.
@25# I. Varga ~unpublished!.
2-8


