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Dipolar effective interaction in a fluid of charged spheres near a dielectric plate
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Static correlations in a classical fluid of charged spheres at equilibrium are studied in the vicinity of an
insulating wall characterized by its dielectric constant. It is well known that the deformations of screening
clouds induced by the presence of the wall result into an effedtjye(x,x’)/y® interaction in the pair
distribution function between two charges ande,, located at distancesandx’ from the wall and separated
by a large distancg along the wall. We investigate the structure fof, (x,x’). The method is based on
systematic resummations in the Mayer diagrammatics, which are valid both in the bulk and in an inhomoge-
neous situation. The screened potentiahrising in the formalism happens to coincide with the linearized
mean-field approximation for the immersion free energy of two external unit chapgissshown to decay as
arepulsive tb(x,x’)/y3 interaction, whatever the density profiles may bg(x,x") takes a factorized dipolar
structurefd,(x,x’):5¢(x)5¢(x’) for distancesx andx’ larger than the maximum of the closest approach
distanced,’s to the wall for every speciea. Moreover, we devise a reorganization of resummed diagram-
matics, which is adequate for the determination of the large-distance behavior of correlations, and we prove
that, when all species have the same approach distataehe wall, f . (x,x";b)=D ,(X)D,(x"). In this
case, the leading tail of the effective electrostatic interaction between two like charges at the same xlistance
from a single wall is repulsive. Results are independent of charge magnitudes, of excluded-volume sphere
sizes, and of the existence of a surface charge on the wall. It holds whether charges are concentrated at sphere
centers or uniformly spread over their surfaces. Comparison is made with an experiment about dilute colloids
where the linearized mean-field approximation proves to be relevant. At equilibrium attraction between like
charges in confined geometry might arise from purely electrostatic charge-charge interactions only through
correlation effects not taken into account in the latter approximation.
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I. INTRODUCTION erally, the effective interactiow .. between two charges of
A Issue at stake speciesy anda’ is defined from the Ursell functioh,, . by
The paper provides exact analytical results about the equi- 1+hger=exp—pBW,qr). 1)
librium pair correlation in a fluid of charged spheres in the
vicinity of an insulating wall. The first motivation for the When speciese has a packing fraction so high that the
work was to cast the lightening of statistical mechanics ofnearest-neighbor distaneg, is of the order of the range,,
charge fluids on experiments that reported attractions besf short-ranged repulsionsy,, and h,, have oscillations
tween like-charge colloids in confined geometries. These colwith perioda, over a scale equal to a fea,’s [1]. When
loids are mesoscopic spheres whose individual motion cagpeciesx is very dilute, the oscillatory excluded-volume ef-
be tracked with a conventional microscope and a videdect disappears, and, if other species have not far larger hard-
camera. Hence, the static pair distribution function 1lcore sizes, the functional forms wof,, andh,, at distances
+heorcolF,r") between two colloidal spheres located at po-larger thano,, are controlled by long-ranged pairwise inter-
sitionsr andr’, respectively, can be experimentally assessegctions. For the considered colloids, which acquire a surface
when colloids are constrained to move in a given plafibe  charge by solvatation, the long-range interaction is of elec-
static correlationh, oo(r,r’) is also known as the Ursell trostatic origin.
function; see e.g., Refl1].] The quantity of interest in ex- In an experiment carried in 1997 with dilute colloids in
periments was the effective pairwise interactionthe vicinity of a glass wal[2], Larsen and Grier showed that
Weolcol(T,r"), also called potential of mean force. Quite gen-w,, ., for two colloids at the same distangdgrom the wall
becomes attractive at large relative distange3his result
raised a debatésee Sec. VI A for more detajlsvhere all
*Present address: Institute for Physical Science and Technologtheoretical works predicted that there was no attraction at
University of Maryland, College Park, Maryland 20910, USA. equilibrium. Eventually Squires and Brenri&] argued that
Laboratoire associau Center National de la Recherche Scienti- the attraction determined in R¢2] could be accounted for

figue, UMR 5672. by an electrohydrodynamical effect linked to the electrostatic
*_aboratoire associau Center National de la Recherche Scienti- repulsion of colloids from the surface charge of the wall
figue, UMR 8627. (which has the same sign as that of collgiddowever, at-
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traction between like-charge colloids has also been observed +oo +oo

in several experiments where suspensions are confined be- j dxf AX' 2 €uPa(X)€0rpar(X)f 4or (X,X")
tween two plategsee references quoted in Rp4)). In the 0 0 aa’

latest ong 4], Han and Grier still find an attraction, though (ew! €son)

kinematic effects are negligible. Therefore, a question re- =T 2.2

mains open: at equilibrium might confinement combined 878

with many-body effects induce an effective attraction be-

tween like charges at large relative distances? ) . ;

The aim of the present paper is to revisit the structure O]erty (3) and_ relation(1) betweerh,,,+ andw,,, imply that in
the large-distance behavior of the equilibrium correlation be2 dilute fluid
tween dilute colloids in the vicinity of a single glass wall,
thanks to exact results derived in the framework of statistical ) faar (X,X")
mechanics of charged fluids. We consider a fluid of charged Waar (X.X",Y) _:x 3 : (5)
spheres at equilibrium in the vicinity of an insulating wall Y
characterized by its dielectric constasy;. Microscopic pair We
interactions are sums of purely charge-charge Coulomla1
forces and hard-core repulsions. C_oulomb interaction be'*(x,x’) where exponential tails are overcome by the
tween two charges, ande, of speciese and «’ located 12 tail
at positions r and r’, respectively, is written as '
(e €a l€so)u (r,r"), Where egy, is the solvent dielectric
constant and (r,r") is the solution of the Poisson equation
with adequate boundary conditions. For point charges, the The structure of the functiofi,, (x,x’) is investigated
Poisson equation in the Gauss units reads for any value of the Coulomb coupling in the dilute fluid

phase. The main results of our analysis and their conse-
quences in the case of dilute colloid suspensions are the fol-
A (r,r’)=—478(r—r"). (2 lowing.

First, the immersion free energy,, of two external
chargesq in a dilute electrolytic solution has ayf tail,
which is repulsivefor any x or x" when it is calculated in a
linearized mean-field scheme. When the electrolyte is dilute,
the large-distance behavior utqqz(qzl €son) ¥ Can be cal-
culated by a mean-field theory, because of the long range of
the Coulomb interaction. Moreover, if the Coulomb coupling
is weak at considered distances orgjfis infinitesimal, a
linearization inq can be performed. In a linearized mean-
fi&Id approximatior{10] ¢*-MF is independent off and coin-

ides with the screened potentialthat arises in the formal-

m devised in Sec. Il. In Sec. Ill we show that, at large
Cc‘iistancesy along the wall,¢(x,x’,y) has a 1y* tail with a
positive coefficient at all distancesandx’ from the wall

4

and the corresponding interaction is repulsive. Indeed, prop-

notice that the limity— +c means thay is larger than
e radii of particles, the screening length and the distance

B. Main results

For charges spread over spheres, the Dirac distribut{on
—r') is to be replaced by a surface distribution. In the vi-
cinity of a wall, symmetries enforce thah,, (r,r")
=h,. (X,x",y), wherex andx’ are the distances ofandr’
from the wall, whiley is the norm of the projection of
—r'’ onto the wall plane.

It is well known that, far away from the wall, correlations
decay exponentially fast when the distance between charg
goes to infinity. On the contrary, in the vicinity of a wall,
deformations of screening clouds enforced by the presence
the wall is expected to generate algebraic effective intera
tions between charggsee Ref[5] for a review. At suffi-
ciently large distanceg along the wall, the 3 interactions

dominate all other tails, which decay either algebraically or f,(xx")
exponentially, d(x,x"y) ~ d’—; with f,(x,x")>0. (6)
y—te Y
) faar (X, X") In the case of a suspension of colloids with bare solvated
Noo (X X"Y) ~ =B———, (3)  chargez.,e (wheree denotes the absolute value of the elec-

yoe y tron chargg in the limit where colloids are infinitely diluted

W0l cof t€Nds to the immersion free energy of an isolated pair

- 2 i i
where 8= 1/kgT is the inverse temperaturekd is the Bolt- ~ Ycol co= ([Zcol€] " €son) ion, Where yq, is calculated in a
fluid that does not contain any colloid. In a linearized mean-

zmann constant and is the absolute temperaturé©n one o LME LME
hand, property3) can be inferred from explicit calculations field approximationgio,” = $ion and the free energyico) cor
in the weak-coupling limif6—8]. On the other hand, the has a repulsive tail by virtue of E¢6). Besides, in a colloi-

existence of the ¥# decay is confirmed by a mesoscopic dal suspension at finite dilution, the linearized mean-field

LMF oo -
result. By an argument based on linear response theory aftPProximationwey| g, for the effective interaction between
macroscopic electrostatics, Jancoyig] settled that the cor- colloids also has a repulsivey?/tail. Indeed.wgy ¢ is pro-

relation between the densities of global surface charges sepgortional to ¢ [6,11: as for any speciesy, Wiy, =

rated by a distancgdecays as Y7 with a universal negative — htc'}f' FCO/ B=(Zcoe]* €son) ¢, Where ¢ is calculated in a
coefficient. The property can be written as fluid that contains colloids.
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Second, the coefficienf ,(x,x") of the 143 tail of  written in a rather self-contained way and the reader not
¢(x,x",y) is shown to take a dipolar form when bottand  interested in formalism developments may skip Secs. Il to V.
x' are Iarggr tharb,.x, the biggest one among 'ghe closest C. Methods
approach distancds,’s to the wall for every species, :

_ Before going into details, we summarize the general
f(x,x") =D 4(x)Dy(X") (") method displayed in Secs. II-IV. The Ursell functibn,,.
for the so-called primitive moddiSec. Il A), in the bulk as
well as near the wall, is studied from the Mayer diagrammat-
The effective dipoleD 4(x) has a constant sign whervaries  ics (Sec. Il B\. (In the Mayer diagrams, the difference be-
from by, t0 + . tween both situations is just that, in the second case, species

If all species have the same closest approach distaiwe densities depend on the distancérom the wall) Integrals
the wall—as it is the case in an electrolyte where the differ-corresponding to the Mayer diagrams diverge, because of the
ences in the various ior! d_iameters are negligible.with respegpng range of the Coulomb potential far away from the wall
to all other characteristic lengths—E(q7) implies that 55 well as in its vicinity. Then systematic resummations of
¢(x,x',y) has the dipolar structur® 4(x)D4(x)/y® at all  |ong-ranged Coulomb divergences similar to that performed
d|stance§< andx’ in the fluid. Then, as shown in Sec. IV, py Meeron for bulk quantitie§13] provide diagrammatics
f o’ (X,X") defined in Eq(3) is, in fact, equal to the product where there appears a screened potertiéSec. 11 O. (Re-

when X>b . and X' >b .

f o0 (X, X ;D)=D (X)D ,/(X) (8) summations rely on the same topological principles in both
_ _ cases. In the bulk, ¢ is a solution of the usual Debye equa-
if b,=b for all species. tion. Near the wall¢ obeys an “inhomogeneous” Debye

The functionD(x) in Eq. (8) is to be interpreted as the equation(25), where the inyerse screening length depends on
dipole associated with a charge and its screening cloud. 1§ (S€c. 1l D. The large-distance behavior &f,,, can be
shape is a function ok more complicated than the mere conveniently studied by the new reorganization of diagrams
exponential decag74), with A,=1, calculated in the weak- that we introduce in Sec. Il E. In Sec. lll A we give the
coupling and high-dilution limit[The first correction to Eq. formal expression of the screened potential in the vicinity of
(74) is calculated in a forthcoming papgt2] for the primi-  the wall. (It has been determined in Rédfl4] in a simpler
tive model defined hereafter when the wall carries no surfacsituation, namely, for an analogous screened potential that
charge] The sign ofD ,(x) may vary withx. arises in a resummed fugacity Mayer expansion for the den-
Results(6)—(8) are valid for any strength of the Coulomb sity when all closest approach distantes are equal to the
coupling in a dilute fluid phase and for species with varioussame valug. An analysis of the Fourier transform ap
excluded-volume size¢The closest approach distance of ashows thaip decays as£¢(x,x’)/y3 at large distancegwith
particle to the wall is not necessarily determined only by itsy constant sigiSec. 11l B). Two sum rules foff dy$(x,x’,y)
size) As dlscussed in Sec. V, these results also hold when thg, f4(x,X'), respectively, are settled in Sec. Ill C. These
wall carries a surface charge, or when the charge of somg,, ryjes ensure that in the linearized mean-field approxi-
species is not concentrated at a point, but spread on a sphere, tionh“MF obevs the local electroneutrality sum n{2)
When all species have the same closest approach distance aa’ y o y ;
to the wall, an important consequence of factorizat@nof ~ and sum rulg4). The sum rule satisfied bf,(x,x") allows
f_ ., into a product of dipoles is that the effective interaction©ne to derive its sigii6). In Sec. IV we show, thanks to the
between like chargesa(=a') is repulsive wherx=x'. On diagrammatic reorganization introduced in Sec. Il E, that di-
the contrary, when the species have different closest agolar structurg7) of the 14° tail of ¢ enforces that, when
proach distanceb,’s to the wall, as it is the case in a col- all species have the same closest approach distance to the
loidal suspensiont ,,(x,x’) is not factorized contrarily to Wall, the coefficient of the 2 tail in the correlation func-
Eq. (8) andf,,(x,x’) for like charges may have any sign  tion h,, takes form(8) for any value of the coupling pa-
priori, even wherk=x". rameter(temperature and bulk densitjeis the fluid phase.
The behavior of electrostatic correlations in the experi-Technical details are given in the Appendix.
ment of Ref[2] about dilute colloids is discussed in Sec. VI.
The relevance of the present model is checked from the ex- [l. GENERAL FORMALISM
perimental data in the bulk. At investigated relative dis-
tances, electrostatic forces dominate short-range interactions
and the functional form of the effective interaction is con-  Our system is a three-dimensional charge fluid confined to
troled by the monopole-monopole part of electrostatic forcesthe regionx>0 by a plane impenetrable dielectric wall, the
The crossover from exponential to algebraic tails is numeri€lectrostatic response of which is taken into account by a
cally estimated. Comparison with experimental curves showdielectric constané,,. Up to Sec. V Aincluded, the solution
that the linearized mean-field scheme is relevant. We poins described by the usuakimitive model[15] with ng spe-
out differences with the case where the colloidal suspensiofies of charges. In this model every charged particle of spe-
is confined between two plates. cies a is represented as a hard sphere—with diameter
The latter discussion is postponed to Sec. VI, since it isr,—where the net charge,=Z e is concentrated at the
performed in the lightning of the exact results abbyt,  center of the spheréWe recall thate denotes the absolute
that are derived through Secs. Il to V. However, Sec. VI isvalue of the electron charge aixg, may be negativeé.The

A. Primitive model
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extension of our results to the case where the charge of onks mentioned above, when the solvent is water and the wall
species is uniformly spread on the surface of the hard-coriss made of glassA defined in Eq.(10) is negative, and
sphere is discussed in Sec. V B. In the primitive model theV(x) is a repulsive potential. The impenetrability of the
solvent(watep is handled with as a continuous medium with wall corresponds to a short-ranged potential
a uniform dielectric constang,,. Moreover, particles are
assumed to be made of a material with the same dielectric _ +oo, if x<b,
constant as the solvent. Therefoees €., Whenx>0 and BVsHX )= 0, if x>b,, (14
e= ey Whenx<0.

Since a half space is occupied by a dielectric materialwhereb,, is the closest approach distance of the center of a
v(r,r’) in the Coulomb pair interactiore(e,: / esq)v(r,r") particle @ to the wall. The confinement of all particles to the
is solution of Poisson equatig®) with the adequate bound- positivex region and the electrostatic self-energy may be

ary conditions and it reads for>0 andx’>0 [16] gathered into a one-body potent\d), . :
1 1 . e’ 2
v(r,r')= —Ag 9) VwaII:E_ Vsr(Xi )+ E Z; Veer(X). (15
[r—r’| [r—r""| i €sov T
with B. Generalized Mayer diagrams
€W €soly The system at equilibrium at inverse temperat@réen a
Ae= et oon’ (10 finite volume A can be studied in the grand canonical en-

semble where each specieshas a fixed fugacity,. The
In Eq.(9) r'* is theimageof the positiorr’ by the reflection ~ grand canonical functio& is defined by
with respect to the plane interface between the solution and -
the dielectric materialA priori Ag ranges from—1 to 1. In E(BizZata-1,..., ng’
the case of a glass wall in contact with wateg,,~ 80,

N, > N
while e, is equal to a few units; then the relative dielectric _ I Za f T dr.
constantey, / €5, Of the wall with respect to the solvent is of Ntomr o L7 N JaL =
order 1/80 and\ o~ —0.98. In the bulk, far away from the :
wall, the expression o (r,r') is reduced to 4f—r’|. The X @ PlUpairt Vwall, (16)

hard-core interaction s, between two species and «a’ is _ . _ .
infinitely repulsive at distances shorter than the swm, (!N EQ.(16) N, is the total number of particles with species
+0,)/2 of the sphere radii of both species: andZn , denotes the summation over all possible

----- s

combinations ofhg N,’s. Near the wall,A denotes a finite-

too, i [r=r'|<(out o)/ size region bounded by the wall on the left. In the bulk,

Bus|r—r'[;a,a’)=

0, if [r=r'|>(o,+04)/2. stands for a finite-size region far away from the wal(l,r")
(11 is reduced to its bulk value an¥,,, does not appear
in Eq. (16).

In fact, as discussed at the end of Sec. IV, the specific form |, " der to write a single formula foE, whetherA lies

of usg(|r—r'|;e,a’) has no consequence upon reséls-  near the wall or in the bulk, we introduce a generalized
(8). The expressiofl1) could be replaced by a more general 4,qacity that incorporates the one-body potential created by

soft short-ranged repulsion, the range of which would be of;,o wall, as we have already done in Riaf4]. The general-

the order of ¢, + o,/)/2. In the primitive model defined just . Lo .
above, the total pair enerdy, ., reads ized fugacityz,(x) depends only on the distanseto the
P wall, and reads

eZ

Upair:izj vsr(|ri—rjliai, )+ > ZaZao(TiuTy),

€solv i<j . (17
(12

_ [{ Be? 5
2,(X) =2q8XQ — BVsHX @) = —Z Ve X)
solv

wherei is the index of a particle Moreover, the summation over tiNe,’s can be replaced by a

In the vicinity of the wall, one-body potentials appear in SUmmation oveN=X,N,, with the result
the total energy of the system. For every charge a self-energy =(B,{z,) A)
Z2(e% e5on) Veer(X) arises from the work necessary to bring —ortefeml 0

a chargeZ ,e from x= + (in the solvenfto a pointr in the g N ns
vicinity of the wall. According to Eq(9), the wall electro- = 2 _If H drn< 2 ?a (Xn)) e~ BYpair,
static response is equivalent to the presence of an image N=o N Ja[n=1 =1 "
charge—AqZ, (el esq) at pointr*, and (18)
We use the convention that whés=0 the integral is re-
Vea() =~ A (13 9

elax duced to 1. Then the fugacity expansion of the density pro-
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file p,(x) can be represented by the generalized Mayer diathe Mayer bond(19) into two auxiliary bonds: the “Cou-
grams where each pair of points labeledrbgndmis linked  lomb” bond = —,Bezzoznzamv(rn ,I'm) and its complemen-

by at most one bond tary functionf — %, Then subdiagrams containing chains of
the Coulomb bondg are resummed inside equivalence
f(n,m)=exg — r—r|ian, classes. The potentigh, which arises as the sum of chains
(n.m) 4 E<USR(| 0 Ml @m) with all possible lengths made witti¢ bonds, can be viewed
o2 as the solution of the integral equation
+€solvzanzamv(rn’rm) -t (19) ¢>(r,r’)=v(r,r’)
In the integral assqcia_ted with gve_ry diagram, each point has B Be? dr § Zipa(x”)v(r,r”)¢(r”,r’),
anx-dependent weight,(x), which is summed over all spe- €sovJ A a=1

cies. Because of the long range of the Coulomb potential, 21)
every integral corresponding to a Mayer diagram that is not
sufficiently connected diverges when the voluthdecomes  4(r r’) is also the solution of another integral equation,

infinite—inside the bulk or on the right of the wall— which is obtained from E¢(21) by exchanging the roles of
but systematic resummations remove these divergencesmdr’. Equation(21) coincides with the equation obeyed by
(see Ref[14]). a linearized mean-field approximation for the immersion free
The density expansion df,,, can also be expressed in energy of two external charggs0]. It also coincides with
terms of the Mayer diagrams with bon{) (see, e.g., Ref.  the equation obeyed by the linearized mean-field Ursell func-
[1] for the homogeneous cas@he general formula, where tjgn — B(e €son) ZoZ o ¢ [6,11].
uniform densit_ies are replaced by density profiles in the Topological considerations used by Meerand reformu-
present case, IS lated in Refs[17] for bulk correlations in quantum Coulomb
fluids) lead to the following resummed diagrammatic repre-

n -
S sentation ofh

1 N
haa'(xi)(”y):EF: §fA|:rH1 drn( 21 pan(xn))

an=

aa’ s

1 N Ng
Naa (X' y) =2, §Hnﬂl drn( 2 Pan(xn))

<1 f (20

r

x| ] F (22)

In Eqg. (20) the sum runs over all unlabeled topologically
different connected diagranis with two root points ¢,«)
and (',a") (which are not integrated oveandN internal  DiagramslI are defined as diagranhsin the initial diagram-
points (which are integrated ovewith N=0, ... . Adia- matic representatiof20) with only two differences. First, the
gramI is built according to the following rules. Each pair of bondf is replaced by two resummed bonéalled F*® and
points inI" is linked by at most ond bond, there is no Fg with

articulation point and every internal point has a weight equal 5

to EZizlpan(Xn)' (An articulation point is defined by the FCC(n’m):_B_eZa Zo (ol (23)
fact that, if it is taken out of the diagram, then the diagram is €sov "

split into two pieces, one of which at least is no longer Iinkedand

to any root poind.[I1f ] is the product of thé bonds in the

I' diagram andsy is its symmetry factor, i.e., the number of

permutations of the internal pointg that do not change this FR(n,m)ZeXF{ —,3( vsr|Mn— Tl @n, am)

product. We have used the convention thaly is equal to 0,

1T

no fdry[ =7 _;pe, ()] appears and ($)[11f]; is re- L ¢<rn,rm>”—1

duced tof(r,r'). Similar to what happens for the Mayer €soy "M

diagrammatic representations of fugacity expansions for den- B

sity profiles, integrals in Eq(20) diverge in the infinite vol- T ZyZy (M, Tm). (24)
ume limit, because of the long range of the Coulomb inter- €sov "M

action. Then systematic partial resummations must b

performed, as shown in the following subsection %econd, in order to avoid double counting in the resumma-

tion process, diagramd must be built with an “excluded-
composition” rule: there is no point linked to the rest of the
diagram by only twd=°¢ bonds. As can be checked from the
The method that we use is a generalization of the proceproperties derived in Sec. lll, the screened potengials
dure introduced by Meerohl3] to calculateh,,s in the integrable at large distances ahiddiagrams correspond to
bulk; the only difference is that point weights in the Mayer convergent integrals in the limit where the volurheextends
diagrams are now dependent. The starting trick is to split to infinity inside the bulk or on the right of the wall.

C. Systematic resummations of Coulomb divergences
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FIG. 1. Representation cbﬁfa,(r,r’) as the graph series defined in Eg1). A wavy line represents a borfef® and a gray disk stands
for a bondl. A couple of variablesr( ,7y;) are associated with every circle. For a white ci@le(r,a) [ora’=(r',a’)], r anda are fixed,
whereas, for a black circle=(r;,v;), r; andvy; are integrated with the measufelriEaipai(ri).

D. Screened potential E. Reorganization of resummed diagrammatics

Since Coulomb potentiab(r,r’) for point charges is a
solution of Poisson equatioi2), integral equation(21)
which defines the screened potentiatan be turned into the
partial derivative equation

In the absence of any compensation mechanism, the
Ursell functionh,, is expected to decay at large distances
as the slowest bond in its resummed diagrammatic represen-
tation (22), namely, as=““. [ F falls off as the squared tail of
A, d(rr )=k 2(X)(r,r')=—a4ms(r—r"), (25  Fby virtue of(23) and(24).] In order to analyze the large-
distance behavior df .., we proceed to the following dia-

where?(x) is defined as grammatic reorganization.
. In a first step, we reorganize the resummed Mayer dia-
B e . . L
2 2 grammaticq22) for h,,, into a sum of graphs built with the
Kx)=4mp €solv % ZaPalX). (260 bondFee and with the bond defined as the sum of all sub-

diagrams that either contain e bond or remain con-
The presence of the hard-core repulsidd) from the wall  nected in a single piece when anyone among ftsbonds is
enforces thap,(x) vanishes forx<b,. Since¢ arises as  cut. (In the following, we use the word “graph” for an object
the infinite sum of the Coulomb chains defined in Sec. Il C,bu”t with FCC andl bondS’ and we keep the term “diagram"
¢ obeys the same boundary conditions as Coulomb potentig}, 5 resummed Mayer diagram madeFSf and Fg bonds)

v. ¢(r,r') tends to 0 wherjr—r’| goes to+, itis con-  gjnce the reorganization is purely topological, it is valid for
tinuous everywhere while its normal gradient times the di-cqrrelations in the bulk as well as in the vicinity of the wall.
electric constant is continuous at the interface with dielectric 114 reason for this first reorganization is that the topology

waltls._V\Ile 'rtehcflr:I that par(;!cllestgre sup[;)osted t(t)hbe mladet of i subdiagrams involved ihhas the following consequence.
matenal wi € same dielectric constant as the Solvent. ¢ pec decays algebraically in some directidfg decreases

In the bulk, far away from any boundary(x) becomes a 55 the square of the decay lawBf in the same direction,
constant equal to the inverse Debye screening lergth and so does. (A similar property has already been used in
Refs.[18] and[19] for the investigation of algebraic decays
> 72p8, (270 in quantum bulk correlationslf F falls off exponentially
€solv fast at large distances—r’|, thenl decays faster thalR“® at
least in weak-coupling and high-dilution regiméEhe latter
case will be investigated in detail in a forthcoming
paper[12].)
In a second step, four classes of graphs in this new rep-
resentation oh ./ (r,,r,/) are distinguished by considering
e xolr—r'l whether a single bon& is attached either to root point
HO(r=r')=—. (28)  (r4,a) ortoroot point ¢, ,a’). According to the excluded-
[r=r’| composition rule obeyed by resumméb diagrams,h,,,
can be rewritten as the sum

47 Be

Kp=

wherepg is the bulk density of species. Then Eq.(25) is

the usual Debye equation. Singein the bulk is a function
of [r—r’| that vanishes whetr —r’| goes to infinity, it is
equal to the well-known Debye potential

Near the plane dielectric wall locatedat 0, Eq.(25) is
an “inhomogeneous” D_ebye equation, where the inverse

squared screening lengif depends on the distanaefrom New=hg +ho, Thog+h, (30)

the wall. The functionk?(x) has finite steps at points

=b, with a=1, ... ng. ¢(r,r') is continuous everywhere ) ) )

and obeys the boundary condition where the functions on the right hand s_|de _of E80) are

equal to the graph series represented in Figs. 1-3 respec-

. ey do ) . d¢ , tively. [In the following a (a’) is a short notation for the
“r:fsow&(r’r )= '"LLK(” ), (29 couple of variablesr(a) [(r',«')] associated with a root
X— X—

point, ¢ representsr(.,y), andi stands for (;,«;).] The

wherex’ #0. d¢/ax(r,r') is continuous at everp, when  analytical definitions of the series are
r#r’.

FIG. 2. Graphic representation
@AMN.‘O owwo‘cwmo‘o @Nwm.wwvo.wvwm.o - > 2 3
a ¢ i I rooe % s I r 2 > ¢ @ of definition (32) for h¢_,(r,r’).
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(' ) + ( 0\/\/\/\/\/‘0 + ( ’\/\/\/\/\/0\/\/\/\/\/‘ )+
a a a c c a a € 1 r c a

hZZ,(r,r')EFcc(a,a’)an dr.dr; > Py, (11)py(r1)

Y171

XFa,1)1(1,1)Fq1",a")

[ 3 p 0,00

Y171

x [drdry S p 20,

Y2:72
XFa,)I(1,1)FY1",2)1(2,2)F®(2',a")

+ ., (31)

hz;,(r,l")Ef drcrz pyr(rcr)Fcc(a,C,)l(C,,a,)
,y/

S L P RRED S
Y

Y171

Xpyi(ri)Fcc(a,l)l(1,1’)F°°(1’,c’)|(c’,a’)

+.. (32
while h™ ¢ is defined in a symmetric way, and
h, . (rr)=l(aa’)
+f drcf drc,E’ p(r)py(re)l(a,c)
Yy
XFc,c’)I(c’,a")

+f drcf drc’E, PPy (Ter)
V.Y

Xf drldrjll. 2 pyl(rl)pyi(ri)l(alc)

Y171
XF(c,DI(1,1)F1’,c)I(c’,a’")+---.
(33
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FIG. 3. Graphic representation
of definition (33) for h__,(r,r").

2

K
e "Yp(x,x",k). (34

d)(X!X,vy):J (271_)2

After Fourier transformatiori25) becomes the linear differ-
ential equation

52 —
[p—kz—Kz(X)} d(X,x" K)=—4m78(x—x"). (35
X

In the following, we assume that the species are labeled in
such a way thabp,=h;<b,< - <by, =bsy. «*(x) and its
first derivative are continuous in each intenigpkx<<b;, ¢
(with the conventiorbnsﬂz +) and have only finite steps

at everyb; .

A. Formal expression of ¢

The explicit resolution of the inhomogeneous Debye
equation(35) requires one to distinguish several regions. For
our discussion we need to consider only four regions: region
| for x<0, regionll for 0<x<bg,, regionlll for by,
<X<Dbpax and regionlV for b,,<x. The results summa-
rized in the present subsection are a generalization of those
derived in more detail for a similar but simpler equation in
Ref. [14].

In the above regionkandll, x%(x) vanishes by virtue of
Eq. (26). Whenx' > b, Eq. (35) reads

2
l%—kz} (XX K)=0 if X<bp. (36)
X

The solution with boundary conditions recalled after E6)
[in particular, condition29)] is

d(x, X", K)=AX", |k (1= Ag)ek* if x<O(Xx'>bm)
(37

and

(X, X" K)=A(X",[k)[ekX— A e~ IkX]
if 0<X<bmin (X,>bmin)- (38)

[In Ref.[14] there is a sign misprint in E¢4.20), which has

We notice thal is the analog of the so-called single-particle to coincide with Eq.(38).]
irreducible function in the Feynman diagrammatics for the When bothx> b, andx’ >b,, (x—x") does not van-

two-point propagator of an equivalent field thedsge, e.g.,

Ref. [20]).

Ill. PROPERTIES OF THE SCREENED POTENTIAL

ish for everyx. The explicit solution for¢(x,x’,k) is ob-
tained by distinguishing the subregions separated by the
planesx=b; . Let us call(i) the subregion; <x<b;, 1 (with
bns+1s+oo). Whenx varies in subregionif, h, denotes

the continuous solution of the “homogeneous” equation as-

In order to take advantage of the invariance along thesociated with equatioi35—namely, the equation without
directions parallel to the wall, we introduce the Fourier transthe Dirac distribution term—and extended to the range

form with respect to thg variable, and we write

<X< 4+,

026133-7



J.-N. AQUA AND F. CORNU PHYSICAL REVIEW E68, 026133 (2003

g2 of k? [see Eq.(40—(42)]. Indeed, Z,(|k|) and every
[p—kz— KZ(X)] Ny (X,k%)=0 (39 Z(j; (|k|) are determined by the ratio of the boundary equa-
tions obeyed byb, dd/dx, anddd/dx' at the various planes
In Eq. (39) only speciesx=1, ... do contribute tox?(x) x=Db; andx’=b;, , while thex dependence ap in regions|

andll involves the functions exfK|x) and exp{|k|x) [see
Egs.(37) and(38)].

We stress that the existence of odd powerskofin the
smallk expansion ofp(x,x’,k) is not specific to the particu-

. , . ) lar form (14) of Vgr(X;a). It arises through the boundary
singular wherx=x" and which is calculated in terms bﬁ) conditions from the vanishing of the densities in region

andhy; by the so-called Wronskian methdl]. In the fol- o \yith 4 corresponding solution that takes the functional
lowing, h(,) (h¢,) is chosen to be a solution that vanishess (37).

(diverge$ whenx tends to+. (In the bulk, 'i(x) is a con- Moreover, the coefficienBlzlllv of |k| in the smallk ex-
stant equal to the inverse Debye length: h™ andh™ can ansion ofZ..(1kl) does not vanish whea. is finite

be chosen to be equal to ({)?p(dx%+ k?].) Since P (k) A ’
#(x,x',k) also obeys a second equation given by B3%) Z,V(|k|):Z,V(k=0)+|k|B[21|3/+O(k2), (43)
where the roles ok andx’ are exchangefkee the comment

after Eq.(2D)], ¢(x,x’,k) for xin subregion(i) and forx" in and we expect that the same is true for every nonvanishing
subregion () is equal to ,)(|k|) [In Eq. (43) O(k?) denotes a term of ordée.]

(||
¢(X1X,!k) = 6i,i ! ¢singﬂ)(xrxluk2)

defined in Eq(26). The general solution of E¢35) for x in
subregion(i) andx’ in subregion (') is the sum of a linear
combination of two independent solutiohé) andhg;, plus,
if (i)=(i"), a particular solutiombsjnqq of Eg. (35), which is

Property(43) can be checked from the expansions at the first
two orders in the Coulomb coupling parameter in the case
where allb,’s are equal to the same valile[12]. For the

+ E ) 2 Z(”,)(Ikl) sake of pedagogy, we give here the expressiot at lead-
o ing order in the weak-coupling reginjé4] whenx>b and
X hiy(x,k?)h ‘a/)<x',k2>. 49 X'=b
The coeff|C|entsZ‘”7) are determined by the continuity of (;5|(3)(X,X',k)= 377 ze—lx—x'\\/xé+k2
¢é(x,x’,k) at the planes x=by,... b, and x’' Vkptk
=by,...,b,, the continuity of d¢(x,x',k)/dx and ,
1 ng y d’( ) + (3)(|k|)e—(x+x )\/W (44)

dp(x,x",k)/gx" at the same planes, and the vanishing of

¢(x,x",K) when x or x" goes to infinity. When bothx with

>bax and x’ >bax, Namely, wherx andx’ are in region

IV, the vanishing ofé(x,x’,k) at large distancex and x’

enforces a simpler expression, zZO(k)h=

d’lv(xyx/,k):d’singv(XaX',kz)
+Zy (k) iy (x,k?)hpy(x' k?)

2m o205 +K?
VK5 +k?
—Age” Mk + K2+ |K|)2 s
X .
(VKB + K2+ K|)2— Age 20 k2
. These expressions have been derived in the aase0 and
with b=0 in Ref.[6] and in the casd .+ 0 andb=0 in Ref.[7].

[We notice thab can be set to 0 only when the electrostatic
response of the wall is repulsiell], namely, wheney,

if X>bpa and X' >byax (47

bsingv (X, X' k?)=— h(inf(x,x"),k?)

W,y (k2) <egoy (Ag<<0).] Explicit calculations in confined geom-
etries are done in Ref8]. All these leading-order results
xh\(supx,x"),k?), (42)  correspond to uniform density profiles in the regionb.

_ _ o As a consequence of Eq&7), (38), (40), and (43), the
where infix,x") [sup,x")] is the infimum(supremumof X smallk expansion of¢ also contains &k|-term,
andx’ andW,y(k?) is the Wronskian of solutionis;, (x,k?)

and h;(x,k?) defined as W,y (k?)=h;y(dhi/ox) (x,x" k)= d(x,x’ . k=0)+[Kk[BLI(x,x") + O(k?),
—hy(ahp/9x). (46)

whereBl}1(x,x") takes different forms wher andx’ are in
regions|,11,111,1V, respectwelme(xx) is continuous
The smallk expansions oZ(|k|) and of the various everywhere as ¢(x,x',k) is. The dlscontmuny of
otherZ(II ,)(|k|)'s defined in Eq(40) involve odd powers of  g¢(x,x’ k)/&x atx=x'is glven by the partbs,ng(x x',k?)
|k|, whereas other functions &fin ¢ proves to be functions in ¢(x,x’,k). HenceforthoB 1](x x")/dx is continuous at

B. Small-k expansion of¢
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x=x', and the continuity ob¢(x,x’,k)/dx at the various
planes x=b; when x#x’ implies the continuity of
Bl (x,x")/ax at everyx=b;. Moreover,B(x,x") van-
ishes wherx or X' goes to+, as¢(x,x’,k) does.

The fact that the smak-expansion of the Fourier trans-
form of ¢(x,x’,y) contains some terms that are not analytic
in the Cartesian components kfsignals the existence of
algebraic tails in the largg-behavior of ¢(x,x’,y). Since
the nonanalytic term with the lowest order in powerskdfis
proportional to|k| = Vk?+k2 (wherek, andk, are the Car-
tesian components &), the slowest algebraic tail decays as
1/y3. Its coefficient readgsee p. 363 of Ref22])

f4(X,x")
B(x,x',y) L (47)
-+ 1Yl
for x>bp,i, andx’ > b, with
' 1 [1] ’
Fa(x,x") == 5By (xX"), (48)

1/y® tails have also been exhibited in expressions#&P in
various confined geometri¢8].

According to Eq.(41), BEbll]\/(x,x’) has the factorized
structure

BY (x,x')=BE h{l,(x,k*=0)hy,(x' k?*=0)

if X>bnax and X’ >byay. (49

[We notice that, sinch™ (x,k?=0) is a solution of Eq(39),
which tends to zero whengoes to infinityh* (x,k?=0) has
the same sign for any.]

More generally, wherx andx’ are in regiondlIl or IV
BI(x,x’) has an 1expression given by E40) whereZ
is replaced byB[zt]i and k? is set equal to 0. Since

(i)
h*(x,k?=0) and h™(x,k?=0) are solutions of Eq(39),

f4(x,x"), defined forx> b, andx’ > b, and proportional
to Bi)(x,x') [see Eq(48)], obeys the following equation:

B

9% 5(%,X)

x> 0

= Kk2(X)f y(x,X").

Moreover, for any givenx’>bin, fjb(x,x’) vanishes at
large positivex, as it is the case folB[j (x,x"). As a conse-
quence, for any givex’, f,(x,x") has the same sign for
everyx>b,. The result also holds when the rolesxaind
x" are exchanged. Therefor,(x,x") has the same sign for
anyx or x’ larger thanb,,, as written in Eq(6).

C. Repulsive nature of the Iy® tail of ¢

Now, in order to determine the sign 6f(x,x’), we show
that ¢(x,x’,k=0) obeys a sum rule, as well ds,(x,x").
These sum rules hold for any solution of E@5) with
boundary conditions recalled after E®6), whatever the

function;z(x) with finite steps may be.

PHYSICAL REVIEW E 68, 026133 (2003

First, the sum rule forp(x,x’,k=0) reads
f dxx(X)p(x,x" k=0)=47 if X'>by,. (51)
0

(We notice that the lower bound 0O of the integral in Esfl)

can be replaced by, because:?(x) vanishes in the range
0<x<bpi,.) The derivation of Eq.(51) is the following.
o(x,x",k=0) obeys Eq. (35 with k?=0, and
dp(x,x",k)/dx vanishes whenx goes to infinity for anyk.
Moreover, forx’ > b, dd(x,x’ , k=0)/dx atx=0" is given
in terms of the same derivative a0~ by boundary con-
dition (29). d&(x,x",k=0)/dx vanishes fox<0, by virtue
of the explicit expressiofB37), which is valid for anyx?(x),
and so doeg¢p(x,x’,k=0)/dx atx=0".

We notice that in a linearized mean-field approximation
h,.'(X,X",y) can be replaced b= — Be e, d(x,x",y).
Sum rule(51) implies that this approximated expression for
h,.(X,x’,y) does obey the local-electroneutrality sum rule
satisfied by the exadt, .. (x,X",y),

ea:_J' dr,z ea’pa’(rl)haa’(r!r,)' (52)

(See Ref[5] for a review of the sum rules.

The sum rule forf 4(x,x") arises from similar arguments.
By virtue of Eq.(50) and since?f ,(x,x")/dx vanishes when
X goes to infinity[sinceBL}](x,x’) vanishes as well ag at
largex],

af 4(x,x")

I (53

f: dxi2(x)f 4(x,x") = —

min X:err:in

The rhs of Eq(53) is determined by the fact tha(x,x") is
proportional toBEj](x,x’) in regionslIl andlV by virtue of
Eq. (48). BL)(x,x") is defined everywhere through E@6)
and its partial derivative with respect tois continuous at
X=bnmin. The explicit solution(38) for ¢(x,x’,k) whenx is
in regionll andx’>b,,, exhibits the following property,

aBL}](x,x’) €
ax

(x,x" k=0) if 0<X<Dyin(X'>Dbpyin)-
(54)

€solv

[When x and x’ are in the range specified in E¢54),
¢(x,x',k=0) is independent ok and relation(54) has its
root in the boundary conditions fopp at x=0.] Since
¢(x,x',k) is continuous ak=b,,, for any value ofk, the
rhs of Eq. (53) is equal to 1/(Z) times
(fwlfsow)(f’(xax’,k:0)|x:b;m- According to first sum rule

(51), the integration ofx?(x’) times Eq.(53) leads to the
second sum rule

fdx
b

min

€w

(59

€solv

f: dx’ k2(X)k2(X')f 4(X,X") =2

We notice that, ith,,/(X,x’,y) is again approximated by
the bondF=—ge e, ¢(x,x’,y), then Eq.(55 implies
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that the corresponding approximatien@eaea,f%,(x,x’) for
the coefficient —gBf,,/(x,x’) of the 1k° tail of
h,. (X,x",y) does obey sum rul&t).

Sincef ,(x,x") has the same sign foLanyor x’_larger
thanb,,, and obeys sum rulé5) where k?(x) and k*(x")
are positive, we conclude that

fs(x,x")>0. (56)
In other words, for any functioEz(x), the 142 tail of the

screened potentiap(x,x’,y) is repulsive at all distances
andx’ (larger thanb,).

D. Factorization of the ¥y tail of ¢

When x and x’ are larger tharbn,,, f4(x,x") has the
factorized structure given by Eq&8) and(49). B[lel/ has the
same sign a8}! (Drax,bmad- BY (Bmaxbma) <0 by virtue
of Eq. (48) and of the positive sign df,(x,x") for anyx and
x" [see Eq(56)]. As a consequence, farandx’ larger than
bmax, the 1¥° tail of ¢>(_x,x’,y) has the dipolar structure

written in Eq.(7), whereD 4(x) is defined up to an arbitrary
signe,

(_ BZlIV)
——h(x,k?=0),

D¢(X):8 o

(57)

5¢(x) has the same sign for any as well ash}(x,k?
=0).

IV. CORRELATIONS AT LARGE DISTANCES ALONG
THE WALL

A. 1/y® decay of correlations

The Ieadingl‘¢,(x,x’)/y3 tail of the screened potentid,

PHYSICAL REVIEW E68, 026133 (2003

If f(x,x",y) decays as ¥P, whereasg(x”,x’,y) falls off
faster than %%, then the term in thek expansion of
C(x,x",k) that is nonanalytic in the componentslofat the
lowest order in powers dk| comes from the corresponding
term |k|B{*(x,x”) in the k expansion off (x,x",k) and is
equal to

K| f dx" B (x, X )w(x")g(x",x' k=0). (59

Then, the formula already used to get E¢§7) and (48)
from Eq. (46) leads to

1 1 1
e —J dx”B% Tx, X" )W(X")

Cx,x"y) ~ 27 y[?

|y‘~>+oc

X g(x",x",k=0). (60)

When bothf and g behave as ¥f, the k expansion of
C(x,x’,k) involves two nonanalytic terms at ordge and
the integral in Eq(60) is replaced by

f dx" B (x,x")w(x")g(x",x" k= 0)

+J dx"f(x,x" k=0)w(x")B{I(x",x").  (61)

The argument can be generalized to a convolution involving
several functions that all decay asy3/ (Similar consider-
ations for convolutions of algebraically decaying functions
have already been displayed in RE(9].)

B. Dipolar structure of the 1/y? tail

The formal structure of the ¢7 tail of the Ursell function
h,.'(X,x",y) can be derived by using decompositi¢30)

where f 4(x,x") is integrable, induces the same power-lawggether with the fundamental propertiegd) and (61). Let

decay for the Ursell functioh,,: . The argument is the fol-
lowing. Since¢ falls off as 1§° at large distancely|, bonds
F andFr in resummed Mayer diagrams decay ag’ldnd
1/y8, respectively, according to Eq&3) and(24). In graph
decomposition(30) of h,,, where bonds ar&°® andl, the
topology of diagrams involved ih implies thatl decays at
large distancey at least as ¥ (see Sec. Il E Then, in the
series representations bf’,, h_°,, h® , andh__, shown
in Figs. 1-3, every term, excepthas 1y tails arising from
all F*¢ bonds in the series.

us callh, (x,x’,y,a,a") the graph withm bondsF*®¢ in the
representations of eithdr®®, h®", h™¢ or h™~ exhibited in
Figs. 1-3. According to Eq(61), the various Iy® tails of
every graph,, are determined by replacing one of the bonds
F by its 14> behavior at large, whereas the other part of
the graph is replaced by its Fourier transform at the value
k=0 (while integrations over variableg’s are left un-
changedl

As a consequence, as shown in Appendix, when all spe-
cies have the same closest approach distance to the wall, the

Indeed, all graphs in Figs. 1-3 are chain graphs, so thalipolar structurg7) of the 14 tail of the screened potential
their leading algebraic tail must be determined as follows.4(x x’,y) induces thath,,.(x,x’,y) also has a dipolar
Because of the translational invariance in the direction parstrycture(8) with

allel to the wall, graphs in Figs. 1-3 can be seen as multiple

convolutions with respect to the variabfe which are inte-
grated over every variable with a weighw(x). The Fourier
transform in directiony of a single convolution takes the
form

C(x,x’,k)zfdx”f(x,x”,k)w(x”)g(x”,x’,k). (58)

e
V Esoly

WhereEC’(x) and C, " (x) are defined in Eqs(A10) and
(A6), respectively. The term in braces in E@2) can be
rewritten as

D, (X)= {Z[D4(x)+C (x)]+C, (¥}, (62
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_ _ o tential ¢, which obeys the inhomogeneous Debye equation
ZaD¢(X)+J dr"E” 'DVH(X”)ZV”D¢(X”)[ha7”(r'r”) (25), appears after systematic resummations of the Coulomb
4 divergences.
+h,.(r,r"]. (63) The resummed electrostatic potentialobeys the same

boundary conditions as the Coulomb pair interacfese Eq.
e- (21)], and these conditions are independent of the external

summed Mayer diagrams contribute to the coefficibnt. charge. Henceforth, in the determination ¢fthe existence

The calculation performed up to the first-order correction inof the wall surface charge comes up only in the equation
the forthcoming papef12] shows that the latter coefficient obeyed by, where it arises in the functior(x) through
does not vanish. density profilegsee Eq.(26)]. The whole argument devel-
We stress that result$)—(8) are valid for species with oped throug_h Secs. lll and IV is valid. Indeed, only the posi-
various excluded-volume sizes. Indeed, if all species havéve sign ofx?(x) and the boundary conditions obeyed dy
not the same hard-core size, the difference appears in th#o matter in the proof of the repulsive natyf of the 143
short-ranged potentialssg|r—r'|;a,a’) and Vgg(X;a), tail of the screened potentigl, while dipolar structure$7)

which describe repulsive pairwise interactions and the imynq(8) are not altered by the precise form ef(x). There-

penetrability of the wall, respectively. According to its defi- fore, these results hold in the presence of an external surface
nition (21), the potential(r,r’) may depend orvsg(|r charge on the wall.

—r'|;a,a") andVsg(x; @) only through the explicit expres-
sion of k?(x). The generic properties of the coefficient B. Beyond point charges
f4(x,x") derived in Sec. lll rely only on the positive sign of
«?(x) and on the boundary conditions obeyeddayBesides,
the detailed form ob sg(|r —r'|;a,a") involved in bondFg
never comes up in the discussion of the structure of correl
tions at large distances

In the weak-coupling limit, only a finite number of r

If some species, for instance=ng, are made of colloi-
dal spherical particles, one has to take into account not only
its mesoscopic excluded-volume sit@ready incorporated
4h the primitive model but also the fact that its charge is not
. . concentrated at the center of the particle but spread on its
We recall that, as stressed in Sec. Ill B, the existence of @, tace The microscopic Coulomb potential between two
Fu(x,x")/y" tail for ¢(x,x",y) does not depend on the spe- gheies coincides with expressié® only for relative dis-
cific form of Vsg(x;@) as long as«*(x) vanishes when  tances|r—r’| larger than the sum of their radii. Since the
<0. By virtue of the same argument as that used in previoughtegral equation(21) obeyed by(r,r') does not involve
paragraph, the generic properties of the latter tail, as well aghe short-ranged pairwise potentiakg(|r—r'|;,a’) but
the subsequent propert§) for the 14° tail of h,..(x,x".y),  only the electrostatic interaction(r,r’), it describes re-
are valid even ifVsg(x; @) is a soft repulsive potential in- summed interactions betwegrenetrablespheres with uni-

stead of hard-core repulsida4). form surface charges spread on them #orng and point
charges for other species.
V. GENERALIZATION OF PREVIOUS RESULTS Then the solution fokb in the bulk is no longer Eq.28).

_ _ However, its largdr—r’| behavior is expected to take the

The main result$6)—(8) namely, the repulsive nature of Debye form(28) with a “geometric” corrective factor, as it
the 14° tail of ¢, which is always true, and the dipolar is the case for the large —r'| decay of the bulk effective
structures of the ¥ tails of ¢ andh,,, which arise only interaction between twémpenetrablespheres with uniform
in some cases, also hold in the following different situationssurface chargefsee, e.g., Ref24] for a detailed calculation
of the expression recalled in E@5)]. Similarly, the solution
in the vicinity of the wall is also altered by the fact that some
) . charges are distributed uniformly over spheres.

If the wall carries an external surface charge, by virtue of  The resolution of the corresponding problems for pen-
the superposition principle for solutions of the Poisson equagtraple sphereén the bulk or near the walis far beyond the
tion, one can choose to write the total electrostatic energy ascope of the present paper. However, wiyeis large with
the sum of two contributions: on one hand the one-bodytespect of the size of spherical charges, the monopole-
interactions of all fluid charges with the electrostatic potennongpole part o (r,r') yields the leading tail in their ef-

tial created by the external charge on the wall and by th§ective screened interactions, and functional forf@s and
electrostatic response of the wall, and on the other hand Coy7) of the largey behavior of ¢(x,x’,y) should not be

lomb pair interactiong9), which take into account the elec- changed.
trostatic response of the wall, but which are independent of

the external charge. It can be shown, as detailed in a forth-
coming paper, that some generalized Mayer diagrams can be
introduced as in Sec. I[The effect of the surface charge is  Most colloidal particles acquire a charge either from sur-
dealt with thanks to a generalized fugacity in a way similarface charge groups or by specific adsorption from an electro-
to what is done for the electrostatic response of the glass waljytic solution. We callZ.,e the bare solvatedor “struc-

in Ref.[14].) Then the density profiles can be studied. In thetural”) charge, which arises from the intricate mechanism of
Mayer representation of the Ursell function, an auxiliary po-solvatation. In the past decade colloidal suspensions have

A. Wall with surface charge

VI. EXPERIMENTS WITH COLLOIDS
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been widely studied experimentally, in particular, becausegqual to a few nearest-neighbor distances. Behrens and Grier

apart from their numerous industrial applications, they carargued that the observed oscillations should be ascribed to a

be seen as model systems for structural phase transitions. mere crowding effect commonly seen in liquids even when
It is well known that the effective interactiom2, ., be-  the electrostatic part of the immersion free energy of an iso-

tween two isolated colloidal particles in the bulk is well lated pairuc cq is repulsive.

mimicked by the DLVO (Derjaguin-Landau-Verwey- Eventually, Squires and Brenrigd] argued that the attrac-

Overbeek potential[23]. (In the following, the superscrig ~ tion determined in the first experimefi2] could be ac-

will denote bulk quantities.When colloids are separated by ¢ounted for by a nonequilibrium effect: the measured quan-

more than a few screening lengths, the screened Coulomf}

interaction between the two uniformly charged sphereseﬂy%rgyuco' col @Nd an attractive phenomenological attraction

dominates the other contribution in the DLVO interaction. Ycol col’ which results from hydrodynamic flows excited by

The latter Coulomb interaction is calculated in a Iinearizedthe spheres retreat from the charged wall, whose charge has

mean-field approximatiof24] (namely, linearized Poisson- the same sign as that of colloids.

Boltzmann theoryand the result at relative distanogtarge However, attraction between like charges has also been
z u lve di OFRIYE  opserved in experiments with colloidal suspensions confined

Fetween two charged walls, and in the latest ddgswhich
involve experimental methods similar to those used in Refs.
[2] and[27], Han and Grier have checked the absence of any
hydrodynamical effect. Therefore, an open question is: in the
absence of any hydrodynamical effect, might confinement

From the experimental point of view, the main advantagecombined with many-body effects mediated by colloids or
of colloids is that their mesoscopic size allows one to trackons result into an attractive effective pairwise interaction
the motion ofeverycolloidal sphere with a conventional Op- W¢g; co OF Ugo cof IN SOMe range of distances?
tical microscope and a video camera. Thus, the correlation
heol coiCan be experimentally assessed for colloids when they B. Experiment about dilute colloids in the vicinity
are far away from the vessel walls or when they are confined of a single wall
between two glass plates or in the vicinity of a single plane
surface.(See references quoted in Ref].)

In particular, in 1997 Larsen and Grier experimentally
determined the correlation, ., between dilute negatively
charged polystyrene sulphate spheres optically trapped at t
same distance from a glass wall with some negative charge
on its surfacé2]. Since colloids are dilute in the experiment,
Weo ool defined in Eq.(1) is expected to coincide, in fact,
with the effective interaction for an isolated pair, namely,
with the immersion free energy of two isolated colloidal par-
ticles in a bath made of iongWe recall thatw,g o IS @
statistical average performed over microscopic configura
tions of both microscopic ions and many colloidal particles, X ;
whereas the immersion free energy, .o Of two colloidal because not aI_I sulphate groups d|ssqmate. . .
spheres arises from averaging only over counterion configu- The corrglauorhcm col DEOWeen colloidal particles is mea-
rations) The authors claimed that the corresponding e1‘fec-Sured at distances; =9.5- 1.0 um andx;=2.5-0.5 um

tive pairwise interactioliyy (X, X',y) between mesoscopic (0" relative distancey, which vary from 2.3um to 7 u m.
like charges at the same distance x’ from the wall was ~ Weol col atx, is always repulsive, whereas % it becomes

attractive at large relative distancgs attractive for distanceg=yip,=2.5 um.

However, theoretical works devoted to the effective inter-  C0lloids are dilute enough for the parameigg,/a to
action Ugq co between two isolated colloids predicted that °& SMall €7coi/acor=0.03). Thus we expect that, in the range
Ueor oo! i repulsive not only in the bulk but even in a con- o_f investigatedy’s, Whlc_h are indeed larger tha}n th_e colloid
fined geometry[These works involve mean-fieldPoisson- ~ diaMmeteroc,, the functional form ofweoco(X,X",y) is de-
Boltzmann theories25] or local density functional approxi- t€rmined only by interactions different from the hard-core
mations where correlations are included in a local freelepulsion. We recall that this is not true in the experiment of
energy term[26].] Theoretical results about the repulsive Ref-[27] where the ratiory/ac, takes the high value 0.5.
nature ofug, o Were supported by a second experiment inThen. because of crowding effects, the dependance of
the vicinity of a single charged glass wall published in 2001Weol co(X=X",y) upon the relative distangehas oscillations
by Behrens and Grigi27]. In the experiment, denser silica With @ period equal to the nearest-neighbor distaneg,2ip
spheres are confined at a fixed distance from the wall by thi® Y Of order &, [see the comment after E(L)].
balance between gravity and the electrostatic repulsion ex-
erted by the surface charge on the wall. Colloidal particles
are not dilute, and oscillations g ¢, the depth of which In the bulk, when the relative distangéetween colloids
depends on the colloid density, appear over a length scaig larger than the screening Iengﬂgl, we expect that the

y was, in fact, the sum of the repulsive equilibrium free

yields the formula recalled in E@65).

A. Sketch of the debate

In the present section we revisit the case of the vicinity of
a single wall studied in Ref.2] in the light of our results
about statistical mechanics of charge fluids. In the experi-
faent of Ref.[2], the diameter of polystyrene sulphate
spheres iso¢,=0.652 um, and the mean intercolloid dis-
tancea. is greater than 2xm. At room temperaturé&, the
Bjerrum lengtha = Be?/ e, (closest approach distance be-
tween like-charge ions with mean kinetic energy)Lis A

=710 % um. The absolute valuZ.,| of the bare solvated
charge in electron-charge units is estimated to be much
smaller than 18 which is the number of ionizable sulphate
groups chemically bound to its surface before solvatation,

1. Effective electrostatic interaction in the bulk
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effective pairwise interaction is dominated by the Coulomblf expression(64) with measured parameters is identified
forces and, whety is also large with respect to the colloid with its approximate DLVO valug65), then 3"~ kg and

radius, it takes the Debye form Zo is of the same order aBN®: |Z.,|=7300. The latter
value is indeed lower than the number®16f ionizable
B [Z5hPe]? e ey groups on the colloid surface before solvatation.
Wl cofl¥) 71~ Cesowy Y (64) The values derived from the fit give various pieces of
(kg™ 0co) <Y information. First, experiments are carried at distances from

. o B the wall equal tox1~35:<gl, which is indeed far away in
The difference between,~ and the “bare” solvated charge the bulk, andk,~9«z*, while the relative distancgranges

Z, defined at the beginning of Sec. VI arises from the com+,om about 8gt to 255 °.

bination of many-body effectdinked to the Coulomb cou- Henceforth distancey are large compared with the

pling and short-ranged repulsignasith the steric effect due screening length Kgl and the colloid diametero

to the fact that the charge is not concentrated at a point but |§2_4K§1: they are indeed in the range where electrostatic
spread over a sphere.

When colloids araery dilute many-body interactions be- forces are expected to dominate other short-ranged interac-

tween colloids become negligible and, tends to the tions between colloidal particles, and where the monopole-
. ; gligibie ol col = . monopole part of electrostatic interactions is indeed the lead-
immersion free energy.o <o Of @an isolated pair of colloids,

where many-body effects are only due to interactions medii-ng term.
Y Y Y Another information can be checked from the fit: the Cou-

ated by ions. Since functional for64) of Wey oY) - o coupling between colloidal particles is strong.

volves size effects only in the parametef®® and «g, The “bare” Coulomb coupling parameterT o oo
Ugo co(Y) has the same functional form eg, .,(y), where — _ BlZoo P (esonden) = Z2%(Mag,) ranges from 370 to
xg is replaced byxg", the inverse screening length created 1500 when the mean intercolloid distanag, varies from
by ions, andzg},® is replaced byzgl, ® ", 100 um to 25um. Meanwhile the effective Coulomb pa-

In the DLVO approximation, which is usually used for rameter[ng,B]ZKB)\, which we define froml'., o by re-

Ucol cor IN Order to interpret experiments with colloidsg" is placingZ., by Zgng andag, by Kgl' is of order 16, since

approximated by the fifnglerse ionic Debye Iengf[gg‘l_{/g/vhile the effective Coulomb parametarg\ between ions is of
e on

the effective charg&c, is approximated by ;" , order 10 3. This effective parameter arises in
_ion B Y
[Z55'O€e]” e 0¥ Weol coflY) eV
Ucolcol (Y)  ~ > ;69 aar R v DS (68)
(1/KanUcol)<y solv (Kgl'UCOI)<y y

In Eq. (65) K‘g” is defined as in Eq27) with the summation wherey = kgy andx = kgh. (Weak-coupling expansions are

. T . LVO : . . . T .- . . N
restricted to ionic species, aritfm ©is equal toZ., times a  series in powers ok times possible logarithms. is some-

“geometric” factor [24]: times called the plasma parameter.
_ However, we notice that, since the distangesvesti-
o exD Tcof2 gated in the experiment are larger tharg8, the large in-
Zcol :ZC°|1+(Kiono_ 2 (66 tensity of the Coulomb interaction given bge"B]2X is ex-
D COl

ponentially reduced by the screening effect contained in

We notice that, as a result of the strong electrostatic couplin§*H —YJ: Weoi oY) is Of orderksT aty~10xg ™.

between microions and the macroscopic charge of a colloid o L o

in the vicinity of the colloid surface, nonlinearities and mi- 3. Dilute coIIO|d§ in the V|C|n|t¥ of the wall: modellzatlon from
croion correlations can dramatically redugg® °" with re- statistical mechanics of charge fluids

spect to the bare solvated validg, (see, e.g., Ref(28]). We stress that our model is relevant for the experimental
When the structural chargg,, increasesz™ ® °"may even  system of Ref[2]. First, at the investigated distancgshe
tend to a saturation value independentZgf, and propor-  electrostatic force dominates other interactions, as previously

tional to the diameteo ., [29]. checked in the bulk. Second, our model takes into account
the characteristic steric and electrostatic features of the ex-
2. Experimental results in the bulk periment. On one hand, all species do not have the same

closest approach distance to the wall, and they have different
sizes(see Sec. Il A (The closest approach distanbg, of
colloids to the wall is at least of order.,/2: it is very
different from the corresponding distanés,,, for micro-
scopic ions. On the other hand, the existence of a negative
surface charge on the glass wall, and the fact that the charge
. of one species is not concentrated at a point but spread on a
Oco=2.4Kg " (67)  sphere have been discussed in the generalizations of Sec. V.

At distancex;=9.5 um the experimental curve is prop-
erly fitted by Eq.(64). The latter fit determines the values of
the inverse screening lengtty and of the effective charge
z%"B in the bulk. Their respective values areg®

=0.275um andZ&"B=11000. Henceforth
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If beo~ocof2, the leading term in the effective electro- earized mean-field theory is equivalent to a weak-coupling
static interaction is controlled by the Coulomb interactionsand high-dilution limit, as shown in Ref11]. The lineariza-
between point elffective charges, blecause the investigatebn is legitimate for purely ionic contributionsThen
distancesy>8«y - andx,— b, ~8kg~ are large compared ) ,
both with the screening lengti X and the colloid diameter ol col(X:X",Y) L [ZeoePp(x.X"y), (72
Oeo=2.4x5". In other wordsw o at large distancey (kg " 0col <Y
T et oy of U100 s the soluton of iy equaoz. f
impenetrable sphere. The ratio between the effective Char%harges are not concentrated at points, the effect is contained
'mp > SP ) . . chargy ¢(x,x",y). According to general property), sincex and
in the spherical-charge fluid and the effective charge in theX, are laraer thamb...—b.. for colloidal particles
point-charge model is expected to be of order unity, as indi- 9 max*col P '
cated by the DLVO approximatio(®6) for the bulk effective
charge, the renormalization of which is equal to 1.5 in the

resent experiment. -1 :
P By virtug of Eq.(40), which is also valid in the presence If Deor 0ol 2, ,thenb“" e N t,hle Eesen_t experiment
of a surface charge on the walis discussed in Sec. WA and, wherxandx” are larger tharkg ~, D,(x) is expected
the screened potentigi(x,x’,y) for point charges is the sum to have the same functional form as the potenfiglo)(x)
of a function with algebraic and exponential tails and of ancalculated for point charges located at the centers of
exponentially decaying termsg,yq if x andx’ are in the excluded-volume spheres and with unlform density profiles.
same subregioni]. As a consequence, we expect that(¢®(x,x',y) takes into account the various closest ap-
heolcof(X,X',y) as well as the effective interaction Proach distances to the wall,’s; henceforth¢® must not
Weoi oo X, X',Y) take different forms at distances shorter or be confused with the potentiai® written in Eq.(44) where
larger than some distangg (x,x’): all b,’s are equal to the same valbe Therefore, we expect

that fory>y:"F(x)

w

fo (XX ) =[Zeo€]?D 4(X)D 4(X'). (73)

f fcol C0|(X1X,) _
Weol col( X, X",Y)  ~ - 3 (69) [Zs0e qu(X)]2
Ya(x,x")<y —y3 KeT
and
; 2K A o
Weol coI(X’XIaY) , ey . €sol ¢4col '93 )
KT ~ Zeol col XX )N—=— (kg " 0co) <(X—beg))
. (KE;l*‘Tcol)<y<y*(XvX’) y (74)

(70

wherekg * is the same screening length as in the bulk. In the

Whenx=x' the distancey,(x) from which the dipolar tail . . S T . )
(69) becomes of the same magnitude order as the exponenti\é\\lle"’lk'coupl'n.g and h|gh'-d|Iut|on limit, af[ leading ordef; .
tail (70) is estimated in the following. As checked in the —_*D- AyZco is an effective charge that incorporates various

following subsection, when the distanedrom the wall in- effects. At leading order in the Coulomb-coupling and dilu-

creases, the range of distances\o<y, (x), where the ex- ti_on parametersA (o) is determined .by the fact that all spe-
ponential tail iNW,y, oo(X=x',y) overcomes its dipolar tail, cies have not the same approach distance to the wall and that

also increases very fast, and the exponential tail tends to it harges are hot concentrated at pomt_s. The f|_rst correction

; »1 contains effects of the geometric repulsion and the
repulsive bulk value, ; )

electrostatic response of the wall, of its surface charge and of

Zeol o X=X") ~ [zgng]Z_ (70  the nonuniform profile of the electrostatic potential created
by the charge density profile in the vicinity of the wall. In
fact, if the first correction ¢} is considered, then
In other words, for (cgl,o'col)<y<y*(x) and (Kgl,gcol) Weol col(X:X',Y) itself must also be calculated at the same
<(X—be), Weo co(X=X',y) tends to the bulk value orderand then other corrections arise from screened interac-

(Kg lv"'col)< (x= b(:ol)

Weor co(Y) given in Eq.(68). tions mediated by colloids or iongThe 1§° tail of
wil) (x,x’,y) is calculated in the case of charges concen-
4. Linearized mean-field estimations trated at points when there is no surface charge on the wall

In a dilute system, because of the long-range of the Coudnd Whenjll_charges have the same approach distance to the
lomb interactionWey oo as Well astqy o are expected to  Wall b<xg™ in the forthcoming papef12]. We check that
decay at large distances as their mean-field values. The fate charge renormalization is not the same for thye il of
screening of the Coulomb interaction implies that, thoughWss! co(.X',y) and for the exponential tail ofv g ty(x
bare Coulomb coupling between colloids is strong, the mean=X',y).]
field value ofWgyjco (Ucoico) at large relative distances is ~ The distance/:""(x) at which the linearized mean-field
expected to be correctly given by linearizing functions ofdipolar tail (74) becomes of the same magnitude order as the

BWeoicol (BUgoico)- (IN the Mayer diagrammatic such a lin- exponential tail in Eq(72) can be approximatively calcu-
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lated as the distanog®(x) at which the 1y algebraic tail  petition between the exponential tail of the effective electro-
overcomes the exponential tails i) defined in previous static interaction and the hydrodynamical force induced be-
paragraph. The structure gf® atx>b,,andx’'>b,is  tween colloids by the external electrostatic field created by
the same as that in E¢44) where only the expression of the surface charge on the wall. This interaction is attractive if
Z{9(|k|) depends on the fact that dll,’s are equal to the the surface charge on the wall has the same sign as the col-
same valueb or not. y{9(x) itself can be determined only loid charge, which is indeed the case in the experiment
roughly, because the i term dominates all other algebraic Where the surface charge on the wall is negative as the
tails in ¢©@— ¢© at largey, but the exponential tails in charges carried by colloids. Squires and Brenner calculated
A0~ $© are srl;gt easy to estimate, as can be seen in gle interaction between the surface charge and a colloid in a
similar gli?aation in Ref[30]. We assur’ne that the latter ex- af[h of ions by using a Ilnea_rlzed mean-field appTOaC_h with
onential tails are of the s.ame order¢$ — 4P [see E point charges, namely, by using the same approximations as
p28 liible with t1o it Th ng_,'fd’ 7 0) -0- those used in the preceding subsection for the equilibrium
(28)] or negligible wi respect to 1. e?o,) p N ¢71S effective electrostatic interactions. For the effective charge
replaced bykg, an approximate value of,”(x) is the so- oot the wall they took the bulk DLVO expression. For the
lution of the equation sake of completeness, we rewrite their result where we re-

placeKiS” by the effective inverse screening length:

€W Lo % ~ _5(0)
2—e bl =[yP(x)]?e ¥ W, (75) ya )
solv Ucol col _ 7 [Z e]z'x 6(x/o¢ol)
where the tilde denotes dimensionless lengths defined as in keT 1+ (kgoeof/2) - (Xl eo) = (9/32)
Eq. (68). In the latter approximate equation we have replaced ~5
A, by 1, which is the case only when all closest approach x%ef&*(}wﬁ)]_ (77)
distancesb,’s to the wall are equal. Whee,y/eqq, is of [4x%+Yy?]%2

order 1/80,y{Y(x) is equal to &z * for x=bgy, 10«5 * for . . _
X—bog= Kl;l! 15K51 for X—bco|=3l<§1, and 20<B_1 for x In Eq. (77) 7 is the ratio between _the surface charge density
on the wall and the surface density of the chaZgge on a
colloidal sphere. Squires and Brenner showed that Brownian
dynamics simulations account for experimental curves when
7=0.4. (The latter value ofr can be explained on purely
geometrical grounds in a phenomenological theory of
effective-charge saturatigr81].) When 7 is set to 0.4, the
magnitude order ofi™’. , is larger than the electrostatic ex-
ponential tail(76) wheny>9«;*.

—beo= 5KI;1 :

In the experimenk2=9xg1. If beo is approximated by
bcoIN a'coI/2~1-2KI;l! then Q(Z_bcol)NSKI;l and y£0)(x2)
is far larger than thg’s investigated. In other words, dipolar
tail (74) is killed by the factor exp-2xg(Xo—beo)]
=exp(—16)~10"7 and the exponential tail in Eq(72)
dominates algebraic tai¥4) in the range of investigategs.

5. Experimental results in the vicinity of a single wall

- . _ . C. Open questions
At the finite distance;~9 kg * from the wall, W) ¢ iS pend

again measured in the rangeys$ from 8«5 * to 25«5 *. At As a conclusion, the lightning from statistical mechanics
short distancesw,y o is repulsive and decreases when of charge fluids at equilibrium to the question at the end of

increases, its sign changesyat yin,~9k5 ', Weo o has a  S€C: V! AhiS the following. ' loidal
negative minimum ay,;,~ 13K51, and its dependance gn First, the observed attraction between dilute colloidal par-

for largey’s is compatible with an algebraic law. ticles in thg vicinity of a smgle Wz_ill cannot arise from purely
1 1 . electrostatic effects if the linearized mean-field scheme for
In the range &g <y<yiw~9«g~ Wherewy . is re-

. ! . B W is vali it is th in previ mean-field theo-
pulsive, the experimental curve is fitted by the exponentially’; e ol 'S V& d, as itis the case in previous mean-field theo

fast bulk decay(64) Hies for U cor
' For the distances investigated in the experiment of Ref.

oy B oy [2], the exponential tail prevails over the algebraic tail. How-
Woolcof X=X ’y)y<yinVWC°' ol X=XTY)- (76) ever, we stress that the magnitude order of the coefficient
feol col(X,X") in the 142 tail of Wy o(X,X',Y) is very sensi-

If beo~ ocof2, result(76) is in agreement with the linear- tive to the actual value of the closest approach distémge
ized mean-field approach of the preceding subsection: thef colloids to the wall, as it is the case for its linearized
exponential tail in the electrostatic pairwise interacti@a) mean-field value. If dilute silica spheres were used instead of
dominates the repulsive dipolar tail in the whole range ofpolystyrene sulphate spheres, the former denser colloidal
investigatedy. Moreover, it is well approximated by its re- particles might sediment in a plane parallel to the glass plate,
pulsive bulk value, as argued after E@1). as it is the case in the experimd2f]. (We recall that in the

Therefore, the origin of the attraction measured in experi€xperiment27], silica colloids are not dilute and results of
ment[2] for y>vy;,, iS not electrostatic interaction at equi- Secs. VI B 3 and VI B 4 cannot be appli¢dhen, although
librium. The granted explanation for the observed attractiorall colloids would be constrained to lie in the planeg by
near one wall relies on a hydrodynamical effect involvingthe balance between gravity and the interaction with the wall
electrostatic interactions. Squires and BreriB¢rargued that surface charge, the exponential screening in the direction
the experimental curve could be accounted for by the comperpendicular to the wall would still be ensured by the pres-
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ence of ions of both signs in the solutidhe localization Be? 5¢(x)5¢(x’)

of colloidal particles in a plane does not cause qualitative FO(x,x"y) ~ — Z,Zy 3 (A1)
changes in the electrostatic screening contrarily to what hap- y—+e  Esolv y

pens at an air-water interfa¢80].) In this casep., would

be equal tax,,, the only accessible distanaefor colloids, The 14 tail of h_ . (X,x",y) is the sum of the tails of all

and the repulsive dipolar tair4) at x= X, would dominate  graphsh_, (a,a’) with m bondsF® (m=1,2,...). The
the exponential tail in Eq(72) in a range that can be esti- 1/y3 tail of h,, ~(a,a’) itself is the sum of then tails arising
mated to bey>y®(x=bg,)~7xgz". from every bond=¢in h ™ by virtue of Eq.(61). With the

If coupling or steric effects at higher density were suchnotations of definition(33), the pth bond F® in h,” (p
that the linearized mean-field approximatiai®) failed, then =1, ... m) in Fig. 3 links points p— 1)’=(r,'3,1,7£,,1)
the coefficientf co) cox,x") in the 14° tail of weo o would — and p=(r,,y,). [With notations of Fig. 3 I(3,ys)=c and
no longer have the dipolar structuf@3) and its sign might  (r . .y=c’.] According to Eq.(60), the tail arising from
vary. In the case of the bulk effective interactiszu*fOI cols the pth bondF in h.,”(a,a’) reads
such coupling and steric effects have been investigated by
means of approximate closures of the integral Ornstein- ge? 1
Zernicke equations for the primitive moded2,33. — -

On the other hand, in the experiment of Ref], where €solv 3
colloids are densely distributed and confined between two
glass walls separated by a distance equal to only a few cojn q.(A2) ¢, ™ Pl(x") denotes the contribution from the
loid diameters, Han and Grier exclude any explanation for, - h ot — Pt
the observed attraction that would be based on kinemati z;lr; g;?tmcor?tzti:lv:ne—nppgg]r:?ng’;’n);jp) anda’=(r’,a’).
effects, such as a hydrodynamic couplighe latter effect,
which disappears for symmetry reasons when colloids lie
exactly at the same distance from two equally charged sur- C_,_[m_p](x’)sf prE . (X,)Z 5¢(x )
faces, may arise because experiments necessarily have a de- “ Yp ol TP P
gree of off center. However, typical drift speeds in the ex-
periment of Ref[4] are far too small to mediate measurable
in-plane hydrodynamic coupling.

We stress that in the case of a solution confined betweelhhe contribution from the part oh;,~ between pointsa
two plates carrying external negative charges, boundary con=(r,«) and (p—l)’z(r,;,l,yg,,l) is equal to the rhs of
ditions are changed and the arguments used in Sec. Il nBq. (A3), where &, yp) is replaced by X,_;,v,_,) while
longer hold. Without any further investigation, we cannothr;:p(xp,xf,kzo; Yp.@') is replaced byh[;:l(xvx;)fbk
assert whether the,(x,x')/y* tail of ¢(x,x"y) is stil re- =0;a,y,_1). We have used the same notation for both con-

pulsive everywhere i_n the fluid and we expgct th@(tx,_x’) tributions, becausda,j:l(a,(p—l)’) is symmetric with re-
no longer has factorized structuf@. We notice that, in an spect toa and (p—1)'. The 13 tail of h_(x,x’,y) is

approximated calculation where density profiles are uniform

c, Plpc,, MM, (A2

XhpZp(Xp X' k=0;yp,a").  (A3)

between two plateB3], f 40)(x,x") loses factorization prop- equal to
erty (7), but it is still repulsive. e
Finally, we notice that the electrostatic model with pure Be? 1 ol e rme
. _ _ 2 c-Ip l](X)C [m P](Xr)
charge-charge Coulomb forces is perhaps too crude. It does Esovyd it =1 @ a’ :
not take into account the polarization of the solvent around (A%)

each colloidal particle. The latter intricate phenomenon
might be the root of the observed attraction between like

charge colloids. The double sum in expressigA4) can be written as a prod-

uct of two sums with the result
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with C,, ~(x)==.,C, ~["(x). By virtue of Eq.(A3),
APPENDIX

In the present Appendix, we use the principles recalled at Ca"(x)=f dr’>, pyu(x”)Zy,,S(b(x”)h;y_,,(r,r”).
the beginning of Sec. IV B in order to determine the formal Y

structure of the 3/ tail of the Ursell functiorh,,,/(x,x’,y), (A6)
when all species have the same closest approach distance to

the wall. In this case the {7 tail of the bondF ¢ has dipolar The 14° tail of h}_,(x,x",y) appears as the sum of two
structure(7) of the screened potentigl contributions, as it is the case for evéryy whenm=2. The
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1 tail arising from the bondF® attached toa in
hy (a,a’)=hg, (x,x",y;Z,,Z,) is equal to

Be?® 1
—Z D¢(X)C
€solv Y3

Y

(A7)

with the same notation as in expressi@®). Whenm=1,
expression(A7) is the only contribution. Whem=2, the
1/y® tail that originates from the othen— 1 bondsF ¢ is the
sum

Bzi

€solv y3

2 ce =ty M Plx).  (A)

PHYSICAL REVIEW E 68, 026133 (2003
with C*~(x)=3,2,C% ["(x). Similar to Eq.(A6)

2,5 (0= J Ar'S) pyp(X)ZyD XM (107
(A10)

The asymptotic tail oh;;, takes a form similar to that of
hZ;, : the roles ofa anda’ are exchanged and there appears
a C %x’') defined by analogy  with EC_(X) with
h;,,a,( r”,r') in place of h ,,(r r"). Since h_S v (')
=he, ,(r'.r"), C (x')= Cc (x').

The calculation of the ¥ tail of h (X, x"y) is a gen-
eralization of the previous one. Four kmds of contributions
can be distinguished, according to whether thg® 14il of
h:%(a,a’) arises or not from the bonB°® attached tax or
from the bondF°¢ attached tox’. We obtain

In Eq. (A8) we have exhibited the fact that the dependence

onZ, in h®" is merely a multiplicative factoZ,,: we have
definedz CC (P=2(x) similarly to C, ~P~*(x) with h{~,

in place ofh,~, [see the comment after E¢A3)]. After
summation ovem from 1 to +, we get

B€? 1

€solv 3

Z[Dy(x)+C* (x)]C,, (X),
(A9)

h® (xxy) ~ —
y—+x

perl_
=2,Z,[D4(x)+C (%]

€solv Y

he (x,X"y) ~ —
y—+ox

X[D 4(x")+C (x)]. (A11)

After summation of tails(A5), (A9) and the symmetric
one, together with tail(All), the largey behavior of
h,.'(X,xX",y) proves to have dipolar structur@) where
D,(x) is given in Eq.(62).
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