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Correlations, soliton modes, and non-Hermitian linear mode transmutation in the one-dimensiona
noisy Burgers equation
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Using the previously developed canonical phase space approach applied to the noisy Burgers equation in one
dimension, we discuss in detail the growth morphology in terms of nonlinear soliton modes and superimposed
linear modes. We moreover analyze the non-Hermitian character of the linear mode spectrum and the associ-
ated dynamical pinning, and mode transmutation from diffusive to propagating behavior induced by the
solitons. We discuss the anomalous diffusion of growth modes, switching and pathways, correlations in the
multisoliton sector, and in detail the correlations and scaling properties in the two-soliton sector.
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I. INTRODUCTION

This is the fourth in a series of papers on the on
dimensional noisy Burgers equation for the slope field o
growing interface. In Paper I@1# we discussed as a prelud
the noiseless Burgers equation@2,3# in terms of its nonlinear
soliton or shock wave excitations and performed a lin
stability analysis of the superimposed diffusive mode sp
trum. This analysis provided a heuristic picture of t
damped transient pattern formation. As a continuation of p
vious work on the continuum limit of a spin representation
a solid-on-solid model for a growing interface@4#, we ap-
plied in Paper II@5# the Martin-Siggia-Rose formalism@6# in
its path integral formulation@7–9# to the noisy Burgers equa
tion @10,11# and discussed in the weak noise limit the grow
morphology and scaling properties in terms of nonlinear s
ton excitations with superimposed linear diffusive modes
Paper III@12# we pursued a canonical phase space appro
based on the weak-noise saddle point approximation to
Martin-Siggia-Rose functional or, alternatively, the Freidli
Wentzel symplectic approach to the Fokker-Planck equa
@13,14#. This method provides a dynamical system theo
point of view to weak-noise stochastic processes and yi
direct access to the probability distributions for the no
Burgers equation; brief accounts of Papers II and III a
peared in Refs.@15# and @16#.

Far from equilibrium phenomena are common, includi
turbulence, interface, and growth problems, chemical re
tions, and a host of other phenomena bordering on biolo
sociology, and economics. Unlike equilibrium phenome
the nonequilibrium cases are not very well understood
constitute a major challenge in modern statistical phys
Here the Burgers equation provides in many respects
simplest continuum description of a nonlinear initial val
problem in the noiseless case and an open driven nonli
system in the noisy case, exhibiting scaling and pattern
mation.

The noisy Burgers equation for the local slopeu(x,t) of a
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growing interface analyzed in Papers II and III, has the fo

S ]

]t
2lu“ Du5n¹2u1“h, ~1.1!

here expressed as manifestly invariant under the slo
dependent nonlinear Galilei transformation

x→x2lu0t, ~1.2!

u→u1u0 , ~1.3!

and is equivalent to the much studied Kardar-Parisi-Zha
~KPZ! equation@17,18# for the heighth(x,t), u5“h ~in a
comoving frame!,

]h

]t
5n¹2h1

l

2
~“h!21h. ~1.4!

The growth equations~1.1! and ~1.4! are driven by short-
range correlated Gaussian white noiseh determined by the
correlation function

^hh&~xt!5Dd~x!d~ t !, ~1.5!

characterized by the noise strengthD. In Eqs.~1.1! and~1.4!
the damping constant or viscosityn measures the strength o
the linear damping term, whereasl controls the nonlinear
growth or mode coupling term.

From the analysis in Papers II and III, it follows that th
stochastic nonequilibrium problem determined by Eqs.~1.1!
and ~1.5! in the singular weak noise limitD→0 can be re-
placed by two coupled deterministic Galilean invariant me
field equations coupling the slope fieldu to the canonically
conjugate noise fieldp,

S ]

]t
2lu“ Du5n¹2u2¹2p, ~1.6!

S ]

]t
2lu“ D p52n¹2p. ~1.7!
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HANS C. FOGEDBY PHYSICAL REVIEW E68, 026132 ~2003!
In the path integral analysis in Paper II, Eqs.~1.6! and~1.7!
are saddle point equations for the extremal path in the c
sical limit D→0; in the canonical phase space approach
Paper III they are classical canonical field equations de
mining orbits in an associated phase space. This doublin
dynamical variables in the deterministic description was a
encountered in the spin model discussed in Ref.@4#. The
noise variableh in Eq. ~1.1! emerges as the canonically co
jugate momentum variablep coupling tou.

As discussed in Papers II and III, see also Ref.@4#, the
field equations~1.6! and ~1.7! in addition to linear diffusive
modes also support two distinct soliton modes or dom
walls, in the static case of the kinklike form,

us
m~x!5mu tanhks~x2x0!, ks5lu/2n. ~1.8!

Hereks sets the inverse length scale,m56 is a parity index,
and the soliton is centered atx0. For m511 we have the
right-hand soliton which is also a solution of the noisele
Burgers equation forh50 in Eq. ~1.1! or for p50 in Eq.
~1.6!. Form521 we obtain the noise-induced left-hand so
ton, a new solution of the coupled equations. The associ
noise field isps50 for the noiselessm511 soliton; for the
noisy soliton form521, we have

ps52nu tanhksx, ~1.9!

modulus a constant.
In the noiseless Burgers equation the transient pattern

mation is described by Galilei-boosted right-hand solito
connected by ramp solutions with superimposed damped
ear modes@1,19–21#. In the noiseless KPZ equation for th
height h, this pattern corresponds to smoothed downw
cusps connected by parabolic segments with superimp
linear modes@18,22#. However, in the noisy case the do
bling of soliton solutions alters the morphology complete
Here the amplitude-matched Galilei-boosted right- and l
hand solitons provide a many body description of a stati
ary growing interface. On the soliton gas is superimpose
gas of linear modes, which in the linear Edwards-Wilkins
case@23# for l50 becomes the diffusive modes of the nois
driven diffusion equation.

The canonical phase space approach expounded in P
III moreover provides a deterministic dynamical syste
theory description of a growing interface. With an orbit
canonical phase space from an initial configurationui to a
final configurationu f traversed in timeT, determined as a
specific initial-final value solution of the field equations~1.6!
and ~1.7!, we thus associate the actionS,

S~uf ,ui ,T!5E
ui ,0

uf ,T
dtdxS p

]u

]t
2HD . ~1.10!

More explicitly, the transition probability from an initial con
figuration ui to a final configurationu f in time T is deter-
mined by

P~uf ,ui ,T!5V~T!21 expF2
1

D
S~uf ,ui ,T!G , ~1.11!
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V~T!5E ) duf expF2
1

D
S~uf ,ui ,T!G , ~1.12!

where we have introduced the dynamical partition funct
V(T), arising from the normalization condition
*)duf P(uf ,ui ,T)51. Likewise, the stationary distribution
is associated with an infinite-time orbit fromui to uf , and is
given by

Pst~uf !5 lim
T→`

P~uf ,ui ,T!, ~1.13!

and, for example, the slope correlation~the second momen
of P) in the stationary regime by the expression

^uu&~x,T!5E Pduiduf uf~x!ui~0!P~uf ,ui ,T!Pst~ui !.

~1.14!

The action is a central concept in the weak noise canon
phase space approach and provides a dynamical weight f
tion and selection criteria for a dynamical nonequilibriu
process in a similar manner as the energyE in the
Boltzmann-Gibbs factorP}exp@2bE# (b is the inverse tem-
perature! for equilibrium processes. The action, moreov
implies an underlying principle of least action and t
Hamilton enteringS, yielding the field equations~1.6! and
~1.7!, is given by

H5E dx p@n¹2u1lu“u2~1/2!¹2p#, ~1.15!

whereH5*dx H.
In addition to the conserved Hamiltonian or energy t

translational invariance ofH ~assuming periodic boundar
conditions foru and forp, modulus a constant! implies con-
servation of momentumP. Moreover, the conserved noise
Eq. ~1.1!, corresponding to the term¹2p in Eq. ~1.6!, yields
the local conservation law]u/]t1“ j 50, j 52n“u1“p
2(l/2)u2, implying the conservation of the integrated slo
field or height offset. The two additional conserved quantit
are thus given by

P5E dx u“p, ~1.16!

M5E dx u. ~1.17!

We note that the integrated noise fieldP̃ is not conserved for
lÞ0. According to Eq.~1.6!, P̃ evolves according to, se
also Ref.@4#,

dP̃

dt
5lP, ~1.18!

P̃5E dx p. ~1.19!
2-2
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The long time–large distance scaling properties o
growing interface is a fundamental issue which has been
dressed extensively@17,18,24–34#. For the widthw(L,t) of
an interface of sizeL, the dynamical scaling hypothes
@22,35# asserts thatw5L2jG̃(t/Lz), which for the stationary
slope correlations corresponds to the asymptotic scaling f

^uu&~x,t !5x2z22F̃S t

xzD , ~1.20!

with roughness exponentz51/2, dynamical exponentz, and
universal scaling functionF̃(w). In one dimension the scal
ing exponents for the noisy Burgers equation are known
actly @18,22#. The roughness exponentz51/2 follows from
the known stationary distribution, an effective fluctuatio
dissipation theorem@36#,

Pst~u!}expF2
n

DE dx u2G , ~1.21!

whereas the dynamic exponentz53/2 is a consequence o
the scaling law

z1z52, ~1.22!

implied by Galilean invariance@17,18#. It was an important
result of the analysis in Papers II and III, see also Ref.@4#,
that the dynamical exponentz53/2 also enters in the dispe
sion lawE}Pz for the noise-induced left-hand soliton, an
thus is a feature of the gapless nonlinear excitations pro
ing the many body description of a growing interface.

The description of the stochastic nonequilibrium dyna
ics of a growing interface can be accessed on two levels.
Langevin level defined by Eqs.~1.1! and~1.5! or the Fokker-
Planck level~or Master equation level for discrete mode!
characterized by the Fokker-Planck equation associated
the Burgers equation,

D
]P

]t
52HP. ~1.23!

Here the Hamiltonian or LiouvillianH is given by Eq.~1.15!,
with the momentum variablep interpreted as the functiona
derivativep5Dd/du, see also Ref.@4#.

On the Langevin level the growth problem is defined b
stochastic nonlinear differential equation. Apart from dire
numerical simulations the standard analytical tool as rega
scaling properties is a perturbative renormalization gro
scheme based on an expansion in powers of the nonli
term in Eq. ~1.1! or Eq. ~1.4! @11,17,18#. This procedure
yields renormalization group equations in ane expansion
about d52, e5d22, predicts a kinetic phase transitio
above d52 from a smooth Edwards-Wilkinson phase@z
5(22d)/2,z52# to a rough Burgers-KPZ phase with no
trivial exponents. Ind51 the scheme yields~fortuitously!
the exact exponentsz51/2 andz53/2. The limitation of the
Langevin description is that it does not provide a sim
02613
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physical picture of a growing interface and that the role
the noise can only be discussed and interpreted on a qua
tive level.

On the Fokker-Planck level the growing interface is d
termined by the deterministic evolution equation~1.23!
driven by Hamiltonian~1.15!. The formal structure of Eq
~1.23! is equivalent to a functional Schro¨dinger equation in
Wick-rotated imaginary time and allows via the Martin
Siggia-Rose functional integral for a mapping of the grow
problem onto a non-Hermitian quantum field theory as d
cussed in Paper II, see also Ref.@4#. The quantum field for-
mulation, in addition to also providing an alternative fram
work for perturbative dynamical renormalization grou
theory following, for example, the Callen-Symanzik schem
@37#, permits two new lines of approach to the growth pro
lem. First, by a mapping of the Martin-Siggia-Rose path
tegral onto a directed polymer in a quenched random m
dium @18,22# the nonequilibrium problem become
equivalent to a disorder problem affording a different p
spective on the growth problem and yielding new insig
The second line of approach which we adhere to in
present context is to discuss the nonequilibrium problem
rectly in terms of field theoretical constructs. The origin
stochastic fluctuations on the Langevin level are then in
preted as quantum fluctuations on the Fokker-Planck le
where the noise strengthD in Eq. ~1.23! serves the role of an
effective Planck constant.

In the context of canonical quantization, the quantum fi
theory or quantum many body theory for the interface
defined by Eq.~1.15!, with the canonical momentump
5Dd/du replaced by the momentum operatorp̂
52 iDd/du in a u-diagonal basis obeying the canonic
commutation relation@ p̂(x),û(x)#52 iDd(x2x8). In the
Edwards-Wilkinson case forl50, we are dealing with a
free field theory and the elementary excitations or~un-
dressed! quasiparticles are the linear nonpropagating dif
sive modes with quadratic dispersionv5nk2, yielding ~ac-
cording to spectral properties! the dynamic exponentz52,
defining the Edwards-Wilkinson universality class. As d
cussed in Paper II it is also an easy task to evaluate, e.g.
slope correlations~1.14! as a purely quantum many bod
calculation. In the nonlinear Burgers case forlÞ0, we ob-
tain correction to the linear mode dispersion law. Moreov
the quasiclassical analysis forD→0 in Papers II and III also
identifies a nonlinear soliton excitation with dispersion la
E}ln21/2P3/2. A detailed analysis of the non-Hermitia
quantum field theory has, however, not yet been achie
and will be considered elsewhere.

In the present paper we continue our investigation of
noisy Burgers equation for the nonequilibrium growth of
interface. We make use of the weak noise canonical ph
space approach developed in Paper III and consider the
lowing important issues:~i! The detailed growth morphology
based on the multisoliton many body description,~ii ! the
non-Hermitian properties of the superimposed linear mo
spectrum and the phenomenon of dynamical pinning
mode transmutation, and~iii ! the correlations in the
Edwards-Wilkinson case, the anomalous diffusion of grow
2-3
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HANS C. FOGEDBY PHYSICAL REVIEW E68, 026132 ~2003!
modes and switching and pathways in the Burgers-KPZ c
correlations in the multisoliton sector, and correlations a
scaling in the two-soliton sector. With respect to~i! we stress
that one of the advantages of the quasiclassical weak n
phase space approach propounded in Papers II and III is
it provides a many body description of a growing interface
terms of solitons and linear modes. The Landau quasipar
picture emerging on the Fokker-Planck level was discus
heuristically in Paper II. Here we analyze in more detail t
time evolution of a growing interface in terms of its eleme
tary excitations. Regarding~ii ! we note that superimposed o
the nonlinear solitons are linear modes obtained by a lin
stability analysis of Eqs.~1.6! and ~1.7! about a soliton
mode. An analysis of the linear mode spectrum was initia
in Papers I and II. In the present paper we complete
analysis also for a multisoliton state and demonstrate am
other properties that the linear modes subject to the nonlin
soliton modes undergo a mode transmutation from diffus
nonpropagating behavior in the absence of solitons to pro
gating behavior in the soliton case. Finally, with regard
~iii ! on the scaling properties of the slope correlations~1.14!,
we provided in Paper II only a heuristic expression for t
scaling functionF̃ based on a general spectral representat
Here we amend this situation and present an explicit exp
sion for F̃ within the two-soliton approximation. For brie
accounts of the present work we refer to Refs.@34,38#; more-
over, Refs.@39# and@40# present a numerical analysis of th
soliton-bearing mean field equations and a tutorial revi
respectively.

The paper is organized in the following manner. In Sec
we discuss the growing interface in terms of soliton mod
In Sec. III we consider the superimposed linear mode sp
trum and discuss the mode transmutation alluded to ab
In Sec. IV we address the statistical properties, and cons
the anomalous diffusion of growth modes, switching a
pathways, correlations in the multi-soliton sector, and in
tail the correlations in the tractable two-soliton sector. In S
V we present a summary and a conclusion.

II. A GROWING INTERFACE

A growing interface governed by the noisy Burgers eq
tion ~1.1! is a simple prototype of an intrinsically open an
driven nonequilibrium system. In the noiseless case foh
50, the interface is damped and the slope fieldu evolves
subject to a transient pattern formation consisting of pro
gating and merging right-hand solitons connected by ra
solutions, with superimposed damped linear modes@1,41#.
The motion is deterministic and nonfluctuational. At lon
times the solitons die out on a time scale set by 1/nk2, where
k is the diffusive mode wave number. In the noisy case
hÞ0, the time evolution and pattern formation change. T
noise balances the damping and drives after a transien
riod the slope field into a stationary morphology compos
of amplitude-matched right- and left-hand solitons with s
perimposed linear modes. The noise strengthD is an essen-
tial parameter changing the qualitative morphology of an
terface; this is reflected mathematically in Eq.~1.11! for the
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transition probability which has an essential singularity
D→0.

The above behavior is illustrated in the linear case wh
an explicit solution of Eq.~1.1! for a wave number compo
nent uk , uk(t)5*dxu(x,t)exp(2ikx), of the slope field
driven by the noise wave number componenthk is given by

uk~ t !5uk
i e2vkt2E

0

t

dt8ike2vk(t2t8)hk~ t8!. ~2.1!

Here vk5nk2 is the diffusive mode dispersion law anduk
i

5uk(t50) the initial slope value. We notice that genera
1/vk sets the time scale. Initially, the motion is determinis
and governed by the noiseless diffusion equation; at lon
times forvkt@1, the noise gradually picks up the motion
indicated by the kernel exp@2vk(t2t8)# in Eq. ~2.1!, anduk
begins to fluctuate and is driven into a stationary noisy st
This behavior is in accordance with the phase space beha
discussed in Paper III on the Fokker-Planck level. In Fig
we have for a particular noise realization depicted the beh
ior of uk . We emphasize that the general aspects of
noise-induced time evolution also holds in the noisy Burg
case here subject to a soliton-induced pattern formation.
transient regime is indicated by I, the long time stationa
regime by II.

As mentioned above, the quantum mechanical interpr
tion allows a discussion of the growing interface in terms
a Landau quasiparticle picture. In the Edwards-Wilkinson
noninteracting case, the relevant quasiparticle is the diffus
modeuk with quadratic dispersion lawv5nk2. In the Bur-
gers case it is a general feature of the Landau quasipar
picture that interactions usually give rise to a dressing eff
of the free~bare! quasiparticle, e.g., the inducement of a
effective mass. In the diffusive mode case this correspond
a dressing of the damping constantn, leaving the dynamical
exponentz52 in v5nk2 unaltered. However, as shown i
Papers II and III, even for weakl a new quasiparticle
emerges, the nonlinear soliton excitation, with dispersion
v}(l/n1/2)k3/2.

FIG. 1. We depict the noisy behavior of a wave number co
ponent of the slope field,uk(t), in the Edwards-Wilkinson case fo
l50. After a transient period given by 1/vk , the noise on the same
time scale gradually picks up the motion and drivesuk(t) into a
stationary noisy state. The transient regime is denoted by I, and
stationary regime by II.
2-4
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From a heuristic point of view we can regard the solit
as a self-bound state of diffusive modes; in other words,
solitons condense or nucleate out of the diffusive mode fi
We note, however, that while the formation of localized so
ton modes with superimposed linear modes is a well-kno
feature of deterministic evolution equations, e.g, the si
Gordon equation and the nonlinear Schro¨dinger equation
Ref. @42#, the underlying mechanism of the doubling of so
ton modes here is the noise. In the approach in@4# the soliton
mode was identified as a special solution of the classical fi
equations~1.6! and~1.7! obtained in the limitD→0 from ~i!
in Ref. @4# the underlying Heisenberg field equations perta
ing to the quantum description and~ii ! in Papers II and III
from the classical field equations arising from a principle
least action in the WKB limit of the Fokker-Planck descri
tion. Below we turn to a discussion of the fluctuating inte
face in terms of the quantum/classical picture discus
above.

A. The Edwards-Wilkinson case—equilibrium interface

In the Edwards-Wilkinson case@23,35# the slope of a fluc-
tuating interface is governed by the driven conserved di
sion equation

]u

]t
5n¹2u1“h, ~2.2!

which is readily solved both on the Langevin level in E
~2.1! and on the Fokker-Planck level. Since the damp
term n¹2u in Eq. ~2.2! can be derived from a thermody
namic free energyF5(1/2)*dx u2, the driven diffusive
equation describes an interface in equilibrium at a temp
ture T5D/2n. In accordance with the quantum field inte
pretation outlined above, this simple case, however, serve
an illustration of the quasiparticle representation. Con
quently, we turn to the field equations~1.6! and ~1.7! in the
linear case forl50:

]u

]t
5n¹2u2¹2p, ~2.3!

]p

]t
52n¹2p. ~2.4!

For a single wave number component, Eq.~2.2! corresponds
to a noise-driven overdamped oscillator with force const
vk5nk2, and the associated canonical field equations~2.3!
and ~2.4! were solved and discussed in Paper III. We fin
supplementing the analysis in Paper III, the solutions

uk~ t !5
uk

f sinhvkt1uk
i sinhvk~T2t !

sinhvkT
, ~2.5!

pk~ t !5nevkt
uk

f 2uk
i e2vkT

sinhvkT
, ~2.6!

for an orbit fromuk
i to uk

f in time T, 0,t,T. The noise field
pk(t) is slaved to the motion ofuk and determined byuk

i ,
02613
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f , and T. During the time evolution it evolves frompk

i

5n@uk
f 2uk

i exp(2vkT)#/sinhvkT to pk
f 5n@uk

f exp(vkT)
2uk

i #/sinhvkT.
We note the correspondence between the physical in

pretation on the Langevin level given by Eq.~2.1! and on the
Fokker-Planck level characterized by Eqs.~2.5! and~2.6!. In
the noiseless case forh50, corresponding to settingpk

50, i.e., uk
f 5uk

i exp(2vkT), the slope field is damped ac
cording touk(t)5uk

i exp(2vkt) over a time scale 1/vk . In
the presence of noise the growing noise fieldpk}exp(vkt)
eventually drivesuk , i.e., uk}exp(vkt). Generally,uk is a
linear combination of a damped part exp(2vkt) and a grow-
ing part exp(vkt), analogous to the decomposition of the fie
in positive and negative frequency parts in quantum ma
body theory@43#. Here the components are decaying a
growing according to the transient and stationary regime
and II in Fig. 1, respectively.

The orbit (uk ,pk) given by Eqs.~2.5! and ~2.6!, repre-
senting the quasiparticles in the classical limitD→0, is con-
fined to a submanifold in phase space delimited by four g
bal conservation laws: Conservation of energyE5H,
conservation of momentumP, conservation of area, i.e., th
integrated slopeM or height offset, and here also conserv
tion of the integrated noise fieldP̃ given by Eqs.~1.15!–
~1.18! for l50, respectively. In wave number space we ha

E5E dk

2p
Ek5E dk

4p
k2p2k~pk22nuk!, ~2.7!

and the energy decomposes in contributionsEk for each
wave number modek. Inserting Eqs.~2.5! and ~2.6! we ob-
tain specifically

Ek5
vk

2

2

uuk
f u21uuk

i u222uk
f u2k

i coshvkT

sinh2 vkT
, ~2.8!

and the energy only depends on the initial and final confi
rationsuk

i , uk
f , and the time intervalT. For fixeduk

i anduk
f

and in the long time limitT→`, the energyEk→0 and the
orbit migrates to the zero-energy manifolds:pk50, the tran-
sient noiseless submanifold, andpk52nuk , the stationary
noisy submanifold. The orbit thus asymptotically pass
through the saddle point (uk ,pk)5(0,0) where the diverging
waiting time ensures ergodic behavior. In Fig. 2 we ha
depicted the orbits in (uk ,pk) phase space.

In a similar manner, the momentumP decomposes ac
cording to

P5E dk

2p
Pk5E dk

2p
iku2kpk . ~2.9!

We note thatP vanishes on the zero-energy manifoldspk
50 andpk52nuk ; in the latter case since the integral in E
~2.9! becomes a total derivative. For a finite time orbit, i
sertion of Eqs.~2.5! and ~2.6! explicitly yields

Pk5n
Im~uk

i uk
f !

sinhvkT
, ~2.10!
2-5
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in terms of uk
i , uk

f , and T; for T→`, we havePk→0.

Likewise, for the integrated slope and noise field,P̃
52nM , we have

M5E dx ui~x!5uk50
i . ~2.11!

Finally, the action associated with an orbit is obtained fro
Eq. ~1.10!. Inserting the equation of motion, Eq.~2.3!, we
have as an intermediate resultS5(1/2p)*dkSk , Sk
5(1/2)*dtk2upku2, and using Eq.~2.6! the action

S5nE dk

2p

uuk
f 2uk

i exp~2vkT!u2

12exp~22vkT!
, ~2.12!

determined by the initial and final configurationsuk
i anduk

f

and the traversal timeT. According to Eq.~1.11!, we subse-
quently obtain the transition probability

P~uk
f ,uk

i ,T!}expF2
n

DE dk

2p

uuk
f 2uk

i exp~2vkT!u2

12exp~22vkT!
G ,

~2.13!

a well-known result@44,45#!. In the limit T→`, the orbit
migrates to transient-stationary zero-energy manifolds
we arrive at the stationary Gaussian distribution~1.21!. This
behavior in phase space is consistent with the qualita
behavior shown in Fig. 1.

Summarizing, in the linear Edwards-Wilkinson case t
conserved noise-driven stochastic diffusion equation is in
weak noise limit equivalent to coupled field equations adm
ting both damped and growing solutions for the slope fie
The stochastic noise is replaced by a noise field canonic
conjugate to the slope field. Both damped and growing so
tions are required in order to describe the crossover from
transient regime to the stationary regime. The wave numbk
is a good quantum number and we can envisage the flu
ating interface as a gas of growing and damped diffus
modes according to the decomposition, see also Paper I

FIG. 2. Canonical phase space plot in the linear case forl50 of
a single wave number component. The solid lines indicate the t
sient submanifoldpk50 ~I! and the stationary submanifoldpk

52nuk ~II !. The stationary saddle point~SP! is at the origin. For
t→`, the orbit fromuk

i to uk
f migrates to the zero-energy manifold

The infinite waiting time at the saddle point corresponds to ergo
behavior.
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u~x,t !5E dk

2p
@Ake

2vkteikx1Bke
vkte2 ikx#. ~2.14!

In field theoretical terms,u(x,t) is a free field and the el-
ementary modes are noninteracting. A particular mode
on the energy surfaceEk and is moreover specified by th
conserved momentumPk . Furthermore, under time evolu
tion the integrated slope fieldM and noise fieldP̃ are also
conserved. Finally, with the mode is associated an actionSk
yielding the transition probabilityP.

The description based on the field equations~2.3! and
~2.4! and the associated symplectic structure is basic
classical. Subject to canonical quantization the diffus
modes become bona fide elementary excitations and a
dau quasiparticle picture of the interface emerges. The or
nal noise fluctuations are then interpreted as quantum fl
tuations emerging from the underlying operator algeb
Finally, we note that subject to a Wick rotationt→ i t , the
diffusive quasiparticles are transformed to dispersive p
ticlelike quasiparticles with massD/2n.

B. The Burgers-KPZ case—nonequilibrium interface

In the case of a growing interface the situation is mo
complex. The general behavior depicted in Fig. 1 still ho
in the sense that the interface evolves from a transient s
to a stochastic stationary state. However, unlike the lin
equilibrium case where the fluctuations inu are extended and
diffusive, the fluctuations in the nonlinear nonequilibriu
growth case include localized propagating modes in orde
account for a growing height profile. This is also evide
from, e.g., the KPZ equation in Eq.~1.4!, where the damping
and growth terms transform differently under time revers
For t→2t, h→2h, and n→2n the KPZ equation stays
invariant. This is consistent with the fact that in the deco
position of the irreversible linear modes in growing and d
caying components the dampingn enters in the combination
nt, whereas the average nonlinear reversible growth term
the stationary statêdh/dt&st5(l/2)^(“h)2& is invariant.
Clearly, the growth term cannot be derived from a therm
dynamic free energy, the term moreover violates the pot
tial condition@46–49# and drives the system away from the
mal equilibrium into a stationary kinetic growing state.

The issue on the Fokker-Planck level is again to estab
a quasiparticle picture and to determine orbits in (u,p) phase
space from an initial configurationui at time t50 to a final
configurationuf at time t5T in order to, via the action as
sociated with the orbit, evaluate the transition probabil
P(uf ,ui ,T). The orbit is in principle determined as an initia
final value problem, i.e., a boundary value problem in tim
of the mean field equations~1.6! and~1.7!. Unlike the linear
case where we can expandu on plane wave diffusive mode
and thus achieve a complete analysis, the nonlinear and
sumably nonintegrable character of Eqs.~1.6! and~1.7! pre-
cludes such an analysis.

Two new features distinguish the field equations~1.6! and
~1.7! from the linear case:~i! the nonlinear coupling strengt
l setting together withn an intrinsic length scalen/l and
~ii ! the amplitude-dependent Galilean invariance~1.3!. The

n-
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new length scale allows for the possibility of localized no
linear excitations and the Galilean symmetry permits
generation of a class of propagating particlelike excitatio
from a static solution, i.e., an excitation at rest. The sta
excitations are the right- and left-hand solitons~1.8! charac-
terized by the parity indexm561. Boosting a static soliton
to the velocityv, denoting the boundary valuesu1 andu2 ,
and using the Galilean symmetry in Eq.~1.3!, we obtain the
fundamental soliton condition

u11u252
2v
l

. ~2.15!

In Fig. 3 we have depicted the fundamental ‘‘quarks’’
solitons and the associated height profiles.

The right-hand soliton form511 moves on the noiseles
transient submanifoldp50 and is a solution of the dampe
noiseless Burgers equation, i.e., Eq.~1.1! for h50. Within
the canonical framework the right-hand soliton does not c
tribute to the dynamics of the interface; according to E
~1.15! and~1.16!, with p50, it carries zero energy and zer
momentum. The left-hand soliton form521 is associated
with the noisy or stationary submanifoldp52nu, and it fol-
lows from the field equations that it is a solution of th
growing noiseless Burgers equation forn→2n. Note that
due to the uneven boundary valuesu1 andu2 , the solitons
are self-sustained dissipative structures driven by bound
currents as discussed in Paper I. The left-hand soliton is
dowed with dynamical attributes and carries according
Eqs. ~1.15!, ~1.16!, and ~1.10! energy, momentum, and ac
tion:

E5
2

3
nl~u1

3 2u2
3 !, ~2.16!

P5n~u1
2 2u2

2 !, ~2.17!

S5
1

6
nluu12u2u3T. ~2.18!

FIG. 3. We depict the right hand and left hand moving solito
forming the ‘‘quarks’’ in the description of a growing interface. W
have, moreover, shown the associated height profiles.
02613
-
e
s
c

-
.

ry
n-
o

Sinceu1,u2 for a left-hand soliton, its energy is negativ
ExpressingP in the form P52(2vn/l)(u12u2) using
Eq. ~2.15!, it follows that P points in the direction ofv.
FromP5mv, we can also associate an amplitude-depend
massm5(2n/l)uu12u2u with the soliton. Finally, the ac-
tion for a left-hand soliton orbit over timeT is positive and
Galilean invariant.

In addition to the localized soliton modes, the field equ
tions also support linear modes superimposed on the sol
These modes are obtained by a linear stability analysis of
field equations and will be discussed in Sec. III. In the lim
l→0, the soliton modes vanish and the remaining fluct
tions are the diffusive modes of the Edwards-Wilkins
model.

The field equations~1.6! and ~1.7! are nonlinear and the
soliton solutions do not constitute a complete set in the sa
manner as the plane wave decomposition~2.14! in the
Edwards-Wilkinson case. We shall, nevertheless, as a w
ing hypothesis assume that we can resolve a given in
interface slope profileu in terms of a gas of right-hand an
left-hand solitons matched according to the soliton condit
~2.15!; i.e., with horizontal constant slope segments. Asso
ated with the soliton representation ofu there is also a soliton
representation of the associated noise fieldp. From the form
of the field equations it follows that a multisoliton configu
ration is an approximate solution, provided we can cont
the overlap contributionlu

6

m i
“um l arising from the nonlin-

ear term; herei andl denote thei th andl th soliton. Since the
soliton width is of ordern/lu, the overlap only contributes
in a region of ordern/lu about the soliton center and i
small in the inviscid limitn→0 and for a dilute soliton gas
Otherwise, we assume that at least for smalln we can absorb
the correction term in a linear mode contribution. In su
mary, we represent a slope configurationu and the associated
noise field configurationp in terms of a gas of right-hand an
left-hand solitons matched according to Eq.~2.15! with su-
perimposed linear modes.

This representation of a growing interface is in the sp
of a Landau quasiparticle picture of an interacting quant
many body system@43,50#. In a heuristic sense we assum
that the interface at a given instant of time is characteri
by a gas of localized soliton modes and extended lin
modes. Since the soliton is not associated with a particle
is a nonlinear solution of classical field equations, the soli
number is not conserved; in other words, solitons are crea
and annihilated subject to collisions.

Keeping only the solitons, explicit expressions foru andp
are easily constructed in terms of the Galilee-boosted sol
modes~1.8!. Introducing the mean amplitudekp and velocity
vp in terms of the boundary valueup11 and up of the pth
soliton,

kp5
l

4n
~up112up!, ~2.19!

vp52
l

2
~up111up!, ~2.20!

s
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we obtain for ann-soliton representation of the slope fieldus
and associated noise fieldps ,

us~x,t !5
2n

l (
p51

n

kp tanhukpu~x2vpt2xp!, ~2.21!

ps~x,t !5
~2n!2

l (
p51,kp,0

n

kp tanhukpu~x2vpt2xp!.

~2.22!

The solitons are arranged from left to right according to
increasing indexp, p51,2, . . . ,n. The center of thepth soli-
ton is at xp , and we have setu15un1150. In Fig. 4 we
have shown ann-soliton configuration.

The soliton representation in Eq.~2.21! of the interface
evolves in time according to the field equations. The mot
corresponds to an orbit in (u,p) phase space lying on th
manifold determined by the conservation of energyE, mo-
mentumP, and areaM according to Eqs.~1.15!, ~1.16!, and
~1.17!. We also observe from Eq.~1.18! that the integrated
noise fieldP̃, sinceP is conserved, develops linearly in tim
according to

P̃5lPt1const. ~2.23!

In the soliton representation the contributions to the ene
momentum, action, and area decompose. Noting that o
left-hand solitons forup11,up contribute dynamically, and
applying Eqs.~2.16!, ~2.17!, ~2.18!, and~1.17!, we have

E5
2

3
nl (

p51,up11,up

n

~up11
3 2up

3!, ~2.24!

P5n (
p51,up11,up

n

~up11
2 2up

2!, ~2.25!

S5
1

6
nlT (

p51,up11,up

n

uup112upu3, ~2.26!

FIG. 4. We depict ann-soliton slope configuration of a growin
interface. Thepth soliton moves with velocityvp52(l/2)(up11

1up), has boundary valuesu1 andu2 , and is centered atxp . The
arrows on the horizontal intersoliton segments indicate the pro
gation of linear modes.
02613
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M5 (
p51

n

up11~xp112xp!. ~2.27!

Although, as follows from Eqs.~2.24!, ~2.25!, and~2.26!, the
total energy, momentum, and action are additive quanti
~extensive!, the soliton gas still represents a very intrica
many body problem. This is due to the soliton matchi
condition in Eq.~2.15!, i.e., the horizontal segments connec
ing the solitons, and the dynamical asymmetry between l
hand and right-hand solitons. The solitons in representa
~2.21! propagate with, in general, different velocitiesvp , and
are thus subject to collisions. Since we only have at
disposal single-soliton solutions of the field equatio
patched together to represent a slope configuration at a
ticular time instant and not a general solution, we have li
ited control over soliton-soliton scattering. Clearly, expre
sions~2.24!–~2.26! only hold in between soliton collisions
In particular, the timeT entering in the action~2.26! refers to
times between collisions, i.e.,T is typically of orderuxp11
2xpu/vp . The working assumption here is that in betwe
the collisions, the soliton~plus linear modes! representation
is valid, and that energy, momentum, and area are conse
during collisions. However, the number of solitons is n
preserved, i.e., solitons are created and annihilated subje
collisions. Finally, we note that at long times the orbit fro
ui to uf migrates to the zero-energy manifold as conjectu
in Paper III. This implies that the finite energy solitons
long times are suppressed, and that the system in this lim
described by diffusive modes yielding the stationary dis
bution ~1.21!. For further illustration, we have depicted i
Fig. 5 the slope fieldu, height fieldh, and noise fieldp for a
four-soliton configuration. The solitons are centered atx1 ,
x2 , x3, and x4 and propagate with velocitiesv1
52(l/2)u2 , v252(l/2)(u31u2), v352(l/2)(u41u3),
and v452(l/2)u2, whereu2 , u3, and u4 are the plateau
values. The configuration carries energyE5(2/3)nl(u2

3

2u3
3), momentum P5n(u2

22u3
2), action S

5(1/6)nlT(uu2u31uu42u3u31uu4u3), and areaM5u2(x2
2x1)1u3(x32x2)1u4(x42x3) at time t50. By integra-
tion, we note that the total noise fieldP̃ evolves asP̃5 P̃0

1lnt(u2
22u3

2), in agreement with Eq.~2.23!.
It is clear that the nonequilibrium growth of the interfac

is fundamentally related to the existence of localized pro
gating soliton modes. Expressing the KPZ equation~1.4! in
the form

]h

]t
5n¹2h1

l

2
u21h, ~2.28!

the linear damping term is associated with the linear mod
whereas the nonequilibrium growth term is driven by t
solitons. In the Edwards-Wilkinson case the modes are
tended and diffusive,u}(kf k(t)cos(kx1w), where f k(t) is
related to Eq.~2.5!, and the height fieldh5*xudx8 for a
particulark mode behaves likeh}sin(kx1w); consequently,
^h&50, and growth is absent. On the contrary, in the Burg
case the localized soliton modes emerge andh(x)
5*xu(x8)dx8 grows owing to the propagation of soliton

a-
2-8
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CORRELATIONS, SOLITON MODES, AND NON- . . . PHYSICAL REVIEW E 68, 026132 ~2003!
across the system. Averaging Eq.~2.28! and settingn50, we
have^h&5(l/2)^u2&t1const., which is consistent with th
passage of a soliton with amplitudeu and velocity uvu
5(l/2)u at a given pointx. This growth behavior also fol-
lows from inspection of Fig. 5.

The constant slope and noise field configurationu5u0
andp5p0 have, according to Eqs.~1.15! and~1.16!, vanish-
ing energyE and momentumP, and thus form a continuum
of zero-energy states; note that the energy is not boun
from below, i.e., the zero-energy states are not ground sta
The right- and left-hand solitons in Eq.~1.8! lift the zero-
energy degeneracy and connect a constantu2 configuration
to a constantu1 configuration. Unlike the solitons in thew4

theory or sine-Gordon theory@42,51#, connecting two degen
erate ground states6w0 or degenerate ground statesw0
5pp, wherep is an integer, respectively, with massive ga
ful excitations, the Burgers solitons are gapless modes fo
ing a continuum of states with energyE}(u1

3 2u2
3 ) and mo-

mentumP}(u1
2 2u2

2 ).
In the discussion of a growing interface in terms of

slope field, we must introduce appropriate boundary con
tions in order to describe the physical growth state. In
instantaneous configuration in Figs. 4 and 5 we chose

FIG. 5. We depict the four-soliton representation of the slo
field u, the noise fieldp, and the height fieldh. The shaded area in
u, i.e., the integration ofu up to the pointx, equals the heighth
at x.
02613
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convenience vanishing slope at the boundaries. Howe
owing to the soliton propagation this boundary conditi
cannot be maintained in the course of time as the solit
cross the boundaries of the system, and it is more approp
to assume periodic boundary conditions for the slope fie
i.e., u(x)5u(x1L) at all times, whereL is the size of the
system. Note that periodic boundary conditions for the slo
field in general do not imply periodic boundary conditio
for the associated height fieldh, the integrated slope field
We have from h(x)5*xu(x8)dx8, h(x)5h(x1L)1M ,
whereM is the area underu, and only in the case of zero-are
slope configurations doesh also satisfy periodic boundar
conditions, corresponding to vanishing height offset at
boundaries.

Whereas periodic boundary conditions for the slope fi
are consistent with the extended diffusive modes in
Edwards-Wilkinson case, i.e., the free fields, the elemen
right and left hand Burgers solitons violate the bounda
conditions since they connect unequal zeroenergy state
this sense we can regard the solitons as ‘‘quarks’’ in
present many body formulation. A proper elementary exc
tion or quasiparticle satisfying periodic boundary conditio
is thus composed of two or more ‘‘quarks’’ as illustrated
Figs. 4 and 5.

The two-soliton configuration

The simplest configuration satisfying periodic bounda
condition is composed of two solitons of opposite parity, i.
a noisy and a noiseless kink. The solitons have the comm
amplitudeu, are centered atx1 and x2, and propagate as
composite entity, according to Eq.~2.15!, with velocity v5
2lu/2. Specifically, this pair-soliton mode has the form

u2~x,t !5
u

2 F tanh
ks

2
~x2vt2x1!2tanh

ks

2
~x2vt2x2!G .

~2.29!

The configurationu2 together with the associated noise fie
p2 ~for u.0),

p2~x,t !5nuF12tanh
ks

2
~x2vt2x2!G , ~2.30!

and the height fieldh2,

h2~x,t !5
u

ks
lnF cosh

ks

2
~x2vt2x1!

cosh
ks

2
~x2vt2x2!

G1const,

~2.31!

are depicted at the initial timet50 in Fig. 6.
According to Eqs.~2.24!–~2.27!, the two-soliton configu-

ration is endowed with the dynamical attributes

E52
2

3
nluuu3, ~2.32!

P5n sgn~u!u2, ~2.33!

e
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S5
1

6
nluuu3T, ~2.34!

M5u~x22x1!. ~2.35!

The two-soliton configuration corresponds to an orbit
(u,p) phase space. Choosing as initial configuration at
50 (ui ,pi)5@u2(x,0),p2(x,0)#, the final configuration att
5T is then given by (uf ,pf)5@u2(x,T),p2(x,T)#. In a finite
system of sizeL with periodic boundary conditions, this i
moreover a periodic orbit with periodL/v; in the thermody-
namic limit L→`, the period diverges.

By inspection of Fig. 6 it follows that the two-solito
configuration propagates with a constant profile preserv
the areaM, i.e., the height offset 2u(x22x1). Subject to
periodic boundary conditions in a system of sizeL, the soli-
ton pair reappears after a periodL/v. This motion corre-
sponds to a simple growth scenario where a layer of th
nessDh5u(x22x1) is added toh per revolution of the pair.
Subject to this particular soliton mode the interface th
grows with velocity (1/2)lu2(x22x1)/L. This is consistent
with the averaged form of Eq.~2.28! in the stationary state
^]h/]t&5(l/2)^u2&, noting the spatial weight (x22x1)/L of
the soliton pair in the average^]h/]t& over the interface. We
also remark that the local increase inh, Dh5u,, owing to
the passage of a soliton pair of size,5ux22x1u in time Dt
5,/uvu, whereuvu5lu/2, yieldsDh/Dt5(l/2)u2, again is

FIG. 6. We depict the slope fieldu2, the associated noise fiel
p2, and the resulting height profileh2 at timet50 for a two-soliton
configuration. The slope configuration has amplitudeu, size ,
5ux22x1u, and propagates with velocityv52lu/2. The arrow
indicates the propagation of the superimposed linear mode
phase velocity 2v ~discussed in Sec. III!.
02613
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in accordance with increasing the averaged KPZ equat
Finally, the integrated noise fieldP̃5*dxp decreases lin-
early with increasing time as the soliton pair revolves li
P̃5 P̃024nuuuut in agreement with Eq.~2.23!.

According tov52lu/2 the velocity of the soliton pair
is proportional to the amplitudeu. Expressing the energy
E and momentum P in terms of v, we have E
52(16/3)(n/l2)uvu3 and P54(n/l2)vuvu characterizing
the nonlinear excitation. Moreover, eliminating the veloc
we arrive at the dispersion law

E52
4

3

l

n1/2
uPu3/2. ~2.36!

The soliton pair is thus a gapless quasiparticle mode w
exponentz53/2. As discussed in Paper II a general spec
representation for the slope correlations allows us to m
contact with the scaling form in Eq.~1.20! and identify the
mode exponentz with the dynamic exponent.

Within the present description the statistical weight of t
soliton is determined by Eq.~1.21!. In the inviscid limit for
small n we obtain for a pair of size, and amplitudeu the
normalized stationary distribution

Pst~u,, !5Vst
21~L !expF2

n

D
u2,G , ~2.37!

with normalization factor

Vst~L !52~pD/n!1/2L1/2. ~2.38!

The distribution is parametrized by the amplitudeu and the
size ,. The normalization factor or partition functionVst
varies asL1/2, and the distribution thus vanishes in the the
modynamic limitL→`, characteristic of a localized excita
tion. The mean size of a soliton pair is given by

^,&5E
0

L

dlE du ,Pst~u,, !. ~2.39!

Inserting Pst we obtain^,&5(1/3)L, i.e., the mean size o
the pair scales with the system size. This behavior is cha
teristic of a spatially extended or loosely bound excitati
and we can envisage the soliton pair as a ‘‘string excitatio
connecting right- and left-hand solitons~the fundamental
‘‘quarks’’ !.

In a similar manner we can determine the transition pr
ability associated with a soliton pair using Eq.~1.11!. Insert-
ing S from Eq. ~2.34! and normalizing we obtain

Psol~u,T!5Vsol
21~T!expF2

nl

6D
uuu3TG , ~2.40!

where the normalization factor or the dynamic partition fun
tion is given by

Vsol~T!5
2

3
GS 1

3D F6D

nl

1

TG1/3

. ~2.41!

th
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Here the Gamma functionG(z)5*0exp(2t)tz21dt arises
from the normalization ofPsol; G(1/3)52.681 74.

Before turning to the linear fluctuation spectrum in t
following section, we wish to briefly review a recent nume
cal study of the field equations~1.6! and~1.7! @39#. The field
equations are of the diffusive-advective type, with the ch
acteristic feature that the equation forp admits exponentially
growing solutions due to the negative diffusion coefficie
thus rendering direct forward integration in time numerica
unfeasible. In order to resolve this instability problem, w
developed a ‘‘time loop’’ integration procedure based on
tegrating the equation foru forward in time followed by an
integration backward in time of the equation forp. This nu-
merical scheme thus requires an assignment of both in
and final (u,p) configurations, and therefore mainly serv
as a tool to check whether a certain assignment actually
stitutes a solution.

We investigated numerically three propagating solit
configurations:~i! a propagating soliton pair,~ii ! two sym-
metrical solitons colliding with a static soliton, and~iii ! the
collison of two symmetrical soliton pairs. Referring to Re
@39# for details, we summarize our findings below. We fou
in case~i! that the pair soliton in the inviscid limit for sma
n is a long lived excitation, thus justifying the quasipartic
interpretation above. In case~ii ! we considered symmetrica
solitons propagating towards and colliding with a static so
ton at the center passing through the static soliton and
emerging with no phase shift or delay; this specific mo
corresponds to filling in a dip and subsequently nucleatin
tip at the same point in the height field. In case~iii ! we
finally considered two symmetrical soliton pairs collidin
and reappearing subject to a phase shift or delay where
incoming trailing solitons become the leading outgoing so
tons; this mode correponds to filling in a trough and sub
quent nucleation of a plateau in the height profile. It w
characteristic of the soliton collisions in cases~ii ! and ~iii !
that the conservation ofE, P, and M was satisfied during
collision, a feature that seems to stabilize the integration

III. FLUCTUATIONS—MODE TRANSMUTATION

The soliton spectrum discussed in the preceding sectio
a fundamental signature of the nonlinear character of
Burgers equation, and at the same time essential in acco
ing for the growth aspects of an interface. In the pres
section we address the fluctuation spectrum or linear m
spectrum superimposed on the soliton gas. In the lin
Edwards-Wilkinson case discussed in Sec. II, the fluctuati
exhaust the mode spectrum and have a diffusive characte
the nonlinear Burgers-KPZ case the fluctuations are supe
posed on the soliton modes and become propagating.
fluctuation spectrum was discussed incompletely in
noiseless Burgers case in Paper I and in the noisy cas
Paper II. Here we present a detailed analysis. A brief acco
of the work is given in Ref.@38#; here we complete the
analysis.

A. The noiseless Burgers case

The noiseless Burgers equation is inferred from Eq.~1.1!
by setting h50 and also follows from the field equatio
~1.6! on thep50 submanifold,
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S ]

]t
2lu“ Du5n¹2u. ~3.1!

This equation exhibits a transient pattern formation co
posed of right hand solitons connected by ramps with sup
imposed linear modes. A single right hand static solit
mode is given by Eq.~1.8! for m51, i.e., us5u tanhksx,
ks5lu/2n. The soliton has amplitudeu and widthks

21 . A
spectrum of moving solitons is then generated by the G
ilean boost~1.3!: x→x2lu0t, u→u2u0.

In order to analyze the superimposed linear fluctuatio
we expandu about the soliton modeus , u5us1du. To
linear order indu we obtain the equation of motion,

S ]

]t
2lus“ D du5n¹2du1l~“us!du. ~3.2!

In the asymptotic limit for largeuxu, this equation is readily
analyzed. Noting thatus→usgn(x), “us→0, and searching
for plane wave solutions of the form du
}exp(2Ekt)exp(ikx), we identify a spectrum of complex ei
genvalues,

Ek5nk22 iluk sgn~x!, ~3.3!

showing the non-Hermitian character of Eq.~3.2!. Introduc-
ing the phase velocityv5lu, the imaginary part of the ei-
genvalueEk combines with the plane wave part and yiel
the propagating damped wave form

du}e2nk2teik[x1vt sgn(x)] . ~3.4!

The soliton mode thus gives rise to amode transmutationin
the sense that the diffusive mode in the Edwards-Wilkins
case du}exp(2nk2t)exp(ikx) is transmuted to a dampe
propagating mode in the Burgers case with a phase velo
v depending on the soliton amplitudeu. The mode transmu-
tation, of course, also follows from the Galilean invariance
Eq. ~1.3! since a shift of the slope field to the soliton amp
tudeu corresponds to a transformation to the moving fra
x→x2lut. For large positivex, the mode propagates to th
left, for large negativex the propagation is to the right, i.e
the mode propagates towards the soliton center which
acts like a sink. The phenomena of mode transmutation
also been noted by Schu¨tz @52# in the case of the asymmetri
exclusion model, a lattice version of the noisy Burgers eq
tion, in the context of analyzing the shocks, corresponding
the solitons in the present context.

As noted in Paper I the analysis of Eq.~3.2! can be ex-
tended to the whole axis by introducing a nonuniform gau
function g determined by the soliton profile in Eq.~1.8!,

g~x!5ks tanhksx, ks5lu/2n. ~3.5!

By means ofg we can express Eq.~3.2! in the Schro¨dinger-
like form,

2
]du

]t
5D~g!du, ~3.6!
2-11



g

ed

s

at
lity
lo
p
m
d

e

-

a
lu

a

l
ro-

tion

with
uge

atic

t
d of

ent

ely

sis
-
.

ical
e

.

-
ut
al

des

s

HANS C. FOGEDBY PHYSICAL REVIEW E68, 026132 ~2003!
where the operatorD(g) in the quantum mechanical analo
is given by the Hamiltonian

D~g!52n@“1g~x!#21nks
2F12

2

cosh2 ksx
G . ~3.7!

This equation of motion describes in imaginary Wick-rotat
time a particle moving in the potential22/cosh2 ksx subject
to the imaginary gauge fieldig. Absorbing the gauge field by
means of the gauge transformation

U~g!5expF2E g~x!dxG5cosh21 ksx ~3.8!

and using the identity (“1g)25U(g)¹2U(g)21, the non-
Hermitian equation of motion~3.6! takes the Hermitian form

2
]dũ

]t
5D~0!dũ, ~3.9!

where

dũ5U~g!21du. ~3.10!

We also observe that the gauge transformation in Eq.~3.8!
has the same form as the Cole-Hopf transformation@53,54#
applied to the static soliton solutionus , see also Paper
I–III.

The presence of the gauge function changes the sp
behavior of the eigenmodes and thus their normalizabi
The imposition of physical constraints such as spatially
calized modes or asymptotic plane wave modes obeying
riodic boundary conditions consequently give rise to a co
plex eigenvalue spectrum. Since we can ‘‘gauge’’ the mo
problem in Eq.~3.6! to the exactly solvable Schro¨dinger
problem defined by Eq.~3.9!, we are able to complete th
analysis.

Settingdũ}exp(2Vt), whereV is the frequency eigen
value, the spectrum of the ensuing eigenvalue problem,

D~0!dũ5Vdũ, ~3.11!

associated withD(0) can be analyzed analytically@55,56#. It
is composed of a localized zero-frequency mode and a b
of phase-shifted extended scattering modes with eigenva

Vk5n~k21ks
2!. ~3.12!

The eigenmodes have the form

dũ}
1

coshksx
, V050, ~3.13!

dũ}exp~ ikx!sk~x!, Vk5n~k21ks
2!, ~3.14!

sk~x!5
k1 iks tanhksx

k2 iks
. ~3.15!
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The x dependents matrix sk(x)5usk(x)uexp@idk(x)# gives
rise to a spatial modulationusk(x)u5@(k21ks

2 tanh2 ksx)/(k2

1ks
2)#1/2 of the plane wave near the soliton center over

range ks
21 and a phase shiftdk(x)5tan21@(ks tanhksx)/k#

1tan21(ks /k). For x→2`, sk(x)→1; for x→`, sk(x)
→(k1 iks)/(k2 iks)5exp(idk), andsk(x) becomes the usua
s matrix. We note that the bound state solution and its ze
frequency eigenvalue is contained in the scattering solu
as a pole in thes matrix for k→ iks .

Inserting the gauge transformation in Eq.~3.8!, we obtain
for the zero modedu}cosh22(ksx)}“us, which thus corre-
sponds to the translation or Goldstone mode associated
the position of the soliton. For the extended states the ga
transformationU provides an envelope of rangeks

21 , i.e.,
du}exp(ikx)sk(x)cosh21(ksx). The complete solution of the
mode equation~3.2! thus takes the form

du5
A

cosh2 ksx
1(

k
Bke

2Vkt
eikx

coshksx
sk~x!, ~3.16!

expressing the fluctuations of the slope field about the st
right-hand solitonus ; A andBk5B2k* are expansion coeffi-
cients. The first term in Eq.~3.16! is the time independen
translation mode. The second term corresponds to a ban
damped localized states with a gapnks

2 in the spectrumVk

5n(k21ks
2). Moreover, the scattering modes are transpar

and phase shifted bydk52 tan21(ks /k), implying according
to Levinson’s theorem, that the band is depleted by precis
one state corresponding to the translation mode.

In order to make contact with the asymptotic analy
yielding the spectrum in Eq.~3.3!, we observe that the fluc
tuations given by Eq.~3.16! do not exhaust the spectrum
Since the gauge factorU5cosh21 ksx provides a falloff en-
velope, we can extend the set of solutions by an analyt
continuation in the wave numberk in the same manner as th
translation mode is retrieved by settingk5 iks . Thus shifting
k→k1 ik, where uku<ks , we obtain by insertion in Eq
~3.12! the complex spectrum,

Ek,k5n~k21ks
22k2!12inkk, uku<ks , ~3.17!

and associated fluctuation modes

du5
A

cosh2 ksx
1(

k,k
Bk,ke2(Vk2nk2)teik(x22nkt)

3
e2kx

coshksx
sk1 ik~x!, ~3.18!

whereBk,k5B2k,k* sincedu is real.
Expressions~3.17! and ~3.18! provide the complete ana

lytically continued solution of the fluctuation spectrum abo
the static soliton compatible with the imposed physic
boundary conditions. Fork56ks , we recover the spectrum
~3.3! of right hand and left hand extended gapless mo
propagating towards the soliton center with velocityv
52nks5lu. For uku,ks we obtain a band of gapful mode
with localized envelopes propagating with velocity 2nk to-
2-12
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CORRELATIONS, SOLITON MODES, AND NON- . . . PHYSICAL REVIEW E 68, 026132 ~2003!
wards the soliton center. Finally, fork50 the envelope is
symmetric, the spectrumEk,0 is real, and the mode has n
propagating component; fork50 andk5ks we retrieve the
time independent translation mode. With the exception of
extended mode fork56ks , the envelope modes foruku
,ks aredynamically pinnedto the soliton. This phenomeno
of localizationor dynamical pinningof the modes is associ
ated with the complex spectrum in Eq.~3.17! resulting from
the non-Hermitian character of the eigenvalue problem. In
cases the modes are damped with a damping constant g
by n(k21ks

22k2). We mention that a non-Hermitian eigen
value spectrum is also encountered in the context of
pinning and the transverse Meissner effect in highTc super-
conductors@57#. Here the imaginary gauge field is uniform
and is given by the applied transverse magnetic field; in
present case the gauge field is spatially varying and given
the nonlinear soliton excitations.

In Fig. 7 we have depicted the spectrum in a plot of t
imaginary part ofEk,k versus its real part. In Fig. 8 we hav
shown the associated characteristic fluctuation mode
terns. Specifically, in order to obtain a real extended m
propagating towards the soliton center with velocityv
52nkslu from the left and with velocity2v from the right
with continuous derivative atx50, thus extending the
asymptotic solution~3.4! to the whole axis we form an ap
propriate linear combination from Eq.~3.18! with equal
weights according to the assignments6k andk56ks . Ig-
noring here the modulation factorsk1 ik(x), which is easily
incorporated, we obtain

du}e2nk2t
e2ksx cosk~x2vt !1eksx cosk~x1vt !

cosksx
.

~3.19!

This mode is depicted in Fig. 9.

FIG. 7. The complex eigenvalue spectrum for the fluctuat
linear modes ReEk,k5n(k21ks

22k2) and ImEk,k52nkk. The
bounding parabola fork5ks and k52ks corresponds to the lef
and right extended modes propagating towards the soliton ce
they are denoted I and I8, respectively. The shaded area bounded
the parabola corresponds to localized propagating modes fok
Þ0. For k50, the spectrum is real corresponding to a localiz
nonpropagating symmetric mode. The point TM corresponds to
translation mode.
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B. The noisy Burgers case

In order to discuss the fluctuation spectrum in the no
case, we must address the coupled field equations~1.6! and
~1.7! and expand the slope fieldu and noise fieldp about the
soliton configurations, in the single soliton case given
Eqs. ~1.8! and ~1.9! and in the multisoliton case by Eqs
~2.21! and ~2.22!. As also resulting from the analysis in Pa
per II it is convenient to make use of a symmetrical form
lation and introduce the auxiliary noise fieldw by means of
the shift

p5n~u2w!. ~3.20!

The field equations then assume the symmetrical form

S ]

]t
2lu“ Du5n¹2w, ~3.21!

S ]

]t
2lu“ Dw5n¹2u. ~3.22!

g

er;
y

e

FIG. 8. The fluctuation patterns of the pinned dynamical mo
corresponding to the sectors of the eigenvalue spectrum in Fig
The arrows indicate the propagation directions.

FIG. 9. We depict the extended mode propagating from ri
and left towards the soliton center that acts like a sink. The ce
point atx50 oscillates with frequencyv5kv. The arrows indicate
the propagation direction.
2-13
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HANS C. FOGEDBY PHYSICAL REVIEW E68, 026132 ~2003!
The single-soliton solutionus
m is given by Eq.~1.8! and the

associated noise solution by

ws
m5mus1const. ~3.23!

Expanding about a general multisoliton configurati
(us ,ws), whereus is given by Eq.~2.21! andws by ~modulus
a constant!,

ws~x,t !5
2n

l (
p51

n

ukputanhukpu~x2vpt2xp!, ~3.24!

by setting u5us1du and w5ws1dw, we obtain the
coupled linear equations of motion,

S ]

]t
2lus“ D du5n¹2dw1l~“us!du, ~3.25!

S ]

]t
2lus“ D dw5n¹2du1l~“ws!du, ~3.26!

determining the fluctuation spectrum of superimposed lin
modes.

The analysis proceeds as in the noiseless case. Refe
to Eqs. ~2.21! and ~3.24! we note that in the intersoliton
matching regions of constant slope and noise fie
“us5“ws50. Equations ~3.25! and ~3.26! then
decouple as in the linear Edwards-Wilkinson case a
setting us5u and looking for solutions of the plan
wave form du,dw}exp(2Ekt)exp(ikx), we obtain
du6dw}exp(2Ek

6t)exp(ikx), i.e., du}@A exp(2Ek
1t)

1B exp(2Ek
2t)#exp(ikx), where the non-Hermitian comple

eigenvalue spectrum similar to the noiseless case is give

Ek
656nk22 ivk, v5lu. ~3.27!

The du mode~and likewise thedw mode! thus corresponds
to a propagating wave with both a growing and decay
component,

du}~Ae2nk2t1Benk2t!eik(x1vt). ~3.28!

These aspects are consistent with the general phase s
behavior depicted in Fig. 2, whereas the propagating as
as in the noiseless case is the manifestation of a mode tr
mutation from diffusive modes in the Edwards-Wilkinso
case to propagating modes in the Burgers case. As indic
in Fig. 4 the linear mode propagates to the left foru.0 and
to the right foru,0; for u50 the propagation velocity van
ishes, and we retrieve the diffusive modes in the Edwar
Wilkinson case. We note in particular that for a static rig
hand soliton with boundary valuesu656u, equivalent to
the noiseless case discussed above, the mode propagat
wards the soliton center which acts like a sink; for a sta
noise-induced left-hand soliton with boundary valuesu6

57u, the situation is reversed and the modes propag
away from the soliton that in this case plays the role o
source.
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In the soliton regions the slope and noise fields vary o
a scaleks

21 , and we must address Eqs.~3.25! and ~3.26!.
Introducing the auxiliary variables

dX65du6dw, ~3.29!

and the general gauge functiongs defined by the slope pro
file

gs~x,t !5
l

2n
us~x,t !, ~3.30!

Eqs.~3.25! and ~3.26! take the form

2
]dX6

]t
56D~6gs!dX62

l

2
~“us6“ws!dX7,

~3.31!

whereD(6gs) is the ‘‘gauged’’ Schro¨dinger operator,

D~6gs!52n~“6gs!
21

l2

4n
us

22
l

2
“ws , ~3.32!

describing the motion of a particle in the soliton-defined p
tential (l2/4n)us

22(l/2)“ws subject to the gauge fieldgs .
In the regions of constant slope and noise fields, we h
“us5“ws50, us5u, gs5lu/2n, D(6gs)→2n(“
6lu/2n)21(l2/4n)u2. Searching for solutions of the form
dX6}exp(2Ekt)exp(ikx) we recover the spectrum in Eq
~3.27!, and sincedu5dX11dX2 the mode in Eq.~3.28!. In
the soliton regions we have“ws

m5m“us
m , wherem561

for the right- and left-hand solitons, respectively, and one
the equations~3.32! decouple driving the other equatio
parametrically.

The analysis proceeds in a manner analogous to the no
less case. Introducing the Cole-Hopf transformation

U~x,t !5expS 2Ex

gs~x8,t !dx8 D , ~3.33!

and using the identity (“1gs)
25U¹2U21, we arrive at the

coupled Hermitian equations

2
]dX6

]t
56U61D~0!U71dX62

l

2
~“us6“ws!dX7,

~3.34!

which are readily analyzed in terms of the spectrum ofD(0)
summarized in Eqs~3.11!–~3.15!. The exponent or generato
in the gauge transformation in Eq.~3.33! samples the area
under the slope profileus up to the pointx. For x→`, U
→exp(2lM/2n), whereM given by Eq.~1.17! is the con-
served total area. In terms of the height fieldh, u5“h, M
5h(1L)2h(2L) for a finite system, and thus equal to th
height offset across a system of sizeL, i.e., a conserved
quantity under growth. Inserting the soliton profileus in Eq.
~2.21!, the transformationU factorizes in contributions from
the individual local solitons, i.e.,
2-14



m

t

ve

c-
e

ca
an
-

io

em
ding

ub-

e,
zed

ow-
and

ith
ior
the

the
ua-
e

ws
the
e

pa-

ec-

s-
tch-
the

CORRELATIONS, SOLITON MODES, AND NON- . . . PHYSICAL REVIEW E 68, 026132 ~2003!
U~x,t !5 )
p51

n

Up~x,t !sgn(kp),

Up~x,t !5cosh21 kp~x2vpt2xp!. ~3.35!

1. The single-soliton case

Since the formulation of the linear mode problem in ter
of Eqs. ~3.25! and ~3.26! deriving from the field equations
~3.21! and~3.22! and yielding Eq.~3.34! is entirely Galilean
invariant, we can in analyzing thepth single soliton segmen
of the multi-soliton configuration in Eq.~2.21! without loss
of generality boost the soliton to a rest frame with zero
locity. Thus shifting the slope field of thepth soliton by the
amount (up111up) corresponding to the propagation velo
ity vp52(l/2)(up111up), and assuming for convenienc
that xp50, the soliton profile is given byus

m in Eq. ~1.8!.
Hence we obtain“ws

m5m“us
m and D(0) given by Eq.

~3.32!. Noting thatU5Up
m and“us

m5muksUp
2 , we find for

the fluctuations

dX̃65Up
7mdX6, Up5cosh21 ksx, ~3.36!

the Hermitian mode equations

2
]dX̃6

]t
56D~0!dX̃62nks

2~m61!dX̃7, ~3.37!

which decouple and are readily analyzed by expandingdX̃6

on the eigenstates ofD(0). Weobtain

dXm5
2nks

2A0
(m)t1B0

(m)

cosh2 ksx

1~Ak
(m)e2mVkt1Bk

(m)emVkt!
eikxsk~x!

coshksx
, ~3.38!

dX2m5A0
(m)1mBk

(m) Vk

nks
2

emVkteikxsk~x!coshksx,

~3.39!

describing the fluctuations of the slope and noise fieldsdu
5(dX11dX2)/2 and w5(dX12dX2)/2 or dp5ndX2

about the static right-hand (m511) and left-hand (m
521) solitons.A0

(m) , B0
(m) , Ak

(m) , andBk
(m) are integration

constants fixed by the initial conditions.
The first terms in Eqs.~3.38! and ~3.39! are associated

with the soliton translation modesdXTM
m }“us

m}cosh22ksx
which propagate with constant momentumXTM

2m}A0
m ; we

note that the soliton position and soliton momentum are
nonically conjugate variables. The envelope modulated pl
wave terms in Eqs.~3.38! and ~3.39! represent the fluctua
tions about the soliton. Since thes matrix sk(x)→(k
1 iks)/(k2 iks)5exp(idk), dk52tan21(ks /k) for x→`, the
soliton induced potentials are transparent and the fluctuat
pass through the soliton only subject to the phase shiftdk and
02613
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a spatial modulation. We also note that Levinson’s theor
implies that the band is depleted by one mode correspon
to the translation mode@55#.

Confining the fluctuations to the noiseless transient s
manifoldp50 we havedp50, i.e.,du5dw, and we obtain
for the right-hand soliton (m511) dX250, implying
A0

(1)50 andBk
(1)50, and thus

dX152du5
B0

(1)

cosh2 ksx
1

Ak
(1)e2Vkteikxsk~x!

coshksx
,

~3.40!

in accordance with Eq.~3.16! in the noiseless Burgers cas
i.e., a translation mode and a band of damped locali
pinned modes.

Likewise, on the noisy stationary submanifoldp52nu
we requiredp52ndu, i.e., du5dw, and we obtain for the
noise-induced left-hand soliton (m521) dX150 entailing
A(2)50 andBk

(2)50, and we have

dX252du5
B0

(21)

cosh2 ksx
1

Ak
(21)eVkteikxsk~x!

coshksx
,

~3.41!

composed of a translation mode and localized modes. H
ever, unlike the fluctuations about the noiseless right-h
soliton, which are damped, the fluctuations associated w
the noisy left-hand soliton are growing in time. This behav
is consistent with the phase space plot in Fig. 2 and
Edwards-Wilkinson case discussed in Sec. II.

In general, there are also fluctuations perpendicular to
submanifolds, and we are led to consider the coupled eq
tions~3.38! and~3.39!. The fluctuations are modulated by th
gauge factors coshksx and cosh21ksx. As in the noiseless
case, the spatial modulation of the plane wave form allo
us to extend the spectrum by an analytical continuation in
wave numberk, and in this manner allows us to match th
spectrum to the intersoliton regions. In fact, noting thatdX6

according to Eq.~3.34! decouples for“us ,“ws→0 in the
intersoliton regions, we obtain by settingk→k6 iks the shift
Vk5n(k21ks

2)→n(k262ikks) and exp(ikx)cosh61 ksx
→const, and we achieve a matching to the extended pro
gating modes. The gauge transformation in Eq.~3.35! thus
permits a complete analysis of the linear fluctuation sp
trum about a multisoliton configuration.

2. The two-soliton case

In order to illustrate how the fluctuation spectrum is e
tablished across the soliton configuration and how the ma
ing is implemented, we consider the fluctuations about
two-soliton configuration in Eq.~2.29! with associated noise
field

w2~x,t !5
u

2 F tanh
ks

2
~x2vt2x1!1tanh

ks

2
~x2vt2x2!G .

~3.42!
2-15
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HANS C. FOGEDBY PHYSICAL REVIEW E68, 026132 ~2003!
The Hermitian linear mode equations are given by Eq.~3.34!
with us5u2 , ws5w2, and the Cole-Hopf transformation

U2~x,t !5expF2
l

2nE
x

u2~x8,t !dx8G . ~3.43!

The soliton pair propagates with velocityv52lu/2, so in
order to render the gauge transformation time independ
and thus facilitate the analysis, we boost the configuratio
a rest frame,u2→u22u/2. Insertingu2, we then obtain the
specific gauge transformation

U2~x!5F cosh
ks

2
~x2x2!

cosh
ks

2
~x2x1!

G eksx/2, ~3.44!

a special case of Eq.~3.35!.
In order to simplify the discussion of the mode equatio

~3.34! with D(0) given by Eq.~3.32!, we introduce the no-
tation u65(u/2)tanhks/2(x2x6), x15x1 , x25x2, for the
individual solitons contributing tou2 and w2, i.e., u25u1

2u22u/2 andw25u11u2. A simple estimate of the poten
tial (l2/4n)u2

22(l/2)“w2 in Eq. ~3.32! then yields
n(ks/2)2@12V12V2#, where we have also introduced th
notationV652/cosh2(ks/2)(x2x6), for the soliton-induced
potentials. Moreover, (l/2)(“u26“w2)56n(ks/2)V6 ,
and we arrive at the two-soliton mode equations

2
]dX6

]t
56U2

61D~0!U2
71dX67n~ks/2!2V6dX7,

~3.45!

with D(0) given by

D~0!52n¹21n~ks/2!2~12V12V2!. ~3.46!

In the regions of constant slope field,V6;0 anddX6 de-
couple. To the right of the soliton pair forx@x1 ,x2, we have
U2}exp@ks(x12x2)/2#exp(ksx/2), and we obtain the envelop
solutions dX6}exp$6n@k21(ks/2)2#t%U2

61 exp(ikx), which
are matched to the asymptotic plane wave solution by set
k→k6 iks/2, yieldingdX6}exp(7nk2t)exp@ik(x2nkst)#, i.e.,
a mode propagating to the right with velocitynks5lu/2
5v. To the left for x!x1 ,x2, we have U2}exp@ks(x2
2x1)/2#exp(ksx/2), and correspondingly, the envelope so
tions dX6}exp$6@n@k21(ks/2)2#t%U2

61 exp(ikx). Matching
these solutions to the plane wave solutions by the ana
continuation k→k6 iks/2, we obtain the same resu
as above. We note that the change inU2 across the pair
is given by exp@2ks(x22x1)#5exp@2(l/2n)u(x22x1)#
.exp@2(l/2n)M2#, whereM2 is the area enclosed by th
soliton pair. In the region between the solitons forx1!x
!x2 , U2;exp@ks(x11x2)/2#exp(2ksx/2), or for k→k
7 iks/2 the modesdX6}exp(7nk2t)exp@ik(x1nkst)#, corre-
sponding to propagation to the left with velocity2nks5
2lu/252v. In the soliton region nearx1 , we haveV2

;0. Ignoring the translation mode and phase shift effe
we thus have from Eq. ~3.45! dX2}exp$n@k2
02613
nt
to

s

g

-

ic

ts

1(ks)
2#t%U2

21 exp(ikx). By insertion in Eq.~3.45! we note that
V1U2

215V2 exp(2ksx/2);0, and thatdX1 thus is decou-
pled from dX2, yielding the solution dX1}exp$2n@k2

1(ks/2)2#t%U2 exp(ikx). A similar analysis applies in the
soliton region nearx2.

For the plane wave components alone, we then obt
interpolating to the whole axis and incorporating thes ma-
trices according to Eq.~3.15!,

dX1;e2n[k21(ks/2)2] t
cosh~ks/2!~x2x2!

cosh~ks/2!~x2x1!

3eksx/2eikxsk~x2x1!sk~x2x2!, ~3.47!

dX2;en[k21(ks/2)2] t
cosh~ks/2!~x2x1!

cosh~ks/2!~x2x2!

3e2ksx/2eikxsk~x2x1!sk~x2x2!. ~3.48!

We thus we pick up the phase shiftdk52 tan21(ks /k)
across each soliton, the plane wave components are m
over spatially modulated by the gauge transformationU2
5exp@2(l/2n)*u2dx# sampling the area underu2.

Finally, we boost the mode to the velocityv52nks
52lu/2n, shift the wave numberk→k6 iks/2 for dX6 and
obtain the modulated plane wave associated with the pro
gating two-soliton mode with vanishing boundary cond
tions,

dX1;e2nk2t
cosh~ks/2!~x2vt2x2!

cosh~ks/2!~x2vt2x1!

3eikxsk1 iks/2
~x2vt2x1!sk1 iks/2

~x2vt2x2!,

~3.49!

dX2;enk2t
cosh~ks/2!~x2vt2x1!

cosh~ks/2!~x2vt2x2!

3eikxsk2 iks/2
~x2vt2x1!sk2 iks/2

~x2vt2x2!.

~3.50!

The interpretation of this result is straightforward. In the r
gions away form the pair soliton, we obtain plane wa
modes with both a growing and decaying time behav
Across the propagating two-soliton configuration, the pla
wave amplitude and form are modified by the gauge fac
and thes matrix.

3. The multisoliton case

In the multisoliton case the slope configurationus and the
associated noise fieldws are given by Eqs.~2.21! and~3.24!.
The linear mode problem is defined by Eqs.~3.34! with the
gauge transformationU given by Eq.~3.33!. As discussed
previously, the extended plane wave modes in the inters
ton regions connecting the solitons are subject to a m
transmutation to propagating waves with spectrum given
2-16
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Eqs.~3.27!. In the soliton regions the analysis follows from
generalization of the single and two-soliton cases discus
above.

A complete analysis is achieved by first noting thatU can
also be expressed in the form

U~x,t !5expF2
l

2nE
t

dt8S l

2
us

2~x,t8!1n“ws~x,t8! D G ,
~3.51!

derived by differentiatingU in Eq. ~3.33!, using the equation
of motion in Eq.~3.21! for the multisoliton profile and solv-
ing the ensuing differential equation. By insertion of E
~3.51! in Eq. ~3.34!, we obtain the linear equations of motio

]

]t
~U71dX6!56~n¹21l“ws!U

71dX6

1
l

2
~“us6“ws!U

71dX7, ~3.52!

which are readily discussed. In the flat regions“us5“ws
50, dX1 anddX2 decouple, and we have

dX6}e7nk2teikxU61~x,t !, ~3.53!

describing a plane wave mode modulated across the so
regions by the Cole-Hopf transformationU(x,t), with the
explicit form given by Eq.~3.35!. Alternatively, we obtain a
mode transmutation to a propagating plane wave betw
solitons by the analytical continuationk→k6 ikp , thus ab-
sorbing the spatial modulation inU(x,t) and corroborating
the previous discussion. We note that the form in Eq.~3.53!
is in accordance with Eqs.~3.49! and ~3.50! in the two-
soliton case. Across the soliton regions,dX1 and dX2

couple according to Eq.~3.52!. The analysis in the single
soliton case above applies and the plane wave mode pick
the phase shiftdk associated by Levinson’s theorem with th
formation of the soliton translation modes.

IV. STATISTICAL PROPERTIES

In this section we discuss the statistical properties o
growing interface on the basis of the canonical phase sp
formulation. Generally, we can express the noisy Burg
equation in Eq.~1.1! in the form

]u

]t
5n“

dF

du
1lu“u1“h, ~4.1!

where the free energyF driving the diffusive term is given
by

F5
1

2E dxu2~x!. ~4.2!

For l50 we have the linear Edwards-Wilkinson equati
describing the temporal fluctuations in a thermodynam
equilibrium state with temperatureT5D/2nkB with station-
ary distribution given by Eq. ~1.21!, i.e., Pst
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}exp@2F/kBT#. In the presence of the nonlinear mode co
pling term lu“u, Eq. ~4.1! does not describe a thermody
namic equilibrium state but a stationary nonequilibrium st
or kinetic growth state. It is, however, a particular feature
the one-dimensional case that the stationary distribution
known and given byPst}exp@2F/kBT#, independent ofl.
This property also follows from the potential conditio
@46,47,49#

E dxFl“u2
ln

D

dF

du
“~u2!G50, ~4.3!

which is readily satisfied since the integrand becomes a t
derivative. Another way of noting that Eq.~4.1! does not
describe an equilibrium state is to express the equation in
form ]u/]t5n“dF8/du1“h, with effective free energy
F85(1/2)*dx@u21(l/3n)u3#. Apart from the fact thatF8
includes an odd power inu and thus, sinceu5“h, violates
parity invariance, it is also unbounded from below foru
→2`, and thus cannot describe a stable thermodyna
state.

The stationary distributionPst(u) is obtained in the limit
t→` from the transition probabilityP(ui→u,t) for a path-
way from the initial configurationui to the final configura-
tion u. In this limit only the linear diffusive modes forl
50 persist, characterized byPst. This is consistent with the
fact that the soliton contribution yieldsP(ui→u,t)
}exp@2S(t)/D#, where the actionS(t) associated with the
solitonic growth modes, e.g., the two-soliton configuratio
typically grows linearly witht, implying that the contribution
to P vanishes.

A. Correlations in the Edwards-Wilkinson case

In the linear case the correlation function is easily eva
ated on the Langevin level from the stochastic Edwar
Wilkinson equation~2.2! and follows directly from Eq.~2.1!
when averaging over the noise, see also Paper II. In w
number–frequency space, we obtain the Lorentzian diffus
form

^uu&~k,v!5
Dk2

v21~nk2!2
, ~4.4!

with diffusive poles atv56 ink2, strengthD/(nk)2, and
linewidth nk2. We note that both growing,u}exp(nk2t), and
decaying terms,u}exp(2nk2t), contribute to the stationary
correlations; this is in accordance with the decomposit
~2.14!. In wave number–time space, we have correspo
ingly

^uu&~k,t !5
D

2n
e2nk2utu, ~4.5!

and the diffusive correlations decay on a time scale de
mined by 1/nk2. For the equal-time correlations we obtain
particular ^uu&(k,0)5D/2n, showing the spatially shor
2-17
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ranged correlations in accordance with the stationary dis
bution ~1.21!. For later purposes we also need the spec
form, see Paper II,

^uu&~x,t !5E dk

2p

D

2n
eikxe2nk2utu. ~4.6!

In order to illustrate the method to be used later in the soli
case, we evaluate here^uu& in the linear case on the basis
the path integral formulation, Eq.~1.14!. Since the distribu-
tions ~1.21! and ~2.13! factorize in wave number space, w
have in a little detail for a system of sizeL,

^uu&~k,t !}E )
p

dup
i dup

f uk
f uk

i

3)
n

expS 2
vn

DL

uun
f 2un

i e2vntu2

12e22vnt D
3)

m
expS 2

n

DL
uum

i u2D . ~4.7!

Changing variables inP(un
f ,un

i ,t), un
f 2un

i exp(2vnt)→un ,
it is an easy task to carry out the Gaussian integrals oveun

andun
i and retrievê uu&(k,t) in Eq. ~4.5!; the evaluation of

^uu& in the corresponding harmonic oscillator quantum fie
calculation was performed in Paper II. Finally, evaluati
Eq. ~4.6! we infer the scaling form~1.20! with roughness
exponentz51/2, dynamic exponentz52, and scaling func-
tion; see also Paper II,

F̃~w!5
D

2n
@4pn#21/2w21/2e21/4nw, w5t/xz, ~4.8!

defining the Edwards-Wilkinson universality class.
Summarizing, the Edwards-Wilkinson equation describ

a thermodynamic equilibrium state. The dynamical equil
rium fluctuations are characterized by the gapless disper
law v5nk2. The modes are extensive and diffusive and c
trolled by the characteristic decay time 1/nk2, depending on
the wave numberk.

B. Switching and pathways in the Burgers-KPZ case

Before we turn to the correlations in the nonline
Burgers-KPZ case it is instructive to extract a couple
simple qualitative consequences of the dynamical appro
As discussed in Sec. II the propagation of a two-soliton c
figuration constitutes a simple growth situation where at e
passage of the soliton pair the interface grows by a la
Considering a pair configuration of amplitudeu and size,,
the propagation velocity isv52lu/2 and the associated ac
tion S15(1/6)nluuu3T. Across a system of sizeL we have
uvu5L/T, whereT is the switching time, i.e.,uuu52L/lT.
For the action associated with the transition pathway of a
ing a layer of thicknessh5*xu(x8,t)dt5uuu,52L,/lT,
we then have
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S1~T!5
4n

3l2

L3

T2
. ~4.9!

We note that the thicknessh does also depend on the pai
soliton size, which does not enter in the action. Howeve
the multiplicity or density of soliton pair which enters in th
prefactor of the transition probability must depend on 1,,
and we obtain qualitatively

P},21 expS 2
1

D

4nL3

3l2T2D . ~4.10!

In the thermodynamic limitL→`, P→0, and the switching
via a two-soliton pathway is suppressed. At long times
action falls off as 1/T2.

In the case of a switching pathway by means of two eq
amplitude pair solitons we obtain, correspondingly, noti
that the pairs propagate with half the velocity, the actionS2
5(1/4)S1. Introducing heuristically a constant nucleatio
actionSnucl associated with the noise-induced formation o
pair, i.e., the appropriate assignment of the noise fieldp, we
have the general expression for the action associated wn
pairs,

Sn~T!5nSnucl1
1

n2

4n

3l2

L3

T2
. ~4.11!

In Fig. 10 we have plottedS versusT for n51 –5 soliton
pairs. Since the curves intersect, we infer that the switch
at long times takes place via a single soliton pair. At shor
times, a switching takes place and the transition pathw
proceeds by the excitation of multipair solitons. This
clearly a finite size effect.

A similar analysis of the soliton switching pathways in th
case of the noise-driven Ginzburg-Landau equation has
cently been carried out. Here the analysis, corroborating

FIG. 10. The action given by Eq.~4.11! is plotted as a function
of T for transition pathways involving up ton55 soliton pairs. The
lowest action, and thus the most probable transition, is associ
with an increasing number of soliton pairs at shorter times, in
cated by the heavy limiting curve. The curves are plotted in a
trary units.
2-18
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CORRELATIONS, SOLITON MODES, AND NON- . . . PHYSICAL REVIEW E 68, 026132 ~2003!
cent numerical optimization studies, is simpler because
soliton excitations are topological and have a fixed amplitu
@58#.

C. Anomalous diffusion of growth modes in the Burgers-KPZ
case

On the Langevin level the growth of the interface is
stochastic phenomena driven by noise. Parametrizing
growth in terms of growth modes corresponding to t
propagation of a gas of independent pair solitons in the sl
field, the dynamical approach allows a simple interpretati
Noting that the action associated with the pair mode is gi
by S5(1/6)nluuu3t and denoting the center of mass of t
pair mode byx5(x11x2)/2, we haveu52v/l52x/tl, and
we obtain the transition probability

P~x,t !}expS 2
4

3

n

Dl2

x3

t2 D ~4.12!

for the random walk of independent pair solitons
steps in the height profile. Comparing Eq.~4.12! with the
distribution for ordinary random walk originating from th
Langevin equation dx/dt5h,^hh&(t)5Dd(t), P(x,t)
}exp(2x2/2Dt), we conclude that the growth mode pe
forms anomalous diffusion. Assuming pairs of the same
erage size, the distribution~4.12! also implies the soliton
mean square displacement,

^x2&~ t !}S Dl2

n D 1/z

t2/z, ~4.13!

with dynamic exponentz53/2, identical to the dynamic ex
ponent defining the KPZ universality class. This res
should be contrasted with the mean square displacem
^x2&}Dt2/z, z52, for ordinary random walk. The growt
modes thus perform superdiffusion. This result is also
tained using the mapping of the KPZ equation to direc
polymers in a random medium@22#.

The diffusion of solitons or growth modes is another s
nature of the stationary nonequilibrium state. Whereas
extended diffusive equilibrium modes for a particular wa
number k are characterized by the stationary distributi
Pst}exp@2(n/DL)uuku2#, the random walk distribution of the
growth modesP(x,t)}t22/3 exp@const(x3/t2)# vanishes for
t→`. The growth modes or solitons disperse diffusive
over the system and generate the stationary growth.

D. Correlations in the Burgers-KPZ case—general

Regarding the correlations in the nonlinear Burgers-K
case, the situation is more complex. The noisy Burg
equation~1.1! is not easily amenable to a direct analysis
the noise averaged correlations, and we limit ourselves
discussion of^uu&(x,t) within the canonical phase spac
approach. In order to evaluate the slope correlati
^uu&(x,t) by means of Eq.~1.14!, i.e.,
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^uu&~x,t !5E Pduiduf uf~x!ui~0!P~uf ,ui ,t !Pst~ui !,

~4.14!

we note that the basic ingredient is the transition probabi
P(uf ,ui ,t) from an initial configurationui at time t50 to a
final configurationuf at time t.

1. Sum rule

Before continuing we observe that in the short time lim
t→0, it follows from the definition thatP(uf ,ui ,t)→d(uf

2ui). The equal time correlations are thus determined by
stationary distributionPst(u

i) given by Eq.~1.21!,

Pst~ui !}expF2
n

DE dx ui~x!2G , ~4.15!

and we have in wave number space^uu&(k,0)5D/2n. In
wave number–frequency space we thus infer the general
rule

E dv

2p
^uu&~k,v!5

D

2n
. ~4.16!

The sum rule is independent of the presence of the nonlin
growth termlu“u, and thus is another consequence of t
static fluctuation dissipation theorem which holds for t
Burgers-KPZ equations@22,36#.

2. The transition probability

As discussed in Sec. II, the working hypothesis is tha
growing interface at a particular time instant can be rep
sented by a dilute gas of matched localized soliton exc
tions or growth modes with superimposed linear extend
diffusive modes. From the analysis in Sec. III, we thus ha

u~x,t !5us~x,t !1du~x,t !, ~4.17!

p~x,t !5ps~x,t !1dp~x,t !, ~4.18!

whereus andps ~or ws) are given by the multisoliton repre
sentations in Eqs.~2.21! and~2.22! @or for ws in Eq. ~3.24!#.
In the flat regions for constant slopedu5(1/2)(dX1

1dX2) anddp5ndX2 are given by Eqs.~3.53! ~across the
soliton regions,du anddp vary in a more complicated man
ner as discussed in Sec. III!.

Inserting Eqs.~4.17! and ~4.18! in Eq. ~1.10! and using
the equation of motion~1.6!, the actionSdecomposes into a
soliton contributionSsol and a linear contributionSlin , S
5Ssol1Slin , where

Ssol5
1

2E dxdt~“ps!
2, ~4.19!

Slin5
1

2E dxdt~“dp!2. ~4.20!

This decomposition implies that the transition probabil
P(uf ,ui ,t) accordingly factorizes as
2-19
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P~uf ,ui ,t !5Psol~us
f ,us

i ,t !Plin~duf ,dui ,t !, ~4.21!

where Psol}exp(2Ssol/D) and Plin}exp(2Slin /D). Disre-
garding phase-shift effects and amplitude modulations du
the dilute soliton gas,Plin can be worked out as in th
Edwards-Wilkinson case in Sec. II, yielding the express
~in wave number space!

Plin~dui ,duf ,t !}expF2
n

DE dk

2p

uduk
f 2duk

i exp~2vkt !u2

12exp~22vkt !
G ,

~4.22!

with limiting distribution Pst(duf)}exp@2(n/D)*(dk/
2p)uduk

f u2# for t→`.
For the soliton part, we obtain by inserting Eq.~2.26!,

Psol~ui ,uf ,t !}expF2
nlt

6D (
p51

n

uup112upu3u~up2up11!G ,

~4.23!

in terms of the soliton boundary valuesup as depicted in Fig.
4. Note also that only the noise-induced left-hand solito
contribute to the action. We stress that expression~4.23! by
construction only holds in between soliton collisions. In fa
at long times the appropriate expression forP(ui ,uf ,t) must
approachPst}exp@2(n/D)*dxus

f(x)2# in accordance with Eq
~4.21!. Likewise, the correct expression for the multisolito
energy must vanish in the long time limit corresponding
the migration of the phase space orbit to the transient
stationary zero-energy submanifoldsp50 and p52nu, as
discussed in Paper III.

3. Multisoliton correlations—scaling properties

Inserting Eq.~4.17! in Eq. ~4.14!, the slope correlations
separate in a soliton part and a linear~diffusive! part,

^uu&~x,t !5^usus&~x,t !1^dudu&~x,t !. ~4.24!

Apart from phase-shift and amplitude-modulation effects d
to the dilute soliton gas, the linear or diffusive correlatio
^dudu& basically have the form given by Eq.~4.6!. For the
soliton contribution̂ usus&, we obtain@insertingus from Eq.
~2.21!# P(us

f ,ui ,t) from Eq. ~4.23!, and for the stationary
distribution,

Pst}expF2
n

D (
p51

n

up
2uxp2xp21uG

5expF 8n3

Dl2 (
pÞp8

kpkp8uxp2xp8uG , ~4.25!

and moreover, introducing the soliton amplitudekp
5(l/4n)(up112up) from Eq. ~2.19!,
02613
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^usus&~x,t !V~ t !5(
p,q

E )
l

dkldv ldxlkpkq

3tanhukpu~xp1vpt2x!tanhukquxq

3)
n

expF2
32n4

3Dl4
tuknu3u~2kn!G

3 )
nÞn8

expF 8n3

Dl2
knkn8~xn2xn8!G .

~4.26!

This formula expresses the contribution to the slope corr
tions from a multisoliton configuration. It follows from th
derivation that the expression only holds for times sh
compared to the soliton collision time. The initial configur
tion us

i at time t50 propagates during timet to the final
configuration us

f . The associated transition probability
given by Eq.~4.23! and the stationary distribution by Eq
~4.25!. The integration over initial and final configurations
effectuated by integrating over the amplitudeskp , the veloci-
tiesvp , and the soliton positionsxp over a system of sizeL.
Note that kp together withvp52(l/2)(up111up) deter-
mine the slopeup . Likewise, the dynamic partition function
V(t) is given by

V~ t !5E )
l

dkldv ldxl)
n

expF2
32n4

3Dl4
tuknu3u~2kn!G

3 )
nÞn8

expF 8n3

Dl2
knkn8~xn2xn8!G . ~4.27!

The complex form of Eqs.~4.26! and ~4.27! have so far
precluded a more detailed analysis. We can, however, in
limit of small damping, extract the general scaling prop
ties. Forn→0, we havekp→`, and the soliton profile given
by tanhukpu(x2vpt2xp) converges to the signum functio
sgn(x2vpt2xp), corresponding to a sharp shock wave. B
inspection of Eq.~4.26! we note that a change of the leng
scale by a factorm, i.e., x→mx and xp→mxp , can be ab-
sorbed by a change of the integration variablekp , kp
→m21/2kp . In the action term, this change ofkp is finally
absorbed by the scale transformationt→m3/2. Consequently,
for n→0 we have^usus&(x,t)5F̃(t/x3/2), in accordance
with the general scaling form in Eq.~1.20!.

E. Correlations in the Burgers-KPZ case—the two-soliton
sector

In the weak noise limitD→0, the action in Eq.~1.11!
provides a general selection criterion determining the do
nant dynamical configuration contributing to the distributi
P. In the present section we propose that part of the lead
growth morphology is constituted by a gas of two-soliton
pair configurations already analyzed in Sec. II. In our n
2-20
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merical studies we have demonstrated that in the limin
→0, the pair configuration does constitute a long lived q
siparticle@39#.

The evaluation of the contribution to the slope corre
tions from the two-soliton sector is straightforward and w
permit a more detailed scaling analysis. Specializing the g
eral expression in Eqs.~4.26! and ~4.27! to the case of two
solitons, i.e., a pair-soliton excitation, noting thatk152k2
5(l/4n)u, u25u (u15u350), and v15v25v
52(l/2)u, and moreover considering the limit of smalln,
or, alternatively, using the expressions pertaining to the t
soliton case discussed in Sec. II, we have

^uu&~x,t !V2~ t !5S l

4n D 2E dudx1dx2 u2@sgn~x1!

2sgn~x2!#@sgn~x12x2vt !

2sgn~x22x2vt !#

3expF2
nl

6D
tuuu3GexpF2

n

D
u2ux22x1uG ,

~4.28!

FIG. 11. We depict the two-soliton configuration in the limitn
→0 contributing to the slope correlations^uu&. The initial pairui

propagates to the final configurationuf in time t with velocity v
52lu/2.
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-

-

n-

-

with dynamic partition function

V2~ t !5E dudx1dx2 expF2
nl

6D
tuuu3G

3expF2
n

D
u2ux22x1uG . ~4.29!

We note that the final configurationuf is simply the initial
two-soliton configurationui displaced vt along the axis
without change of shape. This dynamical evolution is d
picted in Fig. 11. The integration over initial and final co
figurations is carried out by integrating over the soliton a
plitude u (2`,u,`) and the soliton positionsx1 and x2
over a system of sizeL. The integration over the amplitud
only contributes to the integral when the pair solitons ov
lap, as indicated in Fig. 12, and we obtain by inspection
the overlap contribution, settingz5x2vt and ,5ux22x1u,
the conditionsx1,z, x1.z2,, x1,0, andx1.2,. For z
.0, i.e., x2vt.0 we have the overlap conditions 0,z
,, and z2,,x1,0; for z,0 we obtain2,,z,0 and
2,,x1,z. Finally, integrating over the soliton positionx1
and the soliton pair size,, we arrive at the expression

FIG. 12. The two-soliton configuration of size,5ux12x2u and
amplitudeu. The shaded overlap area of size 2,2x yields a con-
tribution to the slope correlation function.
^uu&~x,t !5
1

L

E du u2 expF2
nl

6D
uuu3t GexpF2

n

D
ux2vtuu2GCL

(1)~u!

E du expF2
nl

6D
uuu3t GCL

(2)~u!

, ~4.30!
-
r-

a

of
where the cutoff functionsCL
(1)5*0

Ld,, exp@2(n/D)u2,# and
CL

(2)5*0
Ld, exp@2(n/D)u2,# follow from the overlap; explic-

itly, they are given by

CL
(1)~u!5S D

n D 2 1

u4 F12S 11
n

D
u2L DexpS 2

n

D
u2L D G ,

~4.31!

CL
(2)~u!5S D

n D 1

u2 F12expS 2
n

D
u2L D G . ~4.32!
The overall factor 1/L reflects the weight of a single pair
soliton contribution to the correlation function. In the the
modynamic limit L→`, this contribution vanishes. For
dilute gas of pair solitons of densityn, we expect 1/L to be
replaced byn. On the other hand, the furtherL dependence
of the cutoff functions is a feature of the extended nature
the pair soliton already discussed in Sec. II. BothC(1) and
C(2) vanish as a function ofu over a scale set byAD/nL. For
u→`, C(1);1/u4 andC(2);1/u2; for u50, we haveC(1)

5L2/2 andC(2)5L.
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F. General scaling properties

The last issue we deal with is the scaling properties o
growing interface. The dynamical scaling hypothesis@17,22#
and general arguments based on the renormalization g
fixed-point structure@24,25# imply the following long time—
large distance form of the slope correlations in the station
state:

^uu&~x,t !5~D/2n!x2z21F@x/j~ t !#. ~4.33!

HereF is the scaling function and the roughness exponenz
follows from the explicitly known stationary distribution i
Eq. ~1.21!, the fluctuation dissipation theorem. Within th
canonical phase space approach, the stationary distribu
follows from the structure of the zero-energy manifolds th
attract the phase space orbits in the long time limitt→`, see
Paper III. The dynamic exponentz53/2 is inferred from the
gapless soliton dispersion law in Eq.~2.36!, see Paper II.
Since the formulation is entirely Galilean invariant, the e
ponentz also follows from the scaling lawz1z52 in Eq.
~1.3!.

The lateral growth of fluctuations along the interface
conveniently characterized by the time dependent correla
lengthj(t). Note that for a finite system of sizeL, the cor-
relation length saturates at the crossover or saturation
tco determined by j(tco)5L. In the linear Edwards-
Wilkinson case,j(t) characterizes the growth of diffusiv
modes and has the formj(t)5(nt)1/2, consistent with the
spectral form in Eq.~4.6!. In the Burgers-KPZ case,j(t)

FIG. 13. The correlation lengthsjEW(t)5(nt)1/2 and jB(t)
5(D/n)1/3(lt)2/3 as functions oft. For a finite system of sizeL, the
correlation lengths define the crossover timestco

diff}L2/n and tco
sol

}l21(n/D)1/2L3/2, determining the transition from transient to st
tionary growth.
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describes the propagation of soliton modes and is given
j(t)5(D/n)1/3(lt)2/3. The limiting form of the scaling func-
tion lim

w→`
F(w)51 for x@j(t). In the dynamical regime

for j(t)@x, the correlation decay@i.e., ^uu&(x,t)→^u&^u&
50] and the scaling function vanish asF(w)}w2(12z) for
w→0. In Fig. 13 we have depicted the correlation leng
j(t) as a function of time for a system of sizeL, indicating
the crossover behavior in the Edwards-Wilkinson a
Burgers-KPZ cases. In Fig. 14 we have plotted the time sc
T as a function of system size, indicating the various d
namic regimes.

G. Scaling properties in the two-soliton sector

In discussing the scaling properties associated with
two-soliton sector, it is convenient to introduce the mod
parameters,0, setting the microscopic length scale;t0, set-
ting the microscopic time scale;tco, defining the crossove
or saturation time for a system of sizeL; and the correlation
lengthj(t). Note thatl5,0 /t0,

,05
D

n
, ~4.34!

t05
D

nl
, ~4.35!

tco5t0~L/,0!3/2, ~4.36!

j~ t !5,0~ t/t0!2/3. ~4.37!

Rescaling the amplitude variableu, we can then express th
pair correlations in the form

FIG. 14. In the early time regime forT!tco
sol , the distribution is

dominated by solitons. In the intermediate time regime fortco
diff@T

@tco
sol , the solitons become suppressed and are replaced by the

fusive modes. Finally, forT@tco
diff , the diffusive modes also die ou

and we approach the stationary distribution.
^uu&~xt!5
,0

L

E du expF2
4

3
uuu3

t

tco
GexpF24u2UxL 1u

t

tco
UGF1~u!

E du expF2
4

3
uuu3

t

tco
GF2~u!

, ~4.38!
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where the cutoff functions originating from the overlap a
given by

F1~u!5
1

4u2
2S 11

1

4u2D exp~24u2!, ~4.39!

F2~u!5
1

4u2
@12exp~24u2!#. ~4.40!

Expression~4.38! holds for t.0 and is even inx ~seen by
changingu to 2u). It samples the soliton pair propagatin
with velocity lu/2, and is in general agreement with th
spectral form discussed in the quantum treatment in Pape

The weight of a single-soliton pair is of order 1/L and the
correlation function^uu& thus vanishes in the thermody
namic limit L→`. For a finite systemL enters setting a
length scale together with the saturation timetco defining a
time scale, and̂ uu& is a function ofx/L and t/tco, as is
the case for the two-soliton expression~4.38!. It is instructive
to compare this dependence with the wave number
composition of^uu& in the linear diffusive case forl50.
Here ^uu&(xt)}(1/L)(nÞ0 exp@2(2pn)2t/L2#exp(ipnx/L),
depending onx/L and t/L2, corresponding to the saturatio
time tco}L2, z52. Keeping only one mode forn51, the
correlations^uu& have the same structure as in the solit
case. In the linear case we can, of course, sum over
totality of modes, and in the thermodynamic limitL→`, we
can replace (1/L)(n by *dk/2p obtaining the intensive cor
relations^uu&(xt)5(D/2n)(4pnt)21/2 exp(2x2/2nt). Simi-
larly, we expect the inclusion of multisoliton modes to allo
the thermodynamic limit to be carried out yielding an inte
sive correlation function in the Burgers case.

For a finite system, we have in general@59# ^uu&(xt)
5(1/L)GL(x/L,t/L3/2) with scaling limits: GL(x/L,0)
}const for x;L, GL(x/L,0)}L/x for x!L, and
GL(0,t/L3/2)}const for t@L3/2, GL(0,t/L3/2)}L/t2/3 for t
!L3/2. For L→`, we obtain GL(x/L,t/L3/2)
→(L/x)G(x/t2/3) in conformity with Eq.~4.33!.

It is an important feature of the two-soliton expressi
~4.38! that the dynamical soliton interpretation directly im
plies the correct dependence on the scaling variablesx/L and
t/tco}t/L3/2, independent of a renormalization group arg
ment. However, the scaling limits are at variance withGL .
Setting, according to Eq. ~4.38!, ^uu&(xt)
5(,0 /L)F(x/L,t/tco), F(x/L,0) assumes the value 0.47 fo
x!L and decreases monotonically to the value;0.08 for
x;L, whereasGL diverges asL/x for x!L. Likewise,
F(0,t/tco) decays from 0.47 fort!tco}L3/2 to 0 for t@tco;
for t;tco, we haveF2;0.15, whereasGL diverges asL/t2/3

for t!tco.
This discrepancy from the scaling limits is a feature of t

two-soliton contribution, which only samples the correlati
from a single-soliton pair. Moreover, at long times the solit
contribution vanishes and the scaling function is determi
by the diffusive mode contribution in accordance with t
convergence of the phase space orbits to the stationary z
02613
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energy manifold. We note, however, that the general tre
towards a divergence for small values ofx and t is a feature
of F.

Introducing the scaling variablesw5x/j}x/t2/3 and t
5t/ts}t/L3/2, we can also express Eq.~4.38! in the form

^uu&~xt!5~,0 /L !F~w,t!, ~4.41!

where the scaling functionF is now given by

F~w,t!5

E due2(4/3)uuu3te24u2uwt2/31utuF1~u!

E due2(4/3)uuu3tF2~u!

,

~4.42!

and summarize our findings in Fig. 15 where we have
picted F(w,t) for a range oft values. For fixed smallw
5x/j}x/t2/3, we haveF→0.47 for t5t/ts}t/L3/2→0; for
large t we obtainF→0. The weak maximum moving to
wards smaller values ofw for decreasingt is a feature of the
functional form of F in Eq. ~4.42!, and thus is due to the
soliton approximation. The true scaling function is not e
pected to have any particular distinct features@22,24,26–33#.

V. SUMMARY AND CONCLUSION

In the present paper we have continued our analysis of
noisy Burgers equation in one spatial dimension within
weak noise canonical phase space approach develope
previous papers. We believe that the noisy Burgers equa
or the equivalent KPZ equation, which have been stud
intensively, is of fundamental and paradigmatic significan
in the context of a continuum field theoretical description
nonlinear nonequilibrium phenomena. The advantage of
canonical phase space method, which is an elaboration a
dynamical system theory interpretation of the saddle po
equations originating from the Martin-Siggia-Rose fun
tional formulation or, equivalently, a phase space formulat
of the Freilin-Wentzel variational approach to the Fokke

FIG. 15. Plot of the scaling functionF(w,t) as a function of the
scaling variablew5x/j}x/t2/3 for a range of values oft5t/tco

}t/L3/2.
2-23
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Planck equation, actually dating back to work by Machl
and Onsager@60,61#, is that it replaces the stochastic Lang
vin equation with coupled deterministic field equation
yielding on the one hand an interpretation of the grow
morphology and pattern formation, and on the other han
practical scheme for the evaluation of the statistical prop
ties and correlations in the weak noise limit.

Here we have discussed in some detail~i! the growth
morphology engendered by the propagation of domain w
or solitons, the growth modes,~ii ! the superimposed linea
modes and their transmutation to propagating modes in
presence of the growth modes, and, finally,~iii ! the statical
and scaling properties, particularly, in the two-soliton sec
The weak noise theory of the one-dimensional Burgers
KPZ equation is, however, far from being complete, a
many open questions remain. We mention below a serie
topics which would be of considerable interest to investiga
~i! the interpretation of the solitonic growth picture in th
v

-

F
,

. A

e
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:

context of the mapping of the KPZ equation to the model
directed polymers in a random medium,~ii ! a more complete
analysis of the multisoliton correlations in the thermod
namic limit with the purpose of making contact with oth
models in the KPZ universality class, e.g., the polynucl
growth model@31,62–64#, ~iii ! elaboration of the anomalou
diffusion of growth modes,~iv! contact with other models fo
many-body systems far from equilibrium, e.g., driven latti
gas models@52#, and, finally~iv! the extension of the weak
noise approach to higher dimensions.
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