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Correlations, soliton modes, and non-Hermitian linear mode transmutation in the one-dimensional
noisy Burgers equation
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Using the previously developed canonical phase space approach applied to the noisy Burgers equation in one
dimension, we discuss in detail the growth morphology in terms of nonlinear soliton modes and superimposed
linear modes. We moreover analyze the non-Hermitian character of the linear mode spectrum and the associ-
ated dynamical pinning, and mode transmutation from diffusive to propagating behavior induced by the
solitons. We discuss the anomalous diffusion of growth modes, switching and pathways, correlations in the
multisoliton sector, and in detail the correlations and scaling properties in the two-soliton sector.
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I. INTRODUCTION growing interface analyzed in Papers Il and I, has the form
This is the fourth in a series of papers on the one- d I
dimensional noisy Burgers equation for the slope field of a at AUV Ju=2Viut Vo, @D

growing interface. In Paper[il] we discussed as a prelude

the noiseless Burgers equatigh3] in terms of its nonlinear here expressed as manifestly invariant under the slope-
soliton or shock wave excitations and performed a lineadependent nonlinear Galilei transformation

stability analysis of the superimposed diffusive mode spec-

trum. This analysis provided a heuristic picture of the X—X=AUot, 1.2
damped transient pattern formation. As a continuation of pre-
vious work on the continuum limit of a spin representation of u—u+up, 1.3

a solid-on-solid model for a growing interfa¢d], we ap-
plied in Paper I[5] the Martin-Siggia-Rose formalisig] in
its path integral formulatioh7—9] to the noisy Burgers equa-
tion[10,11] and discussed in the weak noise limit the growth
morphology and scaling properties in terms of nonlinear soli- N
ton excitations with superimposed linear diffusive modes. In —=vV2h+-(Vh)?+ 7. (1.4
Paper 11I[12] we pursued a canonical phase space approach at 2
based on the weak-noise saddle point approximation to th
Martin-Siggia-Rose functional or, alternatively, the Freidlin- range correlated Gaussian white noisaletermined by the
Wentzel symplectic approach to the Fokker-Planck equatio'aorrelation function
[13,14). This method provides a dynamical system theory

oint of view to weak-noise stochastic processes and yields _
Sirect access to the probability distribStions for the n);isy () =A48004(1), €.

Burgers' equation; brief accounts of Papers Il and Il aPcharacterized by the noise strengthin Egs.(1.1) and(1.4)
peared in Refs.15] and[16]. the damping constant or viscositymeasures the strength of

i Ealr from _e(:.[{unflbrlum pgenomtehna arbel commﬁn, '_nCIIUd'ngthe linear damping term, whereascontrols the nonlinear
urbulence, interface, and growth problems, chemical reacs. . +h or mode coupling term.

tions, and a host of other phenomena bordering on biolog)? From the analysis in Papers Il and Il it follows that the

tsrg)mology, "’}Ir.‘g _economics. Unllkte eqU|I|brI||um gher;orr:jena tochastic nonequilibrium problem determined by Edsl)
€ nonequiiibrium cases are not very well understood an nd (1.5 in the singular weak noise limih—0 can be re-

constitute a major challenge in modern statistical physics, ;e by two coupled deterministic Galilean invariant mean
I-!erel thte Butr_gers eguathnt_prowfdes in Ir_nany _re_ts_plectsl th eld equations coupling the slope fieldto the canonically
simplest continuum description of a nonlinear initial val uegpnjugate noise fielg,

problem in the noiseless case and an open driven nonline

system in the noisy case, exhibiting scaling and pattern for- P

mation. (——)\UV) u=vV2u—V2p, (1.6)
The noisy Burgers equation for the local slap,t) of a Jt

and is equivalent to the much studied Kardar-Parisi-Zhang
(KPZ) equation[17,1§ for the heighth(x,t), u=Vh (in a
comoving framg

The growth equation$l.1) and (1.4) are driven by short-

J
(——AuV)pz—szp. (1.7
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In the path integral analysis in Paper Il, E¢.6) and(1.7) 1 ,
are saddle point equations for the extremal path in the clas- Q(T)=J [T duf exr{— KS(Uf,U',T)
sical limit A—O0; in the canonical phase space approach in

Paper Il they are classical canonical field equations detelynere we have introduced the dynamical partition function
mining orbits in an associated phase space. This doubling %(T), arising from the normalization condition
dynamical variables in the deterministic description was a|S(a'HdufP(uf,ui,T) =1. Likewise, the stationary distribution

encountered in the spin model discussed in R&f. The g 5550ciated with an infinite-time orbit froah to uf, and is
noise variabley in Eq.(1.1) emerges as the canonically con- given by

jugate momentum variable coupling tou.

. (112

As discussed in Papers Il and lll, see also Réf, the Py(uf)=lim P(u’,u’,T), (1.13
field equationg1.6) and(1.7) in addition to linear diffusive Too
modes also support two distinct soliton modes or domain
walls, in the static case of the kinklike form, and, for example, the slope correlatitthe second moment

of P) in the stationary regime by the expression
uf(x)=putanhkg(X—Xg), Ks=Au/2v. (1.8

Herek, sets the inverse length scaje= + is a parity index, (uuy(x,T)= f du'du’ u'C)u'(0)P(u',u', T)Pg(u').

and the soliton is centered &}. For u=+1 we have the (1.14
right-hand soliton which is also a solution of the noiseless

Burgers equation fomp=0 in Eq. (1.1) or for p=0 in Eq.  The action is a central concept in the weak noise canonical
(1.6). For u=—1 we obtain the noise-induced left-hand soli- phase space approach and provides a dynamical weight func-
ton, a new solution of the coupled equations. The associatelibn and selection criteria for a dynamical nonequilibrium
noise field isp;=0 for the noiselesg.= + 1 soliton; for the ~ process in a similar manner as the enerByin the

noisy soliton foru=—1, we have Boltzmann-Gibbs factoP«exd — BE] (B is the inverse tem-
perature for equilibrium processes. The action, moreover,
ps=2vu tanhkgX, (1.9 implies an underlying principle of least action and the
Hamilton enteringS, yielding the field equation$l.6) and
modulus a constant. (1.7), is given by

In the noiseless Burgers equation the transient pattern for-
mation is described by Galilei-boosted right-hand solitons
connected by ramp solutions with superimposed damped lin-
ear mode$1,19-21. In the noiseless KPZ equation for the
height h, this pattern corresponds to smoothed downwardvhereH= fdx .
cusps connected by parabolic segments with superimposed In addition to the conserved Hamiltonian or energy the
linear modeq 18,22. However, in the noisy case the dou- translational invariance of (assuming periodic boundary
bling of soliton solutions alters the morphology completely.conditions foru and forp, modulus a constanimplies con-
Here the amplitude-matched Galilei-boosted right- and leftservation of momenturfl. Moreover, the conserved noise in
hand solitons provide a many body description of a station£q. (1.1), corresponding to the terVip in Eq. (1.6), yields
ary growing interface. On the soliton gas is superimposed ge local conservation lawu/dt+Vj=0, j=—vVu+Vp
gas of linear modes, which in the linear Edwards-Wilkinson— (\/2)u?, implying the conservation of the integrated slope
casg 23] for A =0 becomes the diffusive modes of the noise-field or height offset. The two additional conserved quantities

H=f dx P vV2u+auVu—(1/2V?p], (1.15

driven diffusion equation. are thus given by
The canonical phase space approach expounded in Paper
[l moreover provides a deterministic dynamical system
theory description of a growing interface. With an orbit in H_J dx uvp, (1.1
canonical phase space from an initial configuratidrio a
final configurationu® traversed in timeT, determined as a
specific initial-final value solution of the field equatiofis6) M= f dxu (1.1
and(1.7), we thus associate the acti&h
' ST au We note that the integrated noise fi#ds not conserved for
S(uf,uI,T)zfi T dtdx pE—H). (1.10 N#0. According to Eq.(1.6), P evolves according to, see
u.0 also Ref[4],
More explicitly, the transition probability from an initial con- ~
figurationu' to a final configuratioru® in time T is deter- d_P:)\H (118
mined by dt ' ’
f o -1 L B
P(u',u', T)=Q(T) ex;{—KS(u ,u ,T)}, (1.1) P=J dx p. (1.19
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The long time—large distance scaling properties of gphysical picture of a growing interface and that the role of
growing interface is a fundamental issue which has been adhe noise can only be discussed and interpreted on a qualita-

dressed extensivelj17,18,24—34 For the widthw(L,t) of
an interface of sizel, the dynamical scaling hypothesis

[22,35 asserts that=L ~¢G(t/L?), which for the stationary

tive level.
On the Fokker-Planck level the growing interface is de-
termined by the deterministic evolution equatidh.23

slope correlations corresponds to the asymptotic scaling forrdriven by Hamiltonian(1.15. The formal structure of Eq.

t
oz

<uu>(x,t)=x242|~:< ) (1.20
X

with roughness exponeijt=1/2, dynamical exponerg and
universal scaling functiofr (w). In one dimension the scal-

(1.23 is equivalent to a functional Schiimger equation in
Wick-rotated imaginary time and allows via the Martin-
Siggia-Rose functional integral for a mapping of the growth
problem onto a non-Hermitian quantum field theory as dis-
cussed in Paper Il, see also REf]. The quantum field for-
mulation, in addition to also providing an alternative frame-
work for perturbative dynamical renormalization group

ing exponents for the noisy Burgers equation are known ®Xfheory following, for example, the Callen-Symanzik scheme

actly [18,22. The roughness exponefit=1/2 follows from
the known stationary distribution, an effective fluctuation-
dissipation theorer36],

: (1.2

Pst(u)ocex;{ - %J dx u?

whereas the dynamic exponent 3/2 is a consequence of
the scaling law

{+z=2, (1.22
implied by Galilean invariancgl7,18. It was an important
result of the analysis in Papers Il and lll, see also R&f,.

that the dynamical exponent 3/2 also enters in the disper-
sion law E«II* for the noise-induced left-hand soliton, and

thus is a feature of the gapless nonlinear excitations provid= A s/ su

ing the many body description of a growing interface.

The description of the stochastic nonequilibrium dynam-
ics of a growing interface can be accessed on two levels. Th

Langevin level defined by Eqél.1) and(1.5) or the Fokker-
Planck level(or Master equation level for discrete models
characterized by the Fokker-Planck equation associated wi
the Burgers equation,

L P
at

—HP.

(1.23

Here the Hamiltonian or Liouvilliam is given by Eq(1.15),
with the momentum variablp interpreted as the functional
derivativep=A &/ 6u, see also Ref4].

[37], permits two new lines of approach to the growth prob-
lem. First, by a mapping of the Martin-Siggia-Rose path in-
tegral onto a directed polymer in a quenched random me-
dium [18,22 the nonequilibrium problem becomes
equivalent to a disorder problem affording a different per-
spective on the growth problem and yielding new insight.
The second line of approach which we adhere to in the
present context is to discuss the nonequilibrium problem di-
rectly in terms of field theoretical constructs. The original
stochastic fluctuations on the Langevin level are then inter-
preted as quantum fluctuations on the Fokker-Planck level,
where the noise strength in Eq. (1.23 serves the role of an
effective Planck constant.

In the context of canonical quantization, the quantum field
theory or quantum many body theory for the interface is
defined by Eq.(1.195, with the canonical momentunp
replaced by the momentum operatof)
=—iAd/éu in a u-diagonal basis obeying the canonical
commutation relatior[f)(x),ﬂ(x)]=—iA&(x—x’). In the
Edwards-Wilkinson case fox=0, we are dealing with a
free field theory and the elementary excitations (an-

t%reszsebzl quasiparticles are the linear nonpropagating diffu-

ve modes with quadratic dispersian= vk?, yielding (ac-
cording to spectral propertieshe dynamic exponert=2,
defining the Edwards-Wilkinson universality class. As dis-
cussed in Paper Il it is also an easy task to evaluate, e.g., the
slope correlationg1.14) as a purely quantum many body
calculation. In the nonlinear Burgers case fo# 0, we ob-
tain correction to the linear mode dispersion law. Moreover,
the quasiclassical analysis far—0 in Papers Il and Il also
identifies a nonlinear soliton excitation with dispersion law

On the Langevin level the growth problem is defined by aEoch »~Y2[1%2 A detailed analysis of the non-Hermitian
stochastic nonlinear differential equation. Apart from directquantum field theory has, however, not yet been achieved
numerical simulations the standard analytical tool as regardand will be considered elsewhere.

scaling properties is a perturbative renormalization group

In the present paper we continue our investigation of the

scheme based on an expansion in powers of the nonlineabisy Burgers equation for the nonequilibrium growth of an

term in Eq.(1.1) or Eq. (1.4 [11,17,18. This procedure
yields renormalization group equations in anexpansion
aboutd=2, e=d—2, predicts a kinetic phase transition
aboved=2 from a smooth Edwards-Wilkinson phagé
=(2—d)/2,z=2] to a rough Burgers-KPZ phase with non-
trivial exponents. Ind=1 the scheme yieldsgfortuitously)
the exact exponents=1/2 andz= 3/2. The limitation of the

interface. We make use of the weak noise canonical phase
space approach developed in Paper Il and consider the fol-
lowing important issuegi) The detailed growth morphology
based on the multisoliton many body descriptidin) the
non-Hermitian properties of the superimposed linear mode
spectrum and the phenomenon of dynamical pinning and
mode transmutation, andiii) the correlations in the

Langevin description is that it does not provide a simpleEdwards-Wilkinson case, the anomalous diffusion of growth
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modes and switching and pathways in the Burgers-KPZ case, 4 uy
correlations in the multisoliton sector, and correlations and
scaling in the two-soliton sector. With respect(ipwe stress
that one of the advantages of the quasiclassical weak noise
phase space approach propounded in Papers Il and lll is that
it provides a many body description of a growing interface in
terms of solitons and linear modes. The Landau quasiparticle
picture emerging on the Fokker-Planck level was discussed
heuristically in Paper Il. Here we analyze in more detail the
time evolution of a growing interface in terms of its elemen-
tary excitations. Regardin@) we note that superimposed on
the nonlinear solitons are linear modes obtained by a linear
stability analysis of Egs(1.6) and (1.7) about a soliton FIG. 1. We depict the noisy behavior of a wave number com-
mode. An analysis of the linear mode spectrum was initiateghonent of the slope fieldy,(t), in the Edwards-Wilkinson case for

in Papers | and Il. In the present paper we complete the =0. After a transient period given bydy, the noise on the same
analysis also for a multisoliton state and demonstrate amonigme scale gradually picks up the motion and drivggt) into a
other properties that the linear modes subject to the nonlinegtationary noisy state. The transient regime is denoted by I, and the
soliton modes undergo a mode transmutation from diffusivestationary regime by II.

nonpropagating behavior in the absence of solitons to propa-

gating behavior in the soliton case. Finally, with regard totransition probability which has an essential singularity for
(iii ) on the scaling properties of the slope correlatichg4), A—0.

we provided in Paper Il only a heuristic expression for the The above behavior is illustrated in the linear case where

scaling functiorF based on a general spectral representatior@n explicit solution of Eq(1.1) for a wave number compo-
Here we amend this situation and present an explicit expredlent Uy, Uy(t)=Jdxu(x,t)exp(-ikx), of the slope field
sion for F within the two-soliton approximation. For brief driven by the noise wave number componegtis given by

accounts of the present work we refer to Rg#el,38]; more-
over, Refs[39] and[40] present a numerical analysis of the
soliton-bearing mean field equations and a tutorial review,
respectively.

The paper is organized in the following manner. In Sec. Il 5. o ] ) )
we discuss the growing interface in terms of soliton modesHere @=vk* is the diffusive mode dispersion law amg
In Sec. Il we consider the superimposed linear mode spec=Uk(t=0) the initial slope value. We notice that generally
trum and discuss the mode transmutation alluded to abové/@k Sets the time scale. Initially, the motion is deterministic
In Sec. IV we address the statistical properties, and considéind governed by the noiseless diffusion equation; at longer
the anomalous diffusion of growth modes, switching andtimes forw,t>1, the noise gradually picks up the motion as
pathways, correlations in the multi-soliton sector, and in deindicated by the kernel exp w(t—t")] in Eq. (2.1), anduy
tail the correlations in the tractable two-soliton sector. In SecPegins to fluctuate and is driven into a stationary noisy state.
V we present a summary and a conclusion. This behavior is in accordance with the phase space behavior
discussed in Paper Il on the Fokker-Planck level. In Fig. 1
we have for a particular noise realization depicted the behav-
ior of u,. We emphasize that the general aspects of the
noise-induced time evolution also holds in the noisy Burgers

A growing interface governed by the noisy Burgers equa-case here subject to a soliton-induced pattern formation. The
tion (1.1) is a simple prototype of an intrinsically open and transient regime is indicated by I, the long time stationary
driven nonequilibrium system. In the noiseless case#for regime by Il.
=0, the interface is damped and the slope fieldvolves As mentioned above, the quantum mechanical interpreta-
subject to a transient pattern formation consisting of propation allows a discussion of the growing interface in terms of
gating and merging right-hand solitons connected by ram@ Landau quasiparticle picture. In the Edwards-Wilkinson or
solutions, with superimposed damped linear moded1].  noninteracting case, the relevant quasiparticle is the diffusive
The motion is deterministic and nonfluctuational. At long modeu, with quadratic dispersion law= vk?. In the Bur-
times the solitons die out on a time scale set byk3/ where  gers case it is a general feature of the Landau quasiparticle
k is the diffusive mode wave number. In the noisy case fomicture that interactions usually give rise to a dressing effect
7n# 0, the time evolution and pattern formation change. Theof the free(bare quasiparticle, e.g., the inducement of an
noise balances the damping and drives after a transient peffective mass. In the diffusive mode case this corresponds to
riod the slope field into a stationary morphology composeda dressing of the damping constantleaving the dynamical
of amplitude-matched right- and left-hand solitons with su-exponentz=2 in w=vk? unaltered. However, as shown in
perimposed linear modes. The noise strenitts an essen- Papers Il and Ill, even for weak a new quasiparticle
tial parameter changing the qualitative morphology of an in-emerges, the nonlinear soliton excitation, with dispersion law
terface; this is reflected mathematically in Ed.11) for the — wo (N vY?)k32,

. t )
uk(t)zu}(e*“’k‘—fodt’ike*“’k(H Indt). (2.0

Il. AGROWING INTERFACE
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From a heuristic point of view we can regard the solitony and T. During the time evolution it evolves fromp),
as a self-bound state of diffusive modes; in other words, the_ V,[UL—UL exp(oT)]sinho T to PL: v[uL exp,T)

solitons condense or nucleate out of the diffusive mode field.

We note, however, that while the formation of localized soli- uwslgggk:he correspondence between the phvsical inter-
ton modes with superimposed linear modes is a well-known P pny

feature of deterministic evolution equations, e.g, the Sineiggelflilgr?gI(;?lézelebaeT%i\gpag\éﬁlzgget)n bEyq&Hg)-gnatjn(g %)n tlrrle
Gordon equation and the nonlinear Salinger equation y L

Ref.[42], the underlying mechanism of the doubling of soli- the n_mselc;;ss icase fon=0, correspon_dmg_ to setling

ton modes here is the noise. In the approadHrthe soliton ~ ~ 0» 1€ Uk= Uk exip(—wkﬂ, the slope field is damped ac-
mode was identified as a special solution of the classical fiel§'ding tOUK(t) = Uy exp(-wd) over a time scale &y . In
equationg1.6) and(1.7) obtained in the limit\ —0 from (i)  the presence of noise the growing noise fipld-exp(wy)

in Ref.[4] the underlying Heisenberg field equations pertain-eventually drivesu,, i.e., u,xexp(wd). Generally,uy is a

ing to the quantum description arfi) in Papers Il and IIl  linear combination of a damped part expgd) and a grow-
from the classical field equations arising from a principle ofing part explyd), analogous to the decomposition of the field
least action in the WKB limit of the Fokker-Planck descrip- In Positive and negative frequency parts in quantum many
tion. Below we turn to a discussion of the fluctuating inter-Pody theory[43]. Here the components are decaying and

face in terms of the quantum/classical picture discussefrowing according to the transient and stationary regimes |
above. and Il in Fig. 1, respectively.

The orbit (uy,py) given by Egs.(2.5 and (2.6), repre-
senting the quasiparticles in the classical lihit-0, is con-
fined to a submanifold in phase space delimited by four glo-

In the Edwards-Wilkinson cag@3,39 the slope of a fluc-  pal conservation laws: Conservation of ener§y=H,
tuating interface is governed by the driven conserved diffutonservation of momentutd, conservation of area, i.e., the

A. The Edwards-Wilkinson case—equilibrium interface

sion equation integrated slop& or height offset, and here also conserva-
au tion of the integrated noise fiel® given by Egs.(1.15-
i vV2u+Vy, (2.2 (1.18 for A=0, respectively. In wave number space we have
_ . . . dk dk
which is readily solved both on the Langevin level in Eq. E= pye Ek=f4— K2p_(pr—2vUy), (2.7
a a

(2.1) and on the Fokker-Planck level. Since the damping

term vV2u in Eq. (2.2 can be derived from a thermody- ; P

: ) A and the energy decomposes in contributidfs for each
namic free energyF=(1/2)[dx , the driven diffusive \yave number modé. Inserting Eqs(2.5) and (2.6) we ob-
equation describes an interface in equilibrium at a temperag;,, specifically

ture T=A/2v. In accordance with the quantum field inter-

pretation outlined above, this simple case, however, serves as o? [uf]2+|ul)2—2ufu’ , coshw,T
an illustration of the quasiparticle representation. Conse- Ek:? - , (2.9
quently, we turn to the field equationi$.6) and(1.7) in the sintf o, T

linear case fon=0: - . :
I and the energy only depends on the initial and final configu-

ou rationsuj , ul, and the time interval. For fixedu) andu/
—=vVZu-V?p, (2.3 and in the long time limiff — o, the energyE,—0 and the
orbit migrates to the zero-energy manifolgg=0, the tran-
sient noiseless submanifold, ampg=2vu,, the stationary
—=—V?p. (2.4 noisy submanifold. The orbit thus asymptotically passes
through the saddle point(,py) =(0,0) where the diverging
waiting time ensures ergodic behavior. In Fig. 2 we have
Eiepicted the orbits inuy,p,) phase space.

In a similar manner, the momentubh decomposes ac-
cording to

For a single wave number component, E22) corresponds
to a noise-driven overdamped oscillator with force constan
w=vk?, and the associated canonical field equati¢h8)
and (2.4) were solved and discussed in Paper Ill. We find,

supplementing the analysis in Paper lll, the solutions dk dk
. II= - Hk: - ikU,kpk. (29)
® uf sinhwyt+uj, sinhw(T—t) 2.5 2m 2m
u(t)= - , )
K sinhw, T We note thatll vanishes on the zero-energy manifolols
f T =0 andp,=2vuy; in the latter case since the integral in Eq.
)= ot Tk Uk® K 26 (2.9 becomes a total derivative. For a finite time orbit, in-
Pt = v = T (28 sertion of Eqs(2.5) and (2.6) explicitly yields
for an orbit fromul, to uf in time T, 0<t<T. The noise field Im(upuy)

pk(t) is slaved to the motion ofi, and determined b}aL, k=¥ sinhw, T’ (210
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P« dk , .
Pr=20Uy u(x,t):f—[Ake“"kte'kxwL Be“e ], (2.14
I 2
Bi>0 / Ey<0 In field theoretical termsu(x,t) is a free field and the el-
SP I Uy ementary modes are noninteracting. A particular mode lies

' t on the energy surfacg, and is moreover specified by the
conserved momenturfl, . Furthermore, under time evolu-

E,<0 E,>0 tion the integrated slope fiels! and noise field® are also
conserved. Finally, with the mode is associated an a&jon
yielding the transition probability.

FIG. 2. Canonical phase space plot in the linear cask 0@ of 2 Lhzn%eiﬁngggoggizg g;mtglz cftliilds'; SE?J :ce(ﬁiS;) t?;s?cally
a single wave number component. The solid lines indicate the tran> "~ . . . . . -
sient submanifoldp, =0 (I) and the stationary submanifold, classical. Subject to canonical quantization the diffusive

=2uu, (II). The stationary saddle poif§P) is at the origin. For modes become bona fide elementary excitations and a Lan-

t— s, the orbit fromul, to u, migrates to the zero-energy manifold. dau qqasiparticle _picture of the i.nterface emerges. The origi-
The infinite waiting time at the saddle point corresponds to ergodid’@l Noise fluctuations are then interpreted as quantum fluc-

behavior. tuations emerging from the underlying operator algebra.
Finally, we note that subject to a Wick rotatian-it, the
in terms oful, uf, and T; for T—, we havell,—0. diffusive quasiparticles are transformed to dispersive par-

Likewise, for the integrated slope and noise field, ticlelike quasiparticles with mass/2y.

=2vM, we have S
B. The Burgers-KPZ case—nonequilibrium interface
. i In the case of a growing interface the situation is more
— | |
M _j dX U (X) = Uy=o- (21D complex. The general behavior depicted in Fig. 1 still holds
in the sense that the interface evolves from a transient state
Finally, the action associated with an orbit is obtained fromto @ stochastic stationary state. However, unlike the linear
Eq. (1.10. Inserting the equation of motion, ER.3), we  equilibrium case where the fluctuationsurare extended and
have as an intermediate resul=(1/27)fdkS,, Sk diffusive, the fluctuations in the nonlinear nonequilibrium

=(1/2)fdtk?|p,/?, and using Eq(2.6) the action growth case include localized propagating modes in order to
account for a growing height profile. This is also evident
dk |UL_UL expl( — T2 from, e.g., the KPZ equation in E@L.4), where the damping
S= vf — , (2.12 and growth terms transform differently under time reversal.
2 l—exp(—2wT)

Fort——t, h——h, and v— —v the KPZ equation stays
: i _ , o ¢ Invariant. This is consistent with the fact that in the decom-
determined by the initial and final configurationg anduy position of the irreversible linear modes in growing and de-
and the traversal tim&. According to Eq.(1.11), we subse- caying components the dampimgenters in the combination

quently obtain the transition probability vt, whereas the average nonlinear reversible growth term in
0 ) the stationary statédh/dt)stz()\/2)<(Vh_)2> is invariant.

P(uf ul T)ocex;{ _ zf % |ug— Uy expl— @ T)| Clearly, the growth term cannot be derived from a thermo-

ko Pk A) 27 1—exp—2wT) | dynamic free energy, the term moreover violates the poten-

2.13 tial cond_it_ior_1[46_—4q and d_rives the_: system away from ther-
mal equilibrium into a stationary kinetic growing state.

a well-known resulf44,45). In the limit T—~, the orbit The issue on the Fokker-Planck level is again to establish
migrates to transient-stationary zero-energy manifolds and quasiparticle picture and to determine orbitsunp) phase
we arrive at the stationary Gaussian distributi@r21). This  space from an initial configuration' at timet=0 to a final
behavior in phase space is consistent with the qualitativeonfigurationu’ at timet=T in order to, via the action as-
behavior shown in Fig. 1. sociated with the orbit, evaluate the transition probability

Summarizing, in the linear Edwards-Wilkinson case theP(u',u’,T). The orbit is in principle determined as an initial-
conserved noise-driven stochastic diffusion equation is in théinal value problem, i.e., a boundary value problem in time,
weak noise limit equivalent to coupled field equations admit-of the mean field equatior&.6) and(1.7). Unlike the linear
ting both damped and growing solutions for the slope field.case where we can expandn plane wave diffusive modes
The stochastic noise is replaced by a noise field canonicallgnd thus achieve a complete analysis, the nonlinear and pre-
conjugate to the slope field. Both damped and growing solusumably nonintegrable character of E¢k6) and(1.7) pre-
tions are required in order to describe the crossover from theludes such an analysis.
transient regime to the stationary regime. The wave nutkber  Two new features distinguish the field equati¢hs) and
is a good quantum number and we can envisage the fluctyl.7) from the linear cas€i) the nonlinear coupling strength
ating interface as a gas of growing and damped diffusivex setting together withv an intrinsic length scale/\ and
modes according to the decomposition, see also Paper I, (ii) the amplitude-dependent Galilean invariarite3). The
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u u y_ Sinceu, <u_ for a left-hand soliton, its energy is negative.
u, Expressingll in the form II=—(2vv/\)(u.—u_) using
Eqg. (2.19), it follows that IT points in the direction ob.
u, FromII=muv, we can also associate an amplitude-dependent
u massm=(2v/\)|u, —u_| with the soliton. Finally, the ac-
X X tion for a left-hand soliton orbit over tim€ is positive and
Galilean invariant.
In addition to the localized soliton modes, the field equa-
h h tions also support linear modes superimposed on the soliton.
These modes are obtained by a linear stability analysis of the
-— field equations and will be discussed in Sec. Ill. In the limit
-— A—0, the soliton modes vanish and the remaining fluctua-
tions are the diffusive modes of the Edwards-Wilkinson
X X model.
The field equation$1.6) and (1.7) are nonlinear and the
FIG. 3. We depict the right hand and left hand moving solitonssgliton solutions do not constitute a complete set in the same
forming the “quarks” in the description of a growing interface. We manner as the plane wave decompositi@l4) in the
have, moreover, shown the associated height profiles. Edwards-Wilkinson case. We shall, nevertheless, as a work-
ing hypothesis assume that we can resolve a given initial
new length scale allows for the possibility of localized non-interface slope profilal in terms of a gas of right-hand and
linear excitations and the Galilean symmetry permits theeft-hand solitons matched according to the soliton condition
generation of a class of propagating particlelike excitationg2.15); i.e., with horizontal constant slope segments. Associ-
from a static solution, i.e., an excitation at rest. The staticated with the soliton representationwfhere is also a soliton
excitations are the right- and left-hand solitdds8) charac-  representation of the associated noise felrom the form
terized by the parity index = = 1. Boosting a static soliton of the field equations it follows that a multisoliton configu-
to the velocityv, denoting the boundary values andu_, ration is an approximate solution, provided we can control
and using the Galilean symmetry in Ed.3), we obtain the  the overlap contributionu“iVu* arising from the nonlin-

fundamental soliton condition ear term; her@ andl denote theth andlth soliton. Since the
2 soliton width is of orderv/\u, the overlap only contributes
—. (2.15 in a region of orderv/\u about the soliton center and is
A small in the inviscid limitv— 0 and for a dilute soliton gas.
. . . , __Otherwise, we assume that at least for smalle can absorb
In Fig. 3 we have depicted the fundamental “quarks” or {he correction term in a linear mode contribution. In sum-
solitons and the associated height profiles. _ mary, we represent a slope configuratioand the associated
The right-hand soliton fop = +1 moves on the noiseless nise field configuratiop in terms of a gas of right-hand and

transient submanifolg=0 and is a solution of the damped |gft-hand solitons matched according to E8.15 with su-
noiseless Burgers equation, i.e., Ef.1) for »=0. Within perimposed linear modes.

the canonical framework the right-hand soliton does not con- 1his representation of a growing interface is in the spirit

tribute to the dynamics of the interface; according to EQSof 4 | andau quasiparticle picture of an interacting quantum
(1.15 and(1.16, with p=0, it carries zero energy and zero many pody systenid3,50. In a heuristic sense we assume
momentum. The left-hand soliton far=—1 is associated that the interface at a given instant of time is characterized
with the noisy or stationary submanifof=2vu, and itfol- by 3 gas of localized soliton modes and extended linear
lows from the field equations that it is a solution of the modes. Since the soliton is not associated with a particle but
growing noiseless Burgers equation for- —». Note that g a nonlinear solution of classical field equations, the soliton
due to the uneven boundary values andu_ , the solitons  nymber is not conserved; in other words, solitons are created
are self-sustained dissipative structures driven by boundaryng anninilated subject to collisions.

currents as discussed in Paper I. The left-hand soliton is en- Keeping only the solitons, explicit expressions fandp
dowed with dynamical attributes and carries according toyre easily constructed in terms of the Galilee-boosted soliton
Egs.(1.19, (1.16, and(1.10 energy, momentum, and ac- modes(1.8). Introducing the mean amplitudg and velocity

Up+u_=-—

tion: vp in terms of the boundary value,,; andu, of the pth
soliton,
2 3 3
E=svA(ul—u?), (2.16
s A
Ky=-—(Ups1—Up), (2.19
p p+1~ Up
M= 1), 2.1 v
1 3 N
S:6v)\|u+—u,| T. (2.18 vp=—§(up+l+up), (2.20
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Us n
Up M :pzl Upt1(Xps1—Xp). (2.27
I<— oo Vo Although, as follows from Eqg2.24), (2.25, and(2.26), the
U1 | ,  Unst X total energy, momentum, and action are additive quantities
Xp U | (extensive, the soliton gas still represents a very intricate
oo = many body problem. This is due to the soliton matching

condition in Eq.(2.15), i.e., the horizontal segments connect-
ing the solitons, and the dynamical asymmetry between left-
hand and right-hand solitons. The solitons in representation
FIG. 4. We depict am-soliton slope configuration of a growing (2.21) propagate with, in general, different velocitigs, and
interface. Thepth soliton moves with velocity ,= —(\/2)(u,+,  @re thus subject to collisions. Since we only have at our
+u,), has boundary valuas, andu_, and is centered at,. The  disposal single-soliton solutions of the field equations
arrows on the horizontal intersoliton segments indicate the propapatched together to represent a slope configuration at a par-
gation of linear modes. ticular time instant and not a general solution, we have lim-
ited control over soliton-soliton scattering. Clearly, expres-
we obtain for am-soliton representation of the slope fielg ~ sions(2.24—(2.26) only hold in between soliton collisions.
and associated noise fiejd, In particular, the timél entering in the actio2.26) refers to
times between collisions, i.eT, is typically of order|xp+1
2y —Xpl/vp. The working assumption here is that in between
ug(x,t)= ~ >k k, tanhky|(x—vpt—x,), (2.2  the collisions, the solitoriplus linear modesrepresentation

p=1 is valid, and that energy, momentum, and area are conserved
during collisions. However, the number of solitons is not
(2v)? n preserved, i.e., solitons are created and annihilated subject to
Ps(X,t) = X 7§<0 kp tanHky|(x—vpt—xp). collisions. Finally, we note that at long times the orbit from
—p

(2.22 u' to u’ migrates to the zero-energy manifold as conjectured
' in Paper lll. This implies that the finite energy solitons at
long times are suppressed, and that the system in this limit is
Cdescribed by diffusive modes vyielding the stationary distri-
bution (1.21). For further illustration, we have depicted in

Fig. 5 the slope fieldi, height fieldh, and noise fielg for a
four-soliton configuration. The solitons are centeredkat
X3, and x, and propagate with velocitiesv,

The solitons are arranged from left to right according to the
increasing index, p=1,2, ... n. The center of theth soli-
ton is atx,, and we have sati;=u,;1=0. In Fig. 4 we
have shown am-soliton configuration.

The soliton representation in EQR.21) of the interface X
evolves in time according to the field equations. The motion™2’ _ o
corresponds to an orbit inu(p) phase space lying on the and()\/—Z)Ez;\/léz_ (Kh/sr)éufruz) avnad_ g}f{é:“ﬁ:t%a
manifold determined by the conservation of eneEymo- v4=— (M2)Uz, Whereuy, Us, Ua plateau
mentumll, and areavl according to Eqs(1.15), (1.16), and vallées. The configuration carrlgzs (ezner@/=(2{3)v)\(u2
(1.17). We also observe from Ed1.18 that the integrated ~ Y3); momentum 1= V(UZ_U3)' action S

5 3 3
noise fieldP, sincell is conserved, develops linearly in time = (1B)AT(Jual*+[us—usl*+]ual®), and areaM =us(x,
according to —Xq) T U3z(X3—X5) +Us(Xs—X3) at timet=0. By mtegra—

tion, we note that the total noise fieRl evolves asP=P,
+)wt(u2 u3), in agreement with Eq.2.23.
It is clear that the nonequilibrium growth of the interface
is fundamentally related to the existence of localized propa-
ating soliton modes. Expressing the KPZ equatibd) in

P=\IIt+const. (2.23

In the soliton representation the contributions to the energy,
momentum, action, and area decompose. Noting that onl

left-hand solitons fou, ., ;<u, contribute dynamically, and e form
applying Egs.(2.16), (2.17), (2.18), and(1.17), we have oh A
i VV2h+ u+ 7, (2.28
2 . 3 3
E= §”xp:1%2+1<up (Up+17Up), 229 the linear damping term is associated with the linear modes,
whereas the nonequilibrium growth term is driven by the
n solitons. In the Edwards-Wilkinson case the modes are ex-
_ 2 2 tended and diffusiveu«,f,(t)coskx+¢), wheref,(t) is
1 Vp=l,L%}_1<up (Up1 = Up), 2.29 related to Eq.(2.5), and the height fielch=[*udx’ for a
particulark mode behaves likbocsin(kx+¢); consequently,
1 n (h)=0, and growth is absent. On the contrary, in the Burgers
S=_—\T E [Ups1—Up 3 (2.26 case the localized soliton modes emerge ah(k)
6 pP=1Up+1<Up =[*u(x’)dx’ grows owing to the propagation of solitons
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u us convenience vanishing slope at the boundaries. However,
owing to the soliton propagation this boundary condition

Uy cannot be maintained in the course of time as the solitons

cross the boundaries of the system, and it is more appropriate

% Us X to assume periodic boundary conditions for the slope field,

X

s i.e., u(x)=u(x+L) at all times, wherd. is the size of the
% system. Note that periodic boundary conditions for the slope
field in general do not imply periodic boundary conditions
uz for the associated height field the integrated slope field.
We have from h(x)=*u(x")dx’, h(x)=h(x+L)+M,
whereM is the area undar, and only in the case of zero-area

) slope configurations does also satisfy periodic boundary
conditions, corresponding to vanishing height offset at the
? boundaries.
X Whereas periodic boundary conditions for the slope field

are consistent with the extended diffusive modes in the
Edwards-Wilkinson case, i.e., the free fields, the elementary
right and left hand Burgers solitons violate the boundary
conditions since they connect unequal zeroenergy states. In
this sense we can regard the solitons as “quarks” in the
present many body formulation. A proper elementary excita-

h tion or quasiparticle satisfying periodic boundary conditions
is thus composed of two or more “quarks” as illustrated in
Figs. 4 and 5.

The two-soliton configuration

The simplest configuration satisfying periodic boundary
condition is composed of two solitons of opposite parity, i.e.,
~ a noisy and a noiseless kink. The solitons have the common
amplitudeu, are centered at; andx,, and propagate as a
composite entity, according to ER.15, with velocity v =

FIG. 5. We depict the four-soliton representation of the slope . . L enli
field u, the noise fieldy, and the height fieldh, The shaded area in  "/2+ SPecifically, this pair-soliton mode has the form

u, i.e., the integration ofi up to the pointx, equals the heighih u Ks Ks

atx. uz(x,t)=§ tanhi(x—vt—xl)—tanhi(x—vt—xz) .
across the system. Averaging Eg.28 and settingg=0, we (229
have (h)=(A/2)(u?)t+const., which is consistent with the The configuratioru, together with the associated noise field
passage of a soliton with amplitude and velocity [v|  p, (for u>0),

=(N/2)u at a given pointx. This growth behavior also fol-

lows from inspection of Fig. 5. Ks
The constant slope and noise field configuratioau, P2(x,1) = vu) 1-tanhy (x—vt=x;) |, (2.30
andp=pg have, according to Eq$1.15 and(1.16), vanish-
ing energyE and momentunil, and thus form a continuum and the height field,,
of zero-energy states; note that the energy is not bounded
from below, i.e., the zero-energy states are not ground states. COShk—S(X—Ut—X )
The right- and left-hand solitons in E¢1.9) lift the zero- 2 !
energy degeneracy and connect a constantonfiguration ha(x,t)= k—sln ke +const,
to a constanti,. configuration. Unlike the solitons in thg* coshz—(x—vt—xz)
theory or sine-Gordon theof#2,51], connecting two degen- (2.31)

erate ground states ¢, or degenerate ground states

=mp, wherep is an integer, respectively, with massive gap-are depicted at the initial time=0 in Fig. 6.

ful excitations, the Burgers solitons are gapless modes form- According to Eqs(2.24—(2.27), the two-soliton configu-
ing a continuum of states with energy<(u3 —u®) and mo-  ration is endowed with the dynamical attributes
mentumITo(u? —u?).

In the discussion of a growing interface in terms of its Ee_ zV)\|U|3 (2.32
slope field, we must introduce appropriate boundary condi- 3 ' '
tions in order to describe the physical growth state. In the
instantaneous configuration in Figs. 4 and 5 we chose for I1=vsgru)u?, (2.33
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Uo in accordance with increasing the averaged KPZ equation.

Finally, the integrated noise fiel@=fdxp decreases lin-
-— early with increasing time as the soliton pair revolves like
v v P=Py—4wvulu|t in agreement with E¢(2.23.
According tov=—2Au/2 the velocity of the soliton pair
X is proportional to the amplitude. Expressing the energy
X X E and momentumIl in terms of v, we have E
1 2 = —(16/3)(W/\2)|v|® and I=4(¥/A\2)v|v| characterizing
P2 the nonlinear excitation. Moreover, eliminating the velocity
we arrive at the dispersion law

2vu 4 )\

\ - _ 3/2
E=— 3l (2.36

X1 X5 The soliton pair is thus a gapless quasiparticle mode with
exponeniz=3/2. As discussed in Paper Il a general spectral
hy representation for the slope correlations allows us to make
contact with the scaling form in Eq1.20 and identify the
mode exponent with the dynamic exponent.

U(xz-X1) Within the present description the statistical weight of the
soliton is determined by Ed1.2]). In the inviscid limit for
X small v we obtain for a pair of siz€ and amplitudeu the
T T - normalized stationary distribution
X4 X2
FIG. 6. We depict the slope field,, the associated noise field Pst(U,f]):Qstl(L)eXF{ — 1u2€ , (2.37)
p», and the resulting height profile, at timet=0 for a two-soliton A
configuration. The slope configuration has amplitudesize ¢ ) o
=|x,—X4|, and propagates with velocity=—\u/2. The arrow  With normalization factor
indicates the propagation of the superimposed linear mode with B U2 172
phase velocity 2 (discussed in Sec. I Qg(L)=2(mAlv)" 1L~ (2.38

1 The distribution is parametrized by the amplitudend the
S=— v |ulT, (2.39 size €. The normalization factor or partition functiof g,

6 varies a2, and the distribution thus vanishes in the ther-
modynamic limitL —, characteristic of a localized excita-

M=u(xz=Xy). (239 tion. The mean size of a soliton pair is given by

The two-soliton configuration corresponds to an orbit in .

(u,p) phase space. Choosing as initial configurationt at <€>=J le du €Pg(u,f). (2.39

=0 (u',p")=[ux(x,0),p»(x,0)], the final configuration at 0

=T is then given by ¢',p") =[u,(x,T),p,(x,T)]. In a finite

system of size with periodic boundary conditions, this is Inserting Ps; we obtain({)=(1/3)L, i.e., the mean size of

moreover a periodic orbit with peridd/v; in the thermody- the pair scales with the system size. This behavior is charac-

namic limit L— o, the period diverges. teristic of a spatially extended or loosely bound excitation
By inspection of Fig. 6 it follows that the two-soliton and we can envisage the soliton pair as a “string excitation”

configuration propagates with a constant profile preservingonnecting right- and left-hand solitorithe fundamental

the areaM, i.e., the height offset @x,—Xx;). Subject to “quarks”).

periodic boundary conditions in a system of sizethe soli- In a similar manner we can determine the transition prob-

ton pair reappears after a periddv. This motion corre- ability associated with a soliton pair using Eg.11). Insert-

sponds to a simple growth scenario where a layer of thicking S from Eq. (2.34 and normalizing we obtain

nessAh=u(x,—x;) is added tch per revolution of the pair. \

Subject to this particular soliton mode the interface thus _n-1 EREANINE:

grows with velocity (1/2)\u?(x,—x,)/L. This is consistent Pso|(U,T)—QsoI(T)eXF{ 6a T

with the averaged form of Eq2.28) in the stationary state,

{ah/at)=(\/2)(u?), noting the spatial weightxo—x;)/L of ~ where the normalization factor or the dynamic partition func-

the soliton pair in the averag@h/at) over the interface. We tion is given by

also remark that the local increasetinAh=u¢, owing to

the passage of a soliton pair of sife=|x,—x;| in time At Qu(T)= 2 (1)

SO

={¢/|v|, where|v|=\u/2, yieldsAh/At=(\/2)u?, again is ~3 13

, (2.40

6A 1 1/3
° e

W\ T
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Here the Gamma functiol (z)= [ exp(—t)t* ldt arises J )
from the normalization oPg; I'(1/3)=2.68174. E_MN u=vV-u. (3.
Before turning to the linear fluctuation spectrum in the

following section, we wish to briefly review a recent numeri- This equation exhibits a transient pattern formation com-

cal study of the field equatior{&.6) and(1.7) [39]. The field : : : :
equations are of the diffusive-advective type, with the char-.pos‘ad of right hand solitons connected by ramps with super

acteristic feature that the equation foadmits exponentially |mpos§d I|.near modes. A smgle_ “ght ha”ﬂ static_soliton
growing solutions due to the negative diffusion coefficient,rnOde Is given by !Eq(l.8) for '“._1’ €., Us=U taQTksx,
thus rendering direct forward integration in time numerically ks=AU/2v. The soliton has amplitude and widthk, ~. A
unfeasible. In order to resolve this instability problem, weSPectrum of moving solitons is then generated by the Gal-
developed a “time loop” integration procedure based on in-ilean boost(1.3): X—X—AUgt, U—U—Ug.

tegrating the equation fax forward in time followed by an In order to analyze the superimposed linear fluctuations,
integration backward in time of the equation farThis nu- we expandu about the soliton models, u=ug+du. To
merical scheme thus requires an assignment of both initidinear order indu we obtain the equation of motion,

and final {u,p) configurations, and therefore mainly served

as a tool to check whether a certain assignment actually con- d 5

stitutes a solution. — =AUV | Su=vV<su+N(Vug)du. (3.2

ot

We investigated numerically three propagating soliton
configurations:(i) a propagating soliton paifji) two sym- | the asymptotic limit for largéx|, this equation is readily
metrical solitons colliding with a static soliton, arfid) the  gnajyzed. Noting that,—usgn(), Vu.—0, and searching
collison of two symmetrical soliton pairs. Referring to Ref. ¢, plane wave solutons of the form du
[39] for details, we summarize our findings below. We found, o, E texp(kx), we identify a spectrum of complex ei-
in case(i) that the pair soliton in the inviscid limit for small '

. X L T = genvalues,
v is a long lived excitation, thus justifying the quasiparticle
interpretation above. In casié) we considered symmetrical E.= vk?—iNuk
solitons propagating towards and colliding with a static soli- k= I\uk sgrix), @3

ton at the center passing through the static soliton and res'howing the non-Hermitian character of B8.2). Introduc-

emerging with no phase shift or delay; this specific mode L . - .
corresponds to filling in a dip and subsequently nucleating a9 the phase velocity =Au, the imaginary part of the ei

tip at the same point in the height field. In cagie) we genvaluek, cpmbines with the plane wave part and yields
finally considered two symmetrical soliton pairs colliding € Propagating damped wave form

and reappearing subject to a phase shift or delay where the ot

incoming trailing solitons become the leading outgoing soli- Sucxe” kbt santl, (39
tons; this mode correponds to filling in a trough and subse- ) ) ) .
quent nucleation of a plateau in the height profile. It was!he soliton mode thus gives rise tawode transmutatiom
characteristic of the soliton collisions in cas@s and (iii) ~ the sense that the diffusive mode in the Edwards-Wilkinson
that the conservation df, II, andM was satisfied during Case du=exp(-rkjexp(kx) is transmuted to a damped

collision, a feature that seems to stabilize the integration. Propagating mode in the Burgers case with a phase velocity
v depending on the soliton amplitude The mode transmu-

IIl. FLUCTUATIONS—MODE TRANSMUTATION tation, of course, also follows from the Galilean invariance in
) . ) ] _ Eq. (1.3 since a shift of the slope field to the soliton ampli-
The soliton spectrum discussed in the preceding section ig,de u corresponds to a transformation to the moving frame
a fundamental signature of the nonlinear character of thg .,y _ ) ut. For large positivex, the mode propagates to the
Burgers equation, and at the same time essential in accounkst for large negativex the propagation is to the right, i.e.,
ing for the growth aspects of an interface. In the presenfhe mode propagates towards the soliton center which thus
section we address the fluctuation spectrum or linear modgis |ike a sink. The phenomena of mode transmutation has
spectrum superimposed on the soliton gas. In the lineajisy peen noted by Seta[52] in the case of the asymmetric
Edwards-Wilkinson case discussed in Sec. I, the fluctuationgyc|usion model. a lattice version of the noisy Burgers equa-

exhaust the mode spectrum and have a diffusive character. {fhn in the context of analyzing the shocks, corresponding to
the nonlinear Burgers-KPZ case the fluctuations are superimye solitons in the present context.

posed on the soliton modes and become propagating. The as noted in Paper | the analysis of E®.2) can be ex-

fluctuation spectrum was discussed incompletely in th@_ﬁended to the whole axis by introducing a nonuniform gauge

noiseless Burgers case in Pape_r I and in .the no.isy case finction g determined by the soliton profile in E€L.8),
Paper Il. Here we present a detailed analysis. A brief account

of the work is given in Ref[38]; here we complete the g(x)=ks tanhkex, ke=\u/2v. (3.5
analysis.
By means ofg we can express E¢3.2) in the Schrdinger-
A. The noiseless Burgers case like form,
The noiseless Burgers equation is inferred from &ql)
by setting =0 and also follows from the field equation _ @:D( )ou (3.6
(1.6) on thep=0 submanifold, ot 9)ou, '
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where the operatdd(g) in the guantum mechanical analog The x dependents matrix s, (X)=|s(x)|exdi&(X)] gives

is given by the Hamiltonian rise to a spatial modulatiofs,(x)| =[ (k?+ k2 tank kg)/(k?
+k§)]l/2 of the plane wave near the soliton center over a
range k;l and a phase shiff,(x)=tan [ (ks tanhk)/k]
+tan Y(ks/k). For x——, s (x)—1; for x—%, s(X)

— (k+ikg)/(k—ikg)=exp(d), ands,(x) becomes the usual
This equation of motion describes in imaginary Wick-rotatedS matrix. We note that the bound state solution and its zero-
time a particle moving in the potential 2/cosi kx subject ~ frequency eigenvalue is contained in the scattering solution
to the imaginary gauge field). Absorbing the gauge field by @S @ pole in the matrix for k—iks.

means of the gauge transformation Inserting the gauge transformation in £§.8), we obtain
for the zero modeSuxcosh ?(kx)<Vus, which thus corre-

. sponds to the translation or Goldstone mode associated with
=cosh ~ kex (3.8) the position of the soliton. For the extended states the gauge
transformationU provides an envelope of rangq-gl, ie.,
and using the identity ¥ +g)2=U(g)V2U(g) %, the non-  du=exp(kx)s(x)cosh *(kx). The complete solution of the
Hermitian equation of motiof3.6) takes the Hermitian form mode equatior{3.2) thus takes the form

2

__ 2 2
D(g)=—v[V+g(x)]*+ vkg cos? kx

1- . (3.7

U(g)=exp[ - f g(x)dx

~ ikx
adéu ~ A — Ot e
T ou= ———+ Be 'k s(X), (3.16
- =D(0)au, 3.9 cosi ke Ek: k coshkex (x)
where expressing the fluctuations of the slope field about the static
right-hand solitorug; A andB,=B*, are expansion coeffi-
su=U(g) *éu. (3.10  cients. The first term in Eq(3.16) is the time independent

translation mode. The second term corresponds to a band of
We also observe that the gauge transformation in(B@®  damped localized states with a gak? in the spectrunt,
has the same form as the Cole-Hopf transformaf&54] =p(k®+ k§). Moreover, the scattering modes are transparent
applied to the static soliton solutions, see also Papers and phase shifted b§,=2 tan 1(k¢/k), implying according
[—I11. to Levinson’s theorem, that the band is depleted by precisely
The presence of the gauge function changes the spatiahe state corresponding to the translation mode.
behavior of the eigenmodes and thus their normalizability. In order to make contact with the asymptotic analysis
The imposition of physical constraints such as spatially lo-yielding the spectrum in Eq3.3), we observe that the fluc-
calized modes or asymptotic plane wave modes obeying peuations given by Eq(3.16) do not exhaust the spectrum.
riodic boundary conditions consequently give rise to a comSince the gauge factdd =cosh  kx provides a falloff en-
plex eigenvalue spectrum. Since we can “gauge” the modeselope, we can extend the set of solutions by an analytical
problem in Eq.(3.6) to the exactly solvable Schidimger continuation in the wave numbgiin the same manner as the
problem defined by Eq3.9), we are able to complete the translation mode is retrieved by settikg iks. Thus shifting
analysis. k—k+ix, where|k|<ks, we obtain by insertion in Eq.
Setting Succexp(—Qt), whereQ) is the frequency eigen- (3.12 the complex spectrum,
value, the spectrum of the ensuing eigenvalue problem,
Er o= v(K2+K2—k?)+2ivki, |k|<ks, (3.17)

D(0)su=0Qéu, (3.1 and associated fluctuation modes

associated witlD (0) can be analyzed analyticallg5,56. It

is composed of a localized zero-frequency mode and a band Su= A +2 B, e—(Qk—vxz)teik(x—ZVKt)
of phase-shifted extended scattering modes with eigenvalue costf kex T F
Q= v(K2+K). (3.12 o
X COShkSX Sk+IK(X)! (318)

The eigenmodes have the form
whereB, ,=B*, , sinceéu is real.
~ 1 Expressiong3.17) and(3.18 provide the complete ana-
ous coshkgx’ 20=0, (3.13 Iytically continued solution of the fluctuation spectrum about
the static soliton compatible with the imposed physical
~ ; 2 12 boundary conditions. Fot= =Kk, we recover the spectrum
uxexpikx)s(x),  =v(kitky), (314 (3.3 of right hand and left hand extended gapless modes
propagating towards the soliton center with velocity
_ . 315 = 2vks=\u. For|«|<ks we obtain a band of gapful modes
k—iks with localized envelopes propagating with velocity 2 to-

k+ikg tanhkgx
S(X)=
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FIG. 7. The complex eigenvalue spectrum for the fluctuating
linear modes R&, = v(k®+k2—«?) and ImE, ,=2vkk. The

bounding parabola fok=ks and = —Kkg corresponds to the left du

and right extended modes propagating towards the soliton center I

they are denoted | and,Irespectively. The shaded area bounded by il a e

the parabola corresponds to localized propagating modes« for AN /\ N X
#0. For k=0, the spectrum is real corresponding to a localized —V\ u—&

nonpropagating symmetric mode. The point TM corresponds to the
translation mode.

. . . FIG. 8. The fluctuation patterns of the pinned dynamical modes
wards th_e soliton center. Fmally, for=0 the envelope is  corresponding to the sectors of the eigenvalue spectrum in Fig. 7.
symmetric, the spectruri,  is real, and the mode has no The arrows indicate the propagation directions.

propagating component; f&e=0 andx=Kkg we retrieve the
time independent translation mode. With the exception of the B. The noisy Burgers case
extended mode foix=*kg, the envelope modes fdi|

< i i iton. Thi .
ks aredynamically pinnedo the soliton. This phenomenon case, we must address the coupled field equaiibiés and

of localizationor dynamical pinningof the modes is associ- : s
ated with the com)pl)lex spec'?rum ir?)E(q&l?) resulting from (1.7 and expand the slope fieldand noise fielg about the
g}liton configurations, in the single soliton case given by

In order to discuss the fluctuation spectrum in the noisy

the non-Hermitian character of the eigenvalue problem. In al . O

cases the modes are damped with a damping constant giv 2'])(1'82:] ?anz()lf) aTd n thﬁ_ ml;It'SOI'ttr?n casle _by_ Egs.

by v(k®+ kg—KZ). We mention that a non-Hermitian eigen- *~° and{z.22). 7S also resulting from tne analysis in Fa-
er Il it is convenient to make use of a symmetrical formu-

value spectrum is also encountered in the context of flu ation and introduce the auxiliary noise fiakdby means of
pinning and the transverse Meissner effect in highsuper- y y

conductorg57]. Here the imaginary gauge field is uniform the shift

and is given by the applied transverse magnetic field; in the = _ (3.20
il . . . p=v(u—o). -

present case the gauge field is spatially varying and given by

the nonlinear soliton excitations.

In Fig. 7 we have depicted the spectrum in a plot of th
imaginary part ofg, . versus its real part. In Fig. 8 we have
shown the .e}ssocia}ted characteris.tic fluctuation mode pat- (i—AUV>U=VV2<p, (3.21)
terns. Specifically, in order to obtain a real extended mode at
propagating towards the soliton center with velocity
=2vk A u from the left and with velocity—v from the right (

eThe field equations then assume the symmetrical form

with continuous derivative ak=0, thus extending the
asymptotic solutior(3.4) to the whole axis we form an ap-
propriate linear combination from Eq3.18 with equal
weights according to the assignment& and k= *Kkg. Ig-

Su
noring here the modulation factsy. ;.(x), which is easily - N
incorporated, we obtain \ /\ t /\ / X

\/\/‘\/\/

Jd
E—)\UV>QD:VV2U. (3.22

» e K cosk(x—uvt)+ e s* cosk(x+ut)
Suoce” K1 :
coskex ) ) )
(3.19 FIG. 9. We depict the extended mode propagating from right
and left towards the soliton center that acts like a sink. The center
point atx=0 oscillates with frequency=Kkv. The arrows indicate
This mode is depicted in Fig. 9. the propagation direction.
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The single-soliton solution is given by Eqg.(1.8) and the In the soliton regions the slope and noise fields vary over
associated noise solution by a scaleks’l, and we must address Eg&.25 and (3.26).
Introducing the auxiliary variables
&= pug+const. (3.23
SX*=68u=* So, (3.29
Expanding about a general multisoliton configuration
(us,es), Whereug is given by Eq(2.21 ande¢g by (modulus  and the general gauge functigg defined by the slope pro-
a constant file

2v o A
Ps(X,t)= Tv pzl [kpltanhky| (X—vpt—Xp), (3.24 9s(X,1)= 5 Us(X,1), (3.30

by setting u=ug+du and ¢=¢.+Sp, we obtain the EQs.(3.25 and(3.26 take the form

coupled linear equations of motion, 9SX- N
) — o = ED(£09 X"~ 5 (VU= Vg 0X7,
(E—)\USV) Su=vV25p+\(Vug)ou,  (3.29 (3.3D
whereD(=*gs) is the “gauged” Schrdinger operator,

1%
(E—)\USV)5(p=vV25u+)\(V(ps)5u, (3.26 ,
A A
D(*gg)=—w(V=g9)*+ 5 us—5Ves, (332
determining the fluctuation spectrum of superimposed linear v

modes. . . S : '
The analysis proceeds as in the noiseless case. Referriﬁ&scr'b'”g the motion of a particle in the soliton-defined po-

to Egs.(2.21) and (3.24 we note that in the intersoliton tential 02/4V)U§—(X/2)V¢S subject to the gauge fielg.
matching regions of constant slope and noise fieldd" the regions of constant slope and noise fields, we have
Vu,=Ve=0. Equations (3.25 and (3.26 then YUs=Ve¢s=0, Us=u, gs=Au/2Zv, D(*gq——w(V
decouple as in the linear Edwards-Wilkinson case and"AU/2v)?+(\*/4v)u?. Searching for solutions of the form
setting ug=u and looking for solutions of the plane OX~*exp(-~Ed)exp(kx) we recover the spectrum in Eg.
wave form éu,dexexp(—Ed)expikx), we obtain (3.27), and sinceSu= 6X" + 6X~ the mode in Eq(3.28. In

Su* Spxexp(—Ect)exp(kx), i.e., Sux[A exp(-Et) the solitpn regions we havﬁc;_>5=MVug‘, W.here,u=t1

+B exp(—E, t)]exp(kx), where the non-Hermitian complex for the right- and left-hand solitons, respectively, and one of

eigenvalue spectrum similar to the noiseless case is given g/& €quations(3.32 decouple driving the other equation
parametrically.

Ef== vk2—ivk, v=\u. (3.27) The analysis propeeds in a manner analogous .to the noise-
less case. Introducing the Cole-Hopf transformation

The Su mode(and likewise thed¢ mode thus corresponds

to a propagating wave with both a growing and decaying U(x t)=exr< _ fxg (x’ t)dx’) (3.33
component, ' st ' '

Suoc(Ae~ "ty Berktygik(x+on) (3.2  and using the identity{ +g5)*=UV?U ™', we arrive at the
coupled Hermitian equations
These aspects are consistent with the general phase space

behavior depicted in Fig. 2, whereas the propagating aspect 96X= B w1 legr N -
as in the noiseless case is the manifestation of a mode trans- a U= D(0)U™"6X 2 (Vus=Vog) 6X™,
mutation from diffusive modes in the Edwards-Wilkinson (3.39

case to propagating modes in the Burgers case. As indicated

in Fig. 4 the linear mode propagates to the leftfiorO and  which are readily analyzed in terms of the spectrunD¢0)

to the right foru<0; for u=0 the propagation velocity van- summarized in Eq§3.11)—(3.15. The exponent or generator
ishes, and we retrieve the diffusive modes in the Edwardsin the gauge transformation in E(B.33 samples the area
Wilkinson case. We note in particular that for a static rightunder the slope profileig up to the pointx. For x—«, U
hand soliton with boundary valuas. = *u, equivalent to —exp(~\M/2v), whereM given by Eq.(1.17 is the con-
the noiseless case discussed above, the mode propagatesderved total area. In terms of the height fibldu=Vh, M
wards the soliton center which acts like a sink; for a static=h(+L)—h(—L) for a finite system, and thus equal to the
noise-induced left-hand soliton with boundary values  height offset across a system of sikei.e., a conserved
=¥u, the situation is reversed and the modes propagatgquantity under growth. Inserting the soliton profilgin Eqg.
away from the soliton that in this case plays the role of a(2.21), the transformatiotJ factorizes in contributions from
source. the individual local solitons, i.e.,
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ux,ty= [T Up(x,t)sont),
p=1

(3.39

Up(x,t)=cosh ! ky(Xx—vpt—Xp).

1. The single-soliton case

PHYSICAL REVIEW E 68, 026132 (2003

a spatial modulation. We also note that Levinson’s theorem
implies that the band is depleted by one mode corresponding
to the translation modgb5].

Confining the fluctuations to the noiseless transient sub-
manifold p=0 we havesp=0, i.e.,éu= d¢, and we obtain
for the right-hand soliton g=+1) X~ =0, implying
A{M=0 andB{Y=0, and thus

Since the formulation of the linear mode problem in terms

of Egs. (3.295 and (3.26 deriving from the field equations

(3.21) and(3.22 and yielding Eq{(3.34) is entirely Galilean

invariant, we can in analyzing thgh single soliton segment

of the multi-soliton configuration in Eq2.21) without loss

. ALe~ Meikxg, (x)
X" =26u= + ,
coshkgx

(3.40

of generality boost the soliton to a rest frame with zero ve-

locity. Thus shifting the slope field of thgth soliton by the

amount (1,1 +u,) corresponding to the propagation veloc-
ity vp=—(N2)(Up;1+Up), and assuming for convenience

that x,=0, the soliton profile is given byyg in Eq. (1.8).
Hence we obtainV ¢4=uVuy and D(0) given by Eq.
(3.32. Noting thatU=U% and Vu¥ = uukUj, we find for
the fluctuations

SXT=U, #6X™, Up=cosh* ke, (3.3
the Hermitian mode equations
IOX* . o
— = *D(0)8X* —vki(u*1)6X", (3.39)

which decouple and are readily analyzed by expandXd
on the eigenstates @ (0). We obtain

., 2vk2 APt + B
cosht kex

e'**s(x)

+ (AW gt L B(r) guyt
(Ae Bie )coshksx’

(3.39

Q .
SXH=AY+ uBM T"zeﬁﬂkte'kxsk(X)coshksX,
VKs
(3.39

describing the fluctuations of the slope and noise figids
=(6XT+6X7)/2 and ¢=(6XT—86X7)/2 or Sp=vSX~
about the static right-handu(=+1) and left-hand g
=—1) solitons. A4, B{', A{¥, andB{™ are integration
constants fixed by the initial conditions.

The first terms in Egs(3.38 and (3.39 are associated
with the soliton translation modegX,,o V uecosh 2kx
which propagate with constant momentuxg;<Af; we

note that the soliton position and soliton momentum are ¢
nonically conjugate variables. The envelope modulated plan
wave terms in Eqs(3.38 and (3.39 represent the fluctua-

tions about the soliton. Since the matrix s (x)—(k
+ikg)/(k—ikg) =exp(dy), d,=2tan (ks/k) for x—=, the

soliton induced potentials are transparent and the fluctuations

pass through the soliton only subject to the phase shiéind

a-

in accordance with Eq3.16 in the noiseless Burgers case,
i.e., a translation mode and a band of damped localized
pinned modes.

Likewise, on the noisy stationary submanifobd=2vu
we requiredp=2véu, i.e., Su= ¢, and we obtain for the
noise-induced left-hand solitonu= —1) 6X* =0 entailing
A()=0 andB{’=0, and we have

A(k— l)eﬂkteikxsk(x)
OX~=26u= + ,
coshkgx

(3.41

composed of a translation mode and localized modes. How-
ever, unlike the fluctuations about the noiseless right-hand
soliton, which are damped, the fluctuations associated with
the noisy left-hand soliton are growing in time. This behavior

is consistent with the phase space plot in Fig. 2 and the
Edwards-Wilkinson case discussed in Sec. Il.

In general, there are also fluctuations perpendicular to the
submanifolds, and we are led to consider the coupled equa-
tions(3.38 and(3.39. The fluctuations are modulated by the
gauge factors codhx and coshlkx. As in the noiseless
case, the spatial modulation of the plane wave form allows
us to extend the spectrum by an analytical continuation in the
wave numbelk, and in this manner allows us to match the
spectrum to the intersoliton regions. In fact, noting th4t"
according to Eq(3.34 decouples folVug,V ¢—0 in the
intersoliton regions, we obtain by settikg-k*ikg the shift
O =v(KP+k?)—v(k?+2ikky and expikx)cosh™ kg
—const, and we achieve a matching to the extended propa-
gating modes. The gauge transformation in E435 thus
permits a complete analysis of the linear fluctuation spec-
trum about a multisoliton configuration.

2. The two-soliton case

In order to illustrate how the fluctuation spectrum is es-
tablished across the soliton configuration and how the match-
ing is implemented, we consider the fluctuations about the
'%No-soliton configuration in E¢2.29 with associated noise
ield

u [ [
<p2(x,t)=§ tanhi(x—vt—xl)+tanh§(x—vt—x2) .

(3.42
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The Hermitian linear mode equations are given by B4 -+ (k)?]t}U, * exp(kx). By insertion in Eq(3.45 we note that

with us=u,, ¢s=¢,, and the Cole-Hopf transformation  v,U,*=V, exp(—kx/2)~0, and thatsX" thus is decou-
pled from 8X~, vyielding the solution 65X «<exp{—{k?

_ (3.43 +(l§512)2]t}p2 exp(kx). A similar analysis applies in the
soliton region neax,.

) ) ) ) ) For the plane wave components alone, we then obtain,
The soliton pair propagates with velocity=—Au/2, S0 in  interpolating to the whole axis and incorporating thena-
order to render the gauge transformation time independenfjceg according to E¢3.15

and thus facilitate the analysis, we boost the configuration to
a rest framey,—u,—u/2. Insertingu,, we then obtain the

)\ X ’ ’
U,(x,t)=ex _Zf u,(x’,t)dx

coshkg/2)(X—X5)

specific gauge transformation + __ o= v[K3+ (kg2)At
P 9ans oX"~e coshky/2)(X—X4)
k )
coshz—s(x—xz) X ek2gikXg, (x—x1)SK(X—X,), (3.4
UZ(X) — k— eksxlz, (3_44}
COS"ES (X_ Xl) 5X_ _ ey[k2+ (k312)2]t Cosr( kS/Z)(X_ Xl)

coshky/2)(X—X5)

a special case of E¢3.35. X e k¥2gikxg (x —x )8 (X—X,).  (3.49
In order to simplify the discussion of the mode equations

(3.34 with D(0) given by Eq.(3.32, we introduce the no- We thus we pick up the phase shifi=2 tan (k./k)

tation u.. =(u/2)tanhky/2(X—x..), X =X1, X_=Xp, forthe .., "0 soliton, the plane wave components are more-

. .. . . . . _ 1
'Ed';”_duf‘zl ;ggtoni Cfﬂtr'zbu:régn;mfé :sntqm@azt'e Ié)ef.ihuez_c?ten- over spatially modulated by the gauge transformatiby
u—u P2 =u" T U~ Imp : P =exd —(M\2v) fu,dx] sampling the area undes.

. 2 2_ . .
tial (}‘2/4")”2 (M2)Ve, in Eq. (3.39 then yields Finally, we boost the mode to the velocity= — vkq
v(kg2)1=V, ~V_], where we have also introduced the _ _ /3, shift the wave numbek— k= ikg/2 for 5X* and

notation V.. = 2/cost(k/2) (x—x..), for the soliton-induced  ,piain the modulated plane wave associated with the propa-

potentials. Moreover, N/2)(Vup= V) =*v(kJ2)V.,  gating two-soliton mode with vanishing boundary condi-
and we arrive at the two-soliton mode equations

tions,
IOX™ *1 FLoy®— 2 ¥
== +U,; " D(0)U; 60X~ F v(kg2)7V . 6X™, S g K coshke/2)(X—vt—X5)
(3.45 coshiky/2)(x—vt—xX;)
with D(0) given by XeikXSk+iks/2(X_Ut_X1)3k+ikS/z(X_Ut—X2),
D(0)=— »V2+ p(kgy2)2(1-V,—V_).  (3.46 (3.49
In the regions of constant slope fieM,. ~0 and X~ de- _ e Coshikg2) (x—vt—x;)
couple. To the right of the soliton pair fa& x4 ,X,, we have oX ~e coshky/2) (X— vt —Xy)
U,xexgk(x;—X)/2]expkyx/2), and we obtain the envelope . s
solutions 8X= < exp{+ fk?+(kJ2)?]t}U5 * exp(kx), which ><e'kxsk_iks,z(x—vt—xl)sk_iks,z(x—vt—xz).
are matched to the asymptotic plane wave solution by setting 3
Kk iky2, yielding SX* = exp( rkt)exdik(x— k)], i.e., (3.50

a mode propagating to the right with velocigks=Au/2 ] ] ] ) )

—v. To the left for x<x;,X,, we have U,xexgk(x, 'ne interpretation of this result is straightforward. In the re-
—x,)/2]expk/2), and correspondingly, the envelope solu-9i0NS away form the pair soliton, we o_btaln_ plane wave
tions 8X* oexp{=[ {ke+(ky2)2]t}Us T expkx). Matching modes with both a growing and decaying time behavior.

these solutions to the plane wave solutions by the analyti@‘CrOSS the_propagatlng tvvo-sollton_ _conf|gurat|on, the plane
continuation k—k=*ikJ/2, we obtain the same resuit wave amplitude and form are modified by the gauge factor

as above. We note that the changeUn across the pair and thes matrix.
is given by exp—Kk(X,—x)]=exd —(\2v)u(x,—Xx4)]

=exd —(\2v)M,], whereM, is the area enclosed by the

soliton pair. In the region between the solitons fgr<x In the multisoliton case the slope configuratiapand the
<Xy, Up~exgky(x +x)/2]exp(—kx/2), or for k—k  associated noise fields are given by Eqs(2.21) and(3.24).
Fikg/2 the modessX™ «exp(F vkit)exdik(x+vkd)], corre-  The linear mode problem is defined by E¢3.34 with the
sponding to propagation to the left with velocity vk,= gauge transformatiot) given by Eq.(3.33. As discussed
—A\u/2=—v. In the soliton region neax, , we haveV_ previously, the extended plane wave modes in the intersoli-
~0. Ignoring the translation mode and phase shift effectdon regions connecting the solitons are subject to a mode
we thus have from Eq. (3.45 6X xexp{fk? transmutation to propagating waves with spectrum given by

3. The multisoliton case
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Eqgs.(3.27). In the soliton regions the analysis follows from a «exd —F/kgT]. In the presence of the nonlinear mode cou-
generalization of the single and two-soliton cases discussegling termAuVu, Eg. (4.1) does not describe a thermody-

above. namic equilibrium state but a stationary nonequilibrium state
A complete analysis is achieved by first noting thlatan  or kinetic growth state. It is, however, a particular feature of
also be expressed in the form the one-dimensional case that the stationary distribution is
\ \ known and given byPgxexd —F/kgT], independent of.
t . B -y
_ N AN 20 , This property also follows from the potential condition
U(x,t) exp{ ZIJ dt (zus(x,t )+ vV ex,t )” [46.47.49
(3.51
derived by differentiatingJ in Eq. (3.33), using the equation f dxI A\Vu— Av 5_Fv(u2) =0, (4.3
of motion in Eq.(3.2) for the multisoliton profile and solv- A éu

ing the ensuing differential equation. By insertion of Eg.
(3.57) in Eq. (3.34), we obtain the linear equations of motion which is readily satisfied since the integrand becomes a total
derivative. Another way of noting that Eq4.1) does not
describe an equilibrium state is to express the equation in the
form du/ot=vV SF'/Su+V 5, with effective free energy
F’=(1/2)fdx[u+ (\/3v)u®]. Apart from the fact thaf’
+§(Vusiv%)uzl5x:' (3.52 inc[ude; an.odd power in and thus, sincei=Vh, violates
2 parity invariance, it is also unbounded from below for
. o ) — —o, and thus cannot describe a stable thermodynamic
which are readily discussed. In the flat regidigs=Vos  giate.
=0, X" and X" decouple, and we have The stationary distributiog(u) is obtained in the limit
t—oc from the transition probability°(u'—u,t) for a path-
way from the initial configurationu' to the final configura-

describing a plane wave mode modulated across the solitotrllOn u. In this limit only the linear diffusive modes fok

. . . =0 persist, characterized . This is consistent with the
regions by the Cole-Hopf transformatidsm(x,t), with the fact pthat the soliton ctc?r/?{ribution yieldsP(u'—u, )
explicit form given by Eq(3.35. Alternatively, we obtain a '

mode transmutation to a propagating plane wave betweeﬁexq_s(t)m]’ where the actior§(t) associated with the

solitons by the analytical continuatida—k=*ik,, thus ab- tsollitco;;;c grrc(’)\)lvvsth”nn;g(r:iles\,l,mer.tg.i,n:hle iLWOt_hS:t“ttr?g C%onrll;zgﬁ;iag:]on,
sorbing the spatial modulation id(x,t) and corroborating ypically g y » IMPYINg

the previous discussion. We note that the form in 8053 to P vanishes.

is in accordance with Eq93.49 and (3.50 in the two-

soliton case. Across the soliton region8X™ and X~ A. Correlations in the Edwards-Wilkinson case

couple according to E¢3.52. The analysis in the single- | the Jinear case the correlation function is easily evalu-

soliton case above applies and the plane wave mode picks Ypeq on the Langevin level from the stochastic Edwards-
the phase shify associated by Levinson’s theorem with the \pjiikinson equation(2.2) and follows directly from Eq(2.1)

a .. o
E(U”&X*)Zi(VVZ-H\V(ps)U*l&X*

5xtoceivk2teikxuil(xit)’ (353)

formation of the soliton translation modes. when averaging over the noise, see also Paper II. In wave
number—frequency space, we obtain the Lorentzian diffusive
IV. STATISTICAL PROPERTIES form
In this section we discuss the statistical properties of a AK2
growing interface on the basis of the canonical phase space (uuy(k,0)=————, (4.9
formulation. Generally, we can express the noisy Burgers w?+(vk?)?

equation in Eq(1.1) in the form
with diffusive poles atw= *ivk? strengthA/(vk)?, and
nu_ vV5—F+7\uVu+V7;, (4.1 linewidth vk2. We note thatzboth gro_wingyocexp(vkzt),.and
at éu decaying termsu«<exp(—kt), contribute to the stationary
o - o correlations; this is in accordance with the decomposition
\t/)vhere the free energly driving the diffusive term is given (2 14. In wave number—time space, we have correspond-
y ingly

F=%f dxUA(x). (4.2

A 2
= e vkt
(uu)(kt)=5e I, 4.5
For \=0 we have the linear Edwards-Wilkinson equation
describing the temporal fluctuations in a thermodynamicand the diffusive correlations decay on a time scale deter-
equilibrium state with temperatuB= A/2vkg with station-  mined by 14k2. For the equal-time correlations we obtain in
ary distribution given by Eg. (1.21), ie.,, Py particular (uu)(k,0)=A/2v, showing the spatially short
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ranged correlations in accordance with the stationary distri- 8 - -
bution (1.21). For later purposes we also need the spectral
form, see Paper I, ok i
5
dk A 2
xt)= | — — gikxg—k |t|_ 4. = 4
(uu)(x,t) JZW 2Ve e (4.9 - ab i
3
In order to illustrate the method to be used later in the soliton ol 2 4
case, we evaluate hefau) in the linear case on the basis of 1
the path integral formulation, Eq1.14). Since the distribu-
tions (1.21) and (2.13 factorize in wave number space, we % 05 10 15
have in a little detail for a system of sitg T
FIG. 10. The action given by E@4.1]) is plotted as a function
(uuy(k t)ocf IT dulduluful of T for transition pathways involving up to=>5 soliton pairs. The
' p= =prk-k . " ) .
p lowest action, and thus the most probable transition, is associated
f i w2 with an increasing number of soliton pairs at shorter times, indi-
1 _ @n |up—upe” | cated by the heavy limiting curve. The curves are plotted in arbi-
. ex AL 1—g 2ot trary units.
14 . 3
X xpg — —u' |?]. 4. 4v L
Ile ‘{ AL |Unl ) @7 SM=257 4.9

; ; ; £ f_ i ) _ _
Changing variables i (up ,Up.t), Up— Uy €Xp(-wqf)— Uy, We note that the thickneds does also depend on the pair-

itis ain casy ta_sk to carry out the Gaussian integral_s ONET soliton size¢ which does not enter in the action. However,
anduy, and retrievg(uu)(k,t) in Eq. (4.5 the evaluation of e multiplicity or density of soliton pair which enters in the

(uu) in the corresponding harmonic oscillator quantum fieldyefactor of the transition probability must depend ofi, 1/
calculation was performed in Paper Il. Finally, evaluatingzng we obtain qualitatively

Eq. (4.6) we infer the scaling form(1.20 with roughness
exponenty=1/2, dynamic exponert=2, and scaling func-
tion; see also Paper I, Pocg1 exp( _

1 4VL3)
. (4.10

A 3)\2T2
= — A —=1/2,,— 12, — 1/4vw — z
F(W)_Z[A'WV] W WS, (48 In the thermodynamic limit —c, P—0, and the switching
via a two-soliton pathway is suppressed. At long times the
defining the Edwards-Wilkinson universality class. action falls off as 17°.

Summarizing, the Edwards-Wilkinson equation describes In the case of a switching pathway by means of two equal
a thermodynamic equilibrium state. The dynamical equilib-amplitude pair solitons we obtain, correspondingly, noting
rium fluctuations are characterized by the gapless dispersidhat the pairs propagate with half the velocity, the act®n
law w= vk?. The modes are extensive and diffusive and con=(1/4)S;. Introducing heuristically a constant nucleation

trolled by the characteristic decay timevk?, depending on ~actionS,, associated with the noise-induced formation of a
the wave numbek. pair, i.e., the appropriate assignment of the noise fielde

have the general expression for the action associatedrwith
B. Switching and pathways in the Burgers-KPZ case pairs,

Before we turn to the correlations in the nonlinear 1 4p L3
Burgers-KPZ case it is instructive to extract a couple of ST =nSyet— — =
simple qualitative consequences of the dynamical approach. n? 3\% T2
As discussed in Sec. Il the propagation of a two-soliton con-
figuration constitutes a simple growth situation where at eacln Fig. 10 we have plotted® versusT for n=1-5 soliton
passage of the soliton pair the interface grows by a layempairs. Since the curves intersect, we infer that the switching
Considering a pair configuration of amplitudeand sizef, at long times takes place via a single soliton pair. At shorter
the propagation velocity is= —\u/2 and the associated ac- times, a switching takes place and the transition pathway
tion S;=(1/6)v\|u|3T. Across a system of size we have proceeds by the excitation of multipair solitons. This is
|v|=L/T, whereT is the switching time, i.eu|=2L/AT. clearly a finite size effect.

For the action associated with the transition pathway of add- A similar analysis of the soliton switching pathways in the
ing a layer of thicknes$=[*u(x’,t)dt=|ul€=2L¢€/\T, case of the noise-driven Ginzburg-Landau equation has re-
we then have cently been carried out. Here the analysis, corroborating re-

(4.11)
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cent numerical optimization studies, is simpler because the i , . _
soliton excitations are topological and have a fixed amplitude (UU>(X,t)=J [du'du’ u'(x)u'(0)P(u’,u',t) Pg(u'),

[58]. (4.14
we note that the basic ingredient is the transition probability

P(uf,u,t) from an initial configuratioru' at timet=0 to a
final configurationu® at timet.

C. Anomalous diffusion of growth modes in the Burgers-KPZ
case

On the Langevin level the growth of the interface is a
stochastic phenomena driven by noise. Parametrizing the 1. Sum rule

growth in terms of growth modes corresponding to the pefore continuing we observe that in the short time limit
propagation of a gas of independent pair solitons in the slopg_, o it follows from the definition thaP(uf,u’,t)— o(u’
field, the dynamical approach allows a simple interpretation._ u'). The equal time correlations are thus determined by the

Noting that the action associated with the pair mode is give%tationary distributiorP(u’) given by Eq.(1.21)
by S=(1/6)vA|ul3t and denoting the center of mass of the S ’

pair mode byx=(x;+X,)/2, we havau=2uv/\ =2x/t\, and _ v o
we obtain the transition probability Ps(u')xexg — Kf dx u(x)?|, (4.19
P(x,t)oex _fLXj 4.12 and we have in wave number spageu)(k,0)=A/2v. In
' 3 AN2 t2 ' wave number—frequency space we thus infer the general sum
rule

for the random walk of independent pair solitons or dw A

steps in the height profile. Comparing E@.12 with the f Z<UU>(k,w)=Z- (4.19
distribution for ordinary random walk originating from the

Langevir12 equation dx/dt=»,(77)(t)=A4&(t), P(Xt)  The sum rule is independent of the presence of the nonlinear
xexp(-x72At), we conclude that the growth mode per- growth termauVu, and thus is another consequence of the

forms anomalous diffusion. Assuming pairs of the same avstatic fluctuation dissipation theorem which holds for the
erage size, the distributio.12) also implies the soliton Buyrgers-KPZ equationg22,36.

mean square displacement,
2. The transition probability

(4.13 growing interface at a particular time instant can be repre-
sented by a dilute gas of matched localized soliton excita-
tions or growth modes with superimposed linear extended

with dynamic exponenz=3/2, identical to the dynamic ex- gjffusive modes. From the analysis in Sec. IlI, we thus have
ponent defining the KPZ universality class. This result

A_)\z) 1’Zt2,z As discussed in Sec. Il, the working hypothesis is that a
14

<x2>(t)o<(

should be contrasted with the mean square displacement u(x,t)=ug(x,t)+ du(x,t), (4.17
(x?)xAt??, z=2, for ordinary random walk. The growth

modes thus perform superdiffusion. This result is also ob- p(x,t)=pgs(X,t)+ Sp(x,t), (4.18
tained using the mapping of the KPZ equation to directed

polymers in a random mediufi22]. whereug andp; (or ¢) are given by the multisoliton repre-

The diffusion of solitons or growth modes is another sig-sentations in Eqg2.21) and(2.22) [or for ¢ in Eq. (3.24)].
nature of the stationary nonequilibrium state. Whereas thén the flat regions for constant slopéu=(1/2)(sX"
extended diffusive equilibrium modes for a particular wave+ 6X~) andsp=v56X~ are given by Eqs(3.53 (across the
numberk are characterized by the stationary distributionsoliton regionssu anddp vary in a more complicated man-
Psecexy —(v/AL)|ud?], the random walk distribution of the ner as discussed in Sec.)lll

growth modesP(x,t)oct =22 exgconsti®/t?)] vanishes for Inserting Eqs(4.17 and (4.18 in Eq. (1.10 and using
t—c. The growth modes or solitons disperse diffusivelythe equation of motioii1.6), the actionS decomposes into a
over the system and generate the stationary growth. soliton contributionS, and a linear contributiors;,, S

=St Sjin» Where

D. Correlations in the Burgers-KPZ case—general

1
== | dxdt(Vpg)? 4.1
Regarding the correlations in the nonlinear Burgers-KPZ Ssal 2.[ vVps) .19

case, the situation is more complex. The noisy Burgers

equation(1.l) is not easily amenable to a direct analysis of _ 5

the noise averaged correlations, and we limit ourselves to a Sin_i dxdi(Vop)*~. (4.20
discussion of(uu)(x,t) within the canonical phase space

approach. In order to evaluate the slope correlationghis decomposition implies that the transition probability
(uu)(x,t) by means of Eq(1.14), i.e., P(uf,u',t) accordingly factorizes as
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foigy — o ‘ f oo
P(u',u',t)=Pgug,ug,t)Py(8u',éu',t), (4.2D (usus>(x,t)ﬂ(t)=2 J’ H digdo,dxikok,
P.g

where Pgocexp(—Sq/A) and Pj,cexp(=S;,/A). Disre-

garding phase-shift effects and amplitude modulations due to X tanHkp| (X, + v pt —x)tanhkg|xq

the dilute soliton gasP;, can be worked out as in the
Edwards-Wilkinson case in Sec. Il, yielding the expression XH exr{ — n 9(—kn)l
(in wave number spage n

dk |Suf— sul exp(— wt)|? x I1 exr{ 5 KoK (Xn=Xp/) |-
Pin(ou',su’ t)ocexr{ Af T—exp—2ad) , n#n’

4.22 (4.26
with  limiting  distribution Pg(Suf)ocexd —(#/A)f(dk  This formula expresses the contribution to the slope correla-
27r)| uf|?] for t— oo, tions from a multisoliton configuration. It follows from the

For the soliton part, we obtain by inserting Eg.26), derivation that the expression only holds for times short

compared to the soliton collision time. The initial configura-
tion uy at timet=0 propagates during timeto the final
P.(uuf VAL 3 fi ti L. Th iated t iti bability i
ofuh uf t)cex N 21 [Up+1—Up20(Up—Ups1) |, configurationus. The associated transition probability is
= given by Eq.(4.23 and the stationary distribution by Eg.
(4.23  (4.25. The integration over initial and final configurations is
effectuated by integrating over the amplitudgs the veloci-
in terms of the soliton boundary valueg as depicted in Fig. tiesv,, and the soliton positions, over a system of size.
4. Note also that only the noise-induced left-hand solitondNote thatk, together withv,=—(\/2)(u,;+up) deter-
contribute to the action. We stress that expres$bB3 by  mine the sloperp Likewise, the dynamic partition function
construction only holds in between soliton coII|S|ons In fact,()(t) is given by
at long times the appropriate expression ®gu',uf,t) must
approachP e exd —(v/A) [dxu(x)?] in accordance with Eq.
(4.27). Likewise, rhe oorrect exprossion for the multisoliton Q(t):f H dk|dv|dx|H exr{ _
energy must vanish in the long time limit corresponding to
the migration of the phase space orbit to the transient and
stationary zero-energy submanifolgs=0 andp=2vu, as
discussed in Paper lIl. <1 exr{ 7 KnKn (Xn =Xp/)

(4.27)

n#n’

3. Multisoliton correlations—scaling properties
The complex form of Eqgs(4.26) and (4.27) have so far

precluded a more detailed analysis. We can, however, in the
limit of small damping, extract the general scaling proper-
ties. Forr—0, we havek,—, and the soliton profile given
(uu)(x,t)=(ugug)(x,t) +(Sudu)(x,t).  (4.249 by tanhk|(x—vt—x;) converges to the signum function
sgn—uvt—Xp), corresponding to a sharp shock wave. By
énspectron of Eq(4.26) we note that a change of the length
scale by a factop, i.e., x— uXx andx p— MXp, Can be ab-

Inserting Eq.(4.17 in Eq. (4.14), the slope correlations
separate in a soliton part and a linédiffusive) part,

Apart from phase-shift and amplitude-modulation effects du
to the dilute soliton gas, the linear or diffusive correlations b 4 b h t th be, K,
(duéu) basically have the form given by E¢4.6). For the orbed by a change of the integration varialig,

—1/2
- o . : Kp. In the action term, this change &f, is fmally
soliton contribution{ugus), we obtaininsertingug from Eq.
2.21] P(u' ui 1) r?rosrnQEq 4.23 a[md for '?hes stationgry absorbed by the scale transformattorr,rﬁ’2 Consequently,
. S Ll . N 1

distribution, for v—0 we have(ugug)(x,t)=F(t/x*3, in accordance
with the general scaling form in Eq1.20.

n
14
2
Psi* exr{ N p§=l Up|Xp—Xp-1]

E. Correlations in the Burgers-KPZ case—the two-soliton
sector

In the weak noise limitA—0, the action in Eq(1.11)
(4.25 provides a general selection criterion determining the domi-
nant dynamical configuration contributing to the distribution
P. In the present section we propose that part of the leading
and moreover, introducing the soliton amplitude,  growth morphology is constituted by a gas of two-soliton or
=(N4v)(up,,—up) from Eq.(2.19, pair configurations already analyzed in Sec. Il. In our nu-

8v
=er{m\ > Kokpr[Xp—Xpr! |,

p#p’
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u u

u‘v—,ru//l ‘VJr>/L X J

Xq+vt  Xq+l+vt Xq X4+l X

0 — |-(x-vt) = X

FIG. 11. We depict the two-soliton configuration in the linit
—0 contributing to the slope correlatioggu). The initial pairu'
propagates to the final configuratiarh in time t with velocity v
=—\u/2.

FIG. 12. The two-soliton configuration of siZe=|x;—x,| and
amplitudeu. The shaded overlap area of sizé-2x yields a con-
tribution to the slope correlation function.

merical studies we have demonstrated that in the limit with dynamic partition function

—0, the pair configuration does constitute a long lived qua-
siparticle[39]. -~

The evaluation of the contribution to the slope correla- Qz(t):J dudxdx, exr{— —t|u|®
tions from the two-soliton sector is straightforward and will 64
permit a more detailed scaling analysis. Specializing the gen- »
eral expression in Eq$4.26) and (4.27) to the case of two Xexp{ — —U2Xy— X4
solitons, i.e., a pair-soliton excitation, noting that= —k», A
=(N4v)u, u,=u (u;=u3z=0), and vi=v,=v . i . o L
= —(\/2)u, and moreover considering the limit of small We note that the final configuration’ is simply the initial

or, alternatively, using the expressions pertaining to the twotWo-soliton configurationu' displacedvt along the axis

soliton case discussed in Sec. I, we have without change of shape. This dynamical evolution is de-
picted in Fig. 11. The integration over initial and final con-
figurations is carried out by integrating over the soliton am-

' (4.29

A2 plitude u (—<u<®) and the soliton positiong; andx,
<UU>(X,t)Qz(t)=(E) f dudxdx, u’[sgn(x;) over a system of size. The integration over the amplitude
only contributes to the integral when the pair solitons over-
—sgn(Xy) ][sgnx;—Xx—uvt) lap, as indicated in Fig. 12, and we obtain by inspection of
the overlap contribution, setting=x—uvt and € =|x,—X,|,
—Sgrix;—x—vt)] the conditionsx;<z, x,>z—¢, x;,<0, andx,>—¢. For z

>0, i.e., x—vt>0 we have the overlap conditions<z
, <{ andz—€<x;,<0; for z<0 we obtain—{<z<0 and

—{<x,<z. Finally, integrating over the soliton positioq
(4.28 and the soliton pair sizé, we arrive at the expression

« V)\t 3 Vo,
ex ﬁ|“| exg — yu [Xo— X4

VA 4
1 fdu WP exr{—ﬁ|u|3t exp{—K|x—th|u2 cO(u)

(uu)(x,t)=—
- fduex;{—%luﬁt

Cc®(u)

where the cutoff function€Y)= [5d¢ ¢ exd —(v/A)u¢]and  The overall factor 1 reflects the weight of a single pair-
C®= [td¢ exd — (v/A)u?¢] follow from the overlap; explic-  soliton contribution to the correlation function. In the ther-
itly, they are given by modynamic limitL—oe, this contribution vanishes. For a
’ dilute gas of pair solitons of density, we expect 1 to be
C(l)(u):(é) i[l— 1+ 1u2L>ex;{ —KUZL) replaced byn. On the other hand, the furthérdependence
L . .
v out A A of the cutoff functions is a feature of the extended nature of
—exd — 22
1 exp{ Au L) .

(4.3)  the pair soliton already discussed in Sec. Il. Baft) and
C(? vanish as a function af over a scale set byA/vL. For
43y U= c®~1mu* andC@~1/u?; for u=0, we haveC®)

cP(u)= ( é)i
2 =L2%/2 andC@=L.

V/iu
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] (oo . stationary it 32
| . . {+1s]
! : diffusive
I
| I
: i solitonic
| |
| I
| | -t
! I

tslol tdiﬁ >t

s dif FIG. 14. In the early time regime faf<tSY, the distribution is

dominated by solitons. In the intermediate time regimetffe>T
FIG. 13. The correlation lengthgey(t)=(vt)Y? and &g(t) >t59, the solitons become suppressed and are replaced by the dif-
= (A/v)Y3(\t)?? as functions of. For a finite system of size, the  fusive modes. Finally, foT >t , the diffusive modes also die out
correlation lengths define the crossover tim@=xL2/» andt3Y  and we approach the stationary distribution.
o\~ (w/A)YA 3”2, determining the transition from transient to sta-
tionary growth.
describes the propagation of soliton modes and is given by
&(t) = (A/v)™3(\t)#3 The limiting form of the scaling func-
tionlim _ F(w)=1 for x>¢(t). In the dynamical regime
for £(t)>x, the correlation decaji.e., (uu)(x,t)—><u?<u>
The last issue we deal with is the scaling properties of a=0] and the scaling function vanish &w)ow?*~% for
growing interface. The dynamical scaling hypoth¢4i§,22  w—0. In Fig. 13 we have depicted the correlation length
and general arguments based on the renormalization grOLH:(t) as a function of time for a system of Siteindicating

F. General scaling properties

fixed-point structur¢24,29 imply the following long time—  the crossover behavior in the Edwards-Wilkinson and
large distance form of the slope correlations in the stationarBurgers-sz cases. In Fig. 14 we have plotted the time scale
state: T as a function of system size, indicating the various dy-

namic regimes.

— 2¢(-1
(uu)(x,t)=(A/2v)x ‘ FIX/E(D)]. (4.33 G. Scaling properties in the two-soliton sector

) . ) In discussing the scaling properties associated with the
HereF is the scaling function and the roughness expoent tyo-soliton sector, it is convenient to introduce the model
follows from the explicitly known stationary distribution in  parameterd,, setting the microscopic length scatg; set-

canonical phase space approach, the stationary distributiqf} saturation time for a system of size and the correlation
follows from the structure of the zero-energy manifolds thatiength £(t). Note thath =€ /to,

attract the phase space orbits in the long time limite, see
Paper Ill. The dynamic exponent3/2 is inferred from the

gapless soliton dispersion law in E(2.36), see Paper Il A
Since the formulation is entirely Galilean invariant, the ex- fo:;' (4.39
ponentz also follows from the scaling law+z=2 in Eq.
(1.3. A

The lateral growth of fluctuations along the interface is to=_>" (4.39
conveniently characterized by the time dependent correlation
length £(t). Note that for a finite system of side the cor- teo=to(L/€0)%2 (4.36
relation length saturates at the crossover or saturation time
te, determined by &(t;)=L. In the linear Edwards- E(t)=4€(t/ty) ", (4.37

Wilkinson case,&(t) characterizes the growth of diffusive
modes and has the forg(t)=(vt)'?, consistent with the Rescaling the amplitude variable we can then express the
spectral form in Eq.4.6). In the Burgers-KPZ casé(t) pair correlations in the form

_ 2
exp{ 4u L

X t
4 3 1
fdu exp{—§|u| GFZ(U)

}Fl(u)

COl

J’d 4 3 |
¢ u ex _§|U|E)

(uu)(xt)=f

, (4.38

026132-22



CORRELATIONS, SOLITON MODES, AND NON. .. PHYSICAL REVIEW E 68, 026132 (2003

where the cutoff functions originating from the overlap are - T =
given by

exp(—4u?), (4.39

Fi(u) ! 1+ !
u = —_— JEE—
' 4u? 4u?

F (w,1)

Fz(u)=i2[1—exp(—4u2)]. (4.40
4u

Expression(4.38 holds fort>0 and is even irx (seen by _1=100
changingu to —u). It samples the soliton pair propagating 0 1.0 2.0 3.0 4.0 5.0
with velocity Au/2, and is in general agreement with the w
spectral form discussed in the quantum treatment in Paper 1. FIG. 15. Plot of the scaling functioRi(w, 7) as a function of the

The weight of a single-soliton pair is of ordeiL1and the Lo - 203 ! -~

. . . . scaling variablew=x/£xx/t“* for a range of values of=t/t.,

correlation function(uu) thus vanishes in the thermody- ./ s2
namic limit L—o. For a finite systemL enters setting a '

length scale together with the saturation tilgedefining a  gnergy manifold. We note, however, that the general trend

time scale, anduu) is a function ofx/L andt/te,, @S iS  (gyards a divergence for small valuesyondt is a feature
the case for the two-soliton expressi@n38). It is instructive

fF.
to compare this dependence with the wave number de- Introducing the scaling variables=x/éxx/t?3 and =

composition of(uu) in the linear diffusive case fox=0. —t/t.oct/L32 we can also express E(.38 in the form
Here  (uu)(xt)o(1IL)2 o exdl — (2m)*/L*Jexp{mnxiL), s ’ P .39
depending orx/L andt/L?, corresponding to the saturation (U (xt) = (£o/L)F(W,7), (4.4

time t.,xL?, z=2. Keeping only one mode fan=1, the

correlations(uu) have the same structure as in the solitonwhere the scaling functioR is now given by
case. In the linear case we can, of course, sum over the

totality of modes, and in the thermodynamic lirhit-o, we

can replace ()X, by fdk/27 obtaining the intensive cor-
relations(uu)(xt) = (A/2v) (4mrvt) ~ Y2 exp(—x?/2vt). Simi- F(w,7)=
larly, we expect the inclusion of multisoliton modes to allow f due” WRIUPE, ()
the thermodynamic limit to be carried out yielding an inten- (4.42
sive correlation function in the Burgers case. '

For a finite system, we have in genef8d] (uu)(xt)  and summarize our findings in Fig. 15 where we have de-
=(LL)GL(x/L,t/L*?) with scaling limits: G_(x/L,0) picted F(w,7) for a range ofr values. For fixed smalv
xconst for x~L, G (x/L,0)xL/x for x<L, and —y/zxx/t?3 we haveF—0.47 for r=t/tsxt/L32-0; for
GL(g't/LBIZ)“CO”St for t>L%2 GL(0t/L¥)xL/t*® for t  |arge r we obtainF—0. The weak maximum moving to-
<L%2  For / L—o, we obtain GLOILYL¥)  wards smaller values of for decreasing is a feature of the
—(L/x)G(x/t*) in conformity with Eq.(4.33. ~ functional form of F in Eq. (4.42), and thus is due to the

It is an important feature of the two-soliton expressiongpliton approximation. The true scaling function is not ex-

plies the correct dependence on the scaling variatilesand

t/t.,>t/L32 independent of a renormalization group argu-
ment. However, the scaling limits are at variance W&h.
Setting, according to  Eq. (4.38, (uu)(xt) In the present paper we have continued our analysis of the
=({o/L)F(X/L,t/t,), F(x/L,0) assumes the value 0.47 for noisy Burgers equation in one spatial dimension within the
x<L and decreases monotonically to the valu@®.08 for  weak noise canonical phase space approach developed in
x~L, whereasG, diverges asL/x for x<L. Likewise, previous papers. We believe that the noisy Burgers equation
F(0t/ts) decays from 0.47 fot<t.,=xL%2to O fort>t,,;  or the equivalent KPZ equation, which have been studied
for t~t.,, we haveF,~0.15, wherea§, diverges as/t?® intensively, is of fundamental and paradigmatic significance
for t<t,. in the context of a continuum field theoretical description of
This discrepancy from the scaling limits is a feature of thenonlinear nonequilibrium phenomena. The advantage of the
two-soliton contribution, which only samples the correlationcanonical phase space method, which is an elaboration and a
from a single-soliton pair. Moreover, at long times the solitondynamical system theory interpretation of the saddle point
contribution vanishes and the scaling function is determine@quations originating from the Martin-Siggia-Rose func-
by the diffusive mode contribution in accordance with thetional formulation or, equivalently, a phase space formulation
convergence of the phase space orbits to the stationary zerof the Freilin-Wentzel variational approach to the Fokker-

_ 3. _ 2,2 2/3
due (4/3)|u] Te—4u |wr +UT|F1(U)

V. SUMMARY AND CONCLUSION
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Planck equation, actually dating back to work by Machlupcontext of the mapping of the KPZ equation to the model of
and Onsagel60,61], is that it replaces the stochastic Lange- directed polymers in a random mediu(it) a more complete
vin equation with coupled deterministic field equations,analysis of the multisoliton correlations in the thermody-
yielding on the one hand an interpretation of the growthnamic limit with the purpose of making contact with other
morphology and pattern formation, and on the other hand @hodels in the KPZ universality class, e.g., the polynuclear
practical scheme for the evaluation of the statistical propergrowth model31,62—64, (jii) elaboration of the anomalous
ties and correlations in the weak noise limit. diffusion of growth modes(jv) contact with other models for
Here we have discussed in some detailthe growth  many-body systems far from equilibrium, e.g., driven lattice

morphology engendered by the propagation of domain wallgas model§52], and, finally(iv) the extension of the weak
or solitons, the growth modesij) the superimposed linear nojse approach to higher dimensions.

modes and their transmutation to propagating modes in the
presence of the growth modes, and, finally, the statical
and scaling properties, particularly, in the two-soliton sector.
The weak noise theory of the one-dimensional Burgers or
KPZ equation is, however, far from being complete, and The author wishes to thank A. Svane for numerous fruitful
many open questions remain. We mention below a series afiscussions. Discussions with J. Hertz and J. Krug are also
topics which would be of considerable interest to investigategratefully acknowledged. This work has been supported by
(i) the interpretation of the solitonic growth picture in the the SNF Grant No. 51-00-0349.

ACKNOWLEDGMENTS

[1] H.C. Fogedby, Phys. Rev. &7, 2331(1998. [24] T. Hwa and E. Frey, Phys. Rev.#, R7873(199).
[2] J.M. Burgers, Proc. Roy. Neth. Acad. S@2, 414 (1929. [25] E. Frey, U.C. Taber, and T. Hwa, Phys. Rev. &3, 4424
[3] J. Burgers;The Nonlinear Diffusion Equatio(Riedel, Boston, (1996.

1974. [26] U.C. Tauber and E. Frey, Phys. Rev.5, 6319(1995.

[4] H.C. Fogedby, A.B. Eriksson, and L.V. Mikheev, Phys. Rev. [27] E. Frey, U.C. Taber, and H.K. Janssen, Europhys. L4t 14
Lett. 75, 1883(1995. (1999

[5] H.C. Fogedby, Phys. Rev. &7, 4943(1998. o
[6] P.C. Martin, E.D. Siggia, and H.A. Rose, Phys. Re\8,A123 [28] M. Lassig, Nucl. PhysB448 559 (1993.

(1973. [29] M. L%lssig, Phys. Rev. LetB0, 2366(1998.
[7] R. Baussch, H.K. Janssen, and H. Wagner, Z. Phyz4@13 30 M. Lassig, Phys. Rev. LetB4, 2618(2000.

(1976. [31] M. Prahofer and H. Spohn, Phys. Rev. Le8#, 4882(2000.
[8] H.K. Janssen, Z. Phys. B3, 377 (1976. [32] F. Colaiori and M.A. Moore, Phys. Rev. Le&6, 3946(2001).
[9] C. DeDominicis and L. Peliti, Phys. Rev. B3, 353(1978. [33] F. Colaiori and M.A. Moore, Phys. Rev. &3, 057103(2001.
[10] D. Forster, D.R. Nelson, and M.J. Stephen, Phys. Rev. 86tt.  [34] H.C. Fogedby, Europhys. Lets6, 492 (2001.

867 (1976. [35] A.L. Barabasi and H.E. Stanleffractal Concepts in Surface
[11] D. Forster, D.R. Nelson, and M.J. Stephen, Phys. Ret6A Growth (Cambridge University Press, Cambridge, 1995

732 (1977. [36] D.A. Huse, C.L. Henley, and D.S. Fisher, Phys. Rev. Lsf%f.
[12] H.C. Fogedby, Phys. Rev. B9, 5065(1999. 2924(1985.
[13] M.I. Freidlin and A.D. WentzelRandom Perturbations of Dy- [37] J. Zinn-JustinQuantum Field Theory and Critical Phenomena

namical System£nd ed.(Springer, New York, 1998 (Oxford University Press, Oxford, 1989

[14] R. Graham, irNoise in Nonlinear Dynamical Systemiheory  [38] H.C. Fogedby, Eur. Phys. J. B, 153(200J.
of Continuous Fokker-Planck Systems, Vol 1, edited by F.[39] H.C. Fogedby and A. Brandenburg, Phys. Re\6&: 016604

Moss and P.E.V. McClintocKCambridge University Press, (2002.
Cambridge, 198p [40] H.C. Fogedby, J. Phys.: Condens. Matidy 1557 (2002.

[15] H.C. Fogedby, Phys. Rev. Le®0, 1126(1998. [41] W.A. Woyczynski,Burgers-KPZ TurbulencdSpringer-Verlag,

[16] H.C. Fogedby, Phys. Rev. 0, 4950(1999. New York, 1998.

[17] M. Kardar, G. Parisi, and Y.C. Zhang, Phys. Rev. LB6.889  [42] A. Scott,Nonlinear Sciencelst ed.(Oxford University Press,
(1986. Oxford, 1999.

[18] E. Medina, T. Hwa, M. Kardar, and Y.C. Zhang, Phys. Rev. A[43] G.D. Mahan, Many-Particle Physics(Plenum Press, New
39, 3053(1989. York, 1990.

[19] P. Saffman, Topics in Nonlinear Physi¢sedited by N.J. [44] C.W. Gardiner,Handbook of Stochastic MethodSpringer-
Zabusky(Springer, New York, 1968 Verlag, New York, 199Y.

[20] E. JacksonPerspectives of Nonlinear Dynami¢€ambridge  [45] H. Risken,The Fokker-Planck EquatiofSpringer-Verlag, Ber-
University Press, Cambridge, 1990 lin, 1989.

[21] G.B. Whitham,Nonlinear WavegWiley, New York, 1974. [46] H.C. Fogedby,Theoretical Aspects of Mainly Low Dimen-

[22] T. Halpin-Healy and Y.C. Zhang, Phys. Re&th4, 215 (1995. sional Magnetic SystenSpringer-Verlag, New York, 1980

[23] S.F. Edwards and D.R. Wilkinson, Proc. R. Soc. London, Ser[47] R.L. Stratonovich,Topics in the Theory of Random Noise
A 381, 17(1982. (Gordon and Breach, New York, 1963

026132-24



CORRELATIONS, SOLITON MODES, AND NON. .. PHYSICAL REVIEW E 68, 026132 (2003

[48] S.k. Ma and G.F. Mazenko, Phys. RevlB 4077(1975. [56] L. Landau and E. LifshitzQuantum MechanicgPergamon
[49] U. Deker and F. Haake, Phys. Rev.lA 2043(1975. Press, Oxford, 1959
[50] L. Landau and E. LifshitzStatistical PhysicéPergamon Press, [57] N. Hatano and D.R. Nelson, Phys. Rev. L&, 570(1996.
Oxford, 1980, Pt. 2. [58] H.C. Fogedby, J. Hertz, and A. Svane, Europhys. 162795
[51] R. RajaramanSolitons and Instanton@North-Holland, Am- (2003.
sterdam, 198y [59] J. Krug, P. Meakin, and T. Halpin-Healy, Phys. Re\4% 638
[52] G.M. Schiiz, in Phase Transitions and Critical Phenomena (1992.
edited by C. Domb and J.L. LebowitAcademic Press, Lon-

[60] S. Machlup and L. Onsager, Phys. Re%, 1512(1953.
[61] R. Graham and T. TeJ. Stat. Phys35, 729 (1984).

[62] M. Prahofer and H. Spohn, e-print math.PR/0105240.
[54] E. Hopf, Commun. Pure Appl. Mat!8, 201 (1950.

. [63] M. Prahofer and H. Spohn, e-print cond-mat/0101200.
[55] |(—|1.;:8.5|):ogedby, P. Hedegaard, and A. Svane, Physit&8B17 [64] M. Préhofer and H. Spohn, Physica2v9, 342 (2000.

don, 2000.
[53] J.D. Cole, Q. Appl. Math9, 22 (1951).

026132-25



