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Numerical study of the Sherrington-Kirkpatrick model in a magnetic field
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~Received 7 February 2003; published 29 August 2003!

We study numerically the Sherrington-Kirkpatrick model as a function of the magnetic fieldh, with fixed
temperatureT50.6Tc . We investigate the finite size scaling behavior of several quantities, such as the spin-
glass susceptibility, searching for numerical evidences of the transition on the de Almeida–Thouless line. We
find strong corrections to scaling which make difficult to locate the transition point. This shows, in a simple
case, the extreme difficulties of spin-glass simulations in a nonzero magnetic field. Next, we study various sum
rules~consequences of stochastic stability! involving overlaps between three and four replicas, which appear to
be numerically well satisfied, and in a nontrivial way. Finally, we present data onP(q) for a large lattice size
(N53200) at low temperatureT50.4Tc , where the shape predicted by the replica symmetry breaking solution
of the model for a nonzero magnetic field is visible.
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I. INTRODUCTION

The Sherrington-Kirkpatrick~SK! model was introduced
some time ago@1# as a mean-field model for spin glasses.
analytical, replica symmetry breaking~RSB!, solution @2#
displays, in the glassy phase, intriguing features such a
infinite number of pure states, described by an order par
eter which is the nontrivial probability distribution of th
overlap between two of them,P(q).

The applicability of the mean-field picture to short ran
spin glasses@3# is however still debated, and an alternati
~family of! scenario~s! called the droplet model has been p
forward by several authors. One may, in principle, dist
guish between these two theories of finite-dimensional s
glasses by observing the fate of the glassy phase for a
zero magnetic field. In the SK model~and accordingly in the
mean field picture! one finds@4,5# that a magnetic field~of
absolute value! lower than the critical de Almeida–Thoules
~AT! valuehAT(T) @6# does not destroy the spin-glass orde
ing, since the number of states is still infinite. On the oth
hand, in the droplet picture one has only two states ah
50, related by the global inversion symmetry of the spi
and any small magnetic field makes the system paramag
@7–9#.

It turned out unfortunately@10–24# that strong finite size
corrections make it difficult to obtain a clear answer fro
equilibrium simulations in a magnetic field~of the system
sizes that can presently be handled!. Very recently, for ex-
ample, the authors of a study of the local excitations of
Edwards-Anderson~EA! model @23# claim that there is no
transition, whereas results on the out-of-equilibrium behav
of this model@24# appear in good agreement with the mea
field picture. On the theoretical side, it has been rece
proposed@25# that the transition below the upper critical d
mensiondu58 is governed by a fixed point different from
the AT mean-field fixed point.

This state of affairs motivated us to revisit the case of
SK model in a magnetic field. There have been indeed
numerical studies on the SK model in a fixed magnetic fi
h @15,16,26–29#, and the behavior of the system as a fun
tion of the magnetic field at fixedT has never been numer
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cally investigated to our knowledge.
We present results on the spin-glass susceptibility and

ferent dimensionless ratios ofP(q) moments, looking for the
quantities that are most appropriate for obtaining numer
evidence of the transition on the AT line. We will show
particular that finite size effects are strongly reduced if o
considers the probability distribution of the absolute value
the overlap, and not the overlap itself.

We moreover consider the overlaps between three
four replicas, checking the validity of some relations~the so
called stochastic stability sum rules! which are an evident
manifestation of the non-self-averageness ofP(q) @30,31#
that have been recently derived under very general prope
@32–35#.

Finally, we present data forP(q) in a magnetic field,
where the shape predicted by the solution of the model, w
two peaks separated by a continuum is visible. All simu
tions presented up to now show only a broad peak aro
qEA . Both large system sizes~we haveN53200) and low
temperature~we go down toT50.4) are needed to see th
asymptotic shape.

II. MODEL AND OBSERVABLES

The Sherrington-Kirkpatrick spin-glass model withN
sites@4,5# is described by the Hamiltonian

HJ5 (
1< i , j <N

Ji j s is j2h (
1< i<N

s i , ~1!

wheres i561 are Ising spins. The sum runs over all sp
pairs andJi j are quenched identically distributed indepe
dent random variables with mean valueJi j 50 and variance
1/N. We takeJi j 56N21/2.

In order to sample the probability distribution of the ove
lap P(q), one usually considers two independent replic
$s i% and $t i% evolving contemporaneously and indepe
dently:

Q5
1

N (
i 51

N

s it i , ~2!
©2003 The American Physical Society31-1



e

A. BILLOIRE AND B. COLUZZI PHYSICAL REVIEW E 68, 026131 ~2003!
P~q![PJ~q![^d~q2Q!&, ~3!

where the thermal average^•••& corresponds to the time average during the simulation, whereas(•••) stands for the averag
over theJi j realizations. This is the order parameter of the model, which in the thermodynamic limit behaves like

P~q!55
d~q2qEA!, uhu.hAT~T!

xmd~q2qm!1 P̃~q!1xMd~q2qEA!, 0,uhu,hAT~T!

1

2
@ P̃~q!1 P̃~2q!#1

xM

2
@d~q2qEA!1d~q1qEA!#, h50,T,Tc ,

~4!
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wherehAT(T) is the critical value of the magnetic field o
the AT line, with hAT(T);(4/3)1/2(Tc2T)3/2 for T→Tc

2

(Tc51 in this model! @6#. For T→Tc
2 one finds thatxm

}qm}h2/3, and (qEA2qm)}(xM2xm)}@hAT(T)2h#. Note
that ath50 the functionP(q) is symmetric, reflecting the
global flip $s i%→$2s i% symmetry of the system, and thed
function atqm disappears. As we will discuss in detail, th
implies a singular behavior for different quantities in theh
→0 limit, which is among the main sources of difficulties
finding evidence for the phase transition in a magnetic fie

In order to locate numerically phase transitions, in o
case the AT line, it is a common practice to consider dim
sionless ratios of moments ofP(q), which are expected to
have a fixed point~with respect toN) at the critical point,
such as the~connected! Binder parameter@36,37#

B~h,T!5
1

2 S 32
Š~q2^q&!4

‹

Š~q2^q&!2
‹

2
D ~5!

and the skewness

S~h,T!5
Š~q2^q&!3

‹

Š~q2^q&!2
‹

3/2
. ~6!

Here, B(h,T) is defined in such a way that it is 0 for
Gaussian distribution and 1 for a two-equal-weig
d-function distribution, whereas the skewness is a meas
of P(q) asymmetry, which is nonzero in our case of nonze
magnetic field.

Further evidence for the presence of a phase trans
should come from the behavior of the spin-glass~SG! sus-
ceptibility

xSG~h,N!}N~^q2&2^q&
2
!, ~7!

which is expected to diverge, in the thermodynamic lim
when entering in the spin-glass phase, like

xSG~h,`!}
1

h2hAT
, h→hAT

1 , T fixed. ~8!

According to usual finite size scaling arguments, the fin
size behavior is~for h near tohAT)
02613
.
r
-

t
re
o

n

,

e

xSG~h,N!5N1/3x̃SG@N1/3~h2hAT!#, T fixed. ~9!

The finite size behavior of the spin-glass susceptibility in
SK model on the AT line was numerically studied in Re
@15#, and the scaling'N1/3 was checked.

The non-self-averageness ofP(q) is among the many fas
cinating features of the SK model. For instance, consider
four replicas of the system, one finds@31# that
PJ(q12)PJ(q34)ÞP(q12)P(q34), whereas the following rela-
tions hold:

P~q12,q34![PJ~q12!PJ~q34!

5 2
3 P~q12!P~q34!1 1

3 P~q12!d~q122q34!,

~10!

P~q12,q13![PJ~q12!PJ~q13!

5 1
2 P~q12!P~q13!1 1

2 P~q12!d~q122q13!.

~11!

These kind of relations, which are nontrivially verified if th
replica symmetry is broken@P(q)Þd(q2qEA)#, were re-
cently derived under very general conditions@32–35#, such
as stochastic stability@38#. Infinitely many sum rules follow.
We consider in particular the following relations:

R1234
a ~h,T!5^q12q34&2 2

3 ^q&
2
2 1

3 ^q2&50, ~12!

R1234
b ~h,T!5

^q12q34&2^q&
2

^q2&2^q&
2

5
xSG

1234~h,T!

xSG~h,T!
5

1

3
, ~13!

R1213
a ~h,T!5^q12q13&2 1

2 ^q&
2
2 1

2 ^q2&50, ~14!

R1213
b ~h,T!5

^q12q13&2^q&
2

^q2&2^q&
2

5
xSG

1213~h,T!

xSG~h,T!
5

1

2
, ~15!

R1234
2 ~h,T!5^q12

2 q34
2 &2 2

3 ^q2&
2
2 1

3 ^q4&50, ~16!

R1213
2 ~h,T!5^q12

2 q13
2 &2 1

2 ^q2&
2
2 1

2 ^q4&50. ~17!
1-2
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RelationsR1234
a,b (h,T) and R1213

a,b (h,T), which have to our
knowledge never been previously investigated numerica
are expected to be verified only at nonzero magnetic fi
since these relations are not invariant under a global flip,
an infinitesimal magnetic field was implicit in the derivatio
of Eqs. ~10! and ~11!. On the other hand, relation
R1234

2 (h,T) and R1213
2 (h,T) are valid for a zero magneti

field also, and were already studied~for three-dimensiona
~3D! and 4D Ising spin glasses at zero magnetic fi
@3,39,40#!.

We also measured the following ratios of moments wh
are nonzero when the system is non-self-averaging, and
been introduced for locating the transition point@28,29#:

G~h,T!5
^q2&22^q2&

2

^q4&2^q2&
2

, ~18!

Gc~h,T!5
Š~q2^q&!2

‹

2
2Š~q2^q&!2

‹

2

Š~q2^q&!4
‹2Š~q2^q&!2

‹

2
, ~19!

A~h,T!5
^q2&22^q2&

2

^q2&
2

, ~20!

Ac~h,T!5
Š~q2^q&!2

‹

22Š~q2^q&!2
‹

2

Š~q2^q&!2
‹

2
. ~21!

In the infinite volume limit,G(h,T) is expected to take
the constant value 1/3 in the glassy phase because of rel
~10!, whereasGc(h,T), A(h,T), andAc(h,T) are nontrivial
functions ofh andT, which are zero in the whole parama
netic phase.

These parameters should be particularly useful when
Binder parameter behaves non monotonically, taking b
positive and negative values, as it is found to happen w
there is no time-reversal symmetry in the Hamiltoni
@15,17,20,41,42# ~such as in our case of nonzero magne
field! and in systems where the mean-field solution is o
step replica symmetry breaking@43#. Their behavior has
been extensively studied and they have been applied
number of models@28,29,41,42,44,45#.

The study ofA andAc allows us to check if the numerato
in G and Gc is really nonzero or if it approaches zero f
increasing volumes together with~or more slowly than! the
denominator@28,29#. This is obviously not expected to hap
pen in the glassy phase of the SK model. As a matter of f
it was shown@29# that G and Gc should take the universa
values 1/3 and 13/31, respectively, at zero temperature
any finite volume Ising system under quite general hypo
esis, i.e., even if the order parameter is self-averaging.

The connected parameterGc should be the most effectiv
quantity to look at for locating the transition point, since
seems to be the one that is less affected by finite size co
tions to scaling@29#.

RelationsR1234
b , R1213

b should behave asG and are in
principle good candidates for obtaining evidence of the tr
02613
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sition. Nevertheless, we will show that their finite size b
havior, as well as the one ofG itself, is definitely different
from that ofGc ~at least for the consideredN values! and that
they do not help in locating the transition point.

The main source of finite size effects is the global rever
of all spins. It does not occur in the thermodynamic limit, b
when h is exactly zero. It does occur however in a fini
volume, and as a consequenceP(q) develops a tail in the
q,0 region. This tail is significant@16,27# even for a size as
large asN51024 and a magnetic field valueh50.3 ~at tem-
perature T50.6). This was observed also in finite
dimensional systems@11,15,16,20# and it is expected to
strongly affect the scaling of different quantities. In order
reduce its importance, one may use@14,15# the ‘‘absolute’’
spin-glass susceptibility defined as

xSG
abs~h,N!5N~^q2&2^uqu&

2
!. ~22!

More generally, one can define ‘‘absolute’’ variants of a
quantities defined in Eqs.~5!, ~6!, and~12!–~21!. In the fol-
lowing we will systematically study the differences betwe
usual quantities and absolute ones~that will be labeled by the
superscript abs!, trying to clarify which are the most appro
priate to look at in order to get evidence for the transition

III. SIMULATIONS

We fixed the temperature atT50.6, where the AT line
corresponds to the critical valuehAT(T50.6).0.382 @46#.
We use the magnetic parallel tempering algorithm~h-PT!,
described in detail in our previous paper@27#. We consider
n549 replicas, each one at a different magnetic fieldh from
a set ofn different values both within and without the AT
lines, fromhmin520.6 tohmax50.6 at equally spaced inter
vals of dh50.025. Exchange ofh values between neares
neighbor replicas are allowed with the usual Monte Ca
acceptance probability. Moreover, the sign of all spins o
replica ath50 can be reversed with probability 1/2. Th
makes easier the passage from negative to positiveh values
and vice versa.

This h-PT algorithm is ideally suited to obtain the beha
ior of quantities as a function of the magnetic field at fix
temperature. However, it was found@27# that its efficiency
rapidly decreases when simulating large systems, most p
ably because of chaos with the magnetic field. At varian
with the case of temperature chaos, the effect of chaos w
the magnetic field becomes evident already on a size of o
N51024 anddh'0.15. This means that the phase spa
explored by the system at equilibrium ath and h1dh be-
come quite different whendh'0.15. Therefore,N51024 is
the largest size we could thermalize with this method.

We perform 50 000150 000,100 0001100 000, and
300 0001300 000h-PT sweeps forN564, 256, and 1024,
respectively, the first half of each run being discarded fr
the statistics. Thermalization was checked by comparing
data obtained in the second part with the ones of the sec
quarter. We simulated four sets of replicas evolving conte
poraneously and independently~i.e., 49345196 replicas!.
Data are averaged over 256 disorder configurations for e
1-3
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system size. Statistical errors are evaluated from~disorder!
sample-to-sample fluctuations by using the Jack-kn
method.

Looking for evidences of the shape ofP(q) with hÞ0
predicted by the solution of the model@Eqs. ~4!#, we per-
formed a large scale simulation for a system ofN53200
spins, with the usual PT in temperature algorithm, takingn
538 equally spaced temperature values betweenTmin50.4
andTmax51.325, at magnetic fieldh50.3. Results were av
eraged over 128 different disorder realization and we p
formed 400 0001400 000 PT steps for each sample, che
ing thermalization by comparing theP(q) obtained in the
second half and in the second quarter of the run.

IV. RESULTS AND DISCUSSION

A. Energy, magnetization, and magnetic susceptibility

We plot in Fig. 1 the energy density and the magnetizat
as a function ofh for the different sizes considered. In th
same figure, we also present data on the mean overlap^q&
and on the mean absolute value of the overlap^uqu&. It is
evident from these data that the two quantities definitely
fer for h as large ash.0.4 ~i.e., larger thanhAT) for N
564 and up toh.0.2 for N51024.

In Fig. 2 we plot the magnetic susceptibility computed

x~h,N!5
]^m&
]h

~23!

and as

x~h,N!5Nb~^m2&2^m&2!. ~24!

An excellent agreement1 is observed between the two es
mates, showing that a good sampling has been achieved
also plot the analytical estimate@47# ~obtained in the so-
called Parisi approximation for the Landau potential, and
T→Tc

2)

x~h,`!512~3/4!2/3h4/3, ~25!

which is in quite good agreement with the data forh not too
small.2 In the thermodynamic limit,x5b(12^q&)5b/b
51 in the whole spin-glass phase forh→0. On a finite sys-
tem however, one must take into account the symmetry w
respect to the flip of all the spins andx(h50,̀ )5b(1
2^q&)5b.1.666. Our data forx show clearly the cross
over between theseh50 andhÞ0 regimes. Figure 2 show
that finite size effects are positive for lowh and negative for
largerh. This change of sign must occur since the susce

1Although formulas~23! and ~24! are identical mathematically
their Monte Carlo estimates can disagree, if the sampling is ba
if dh @we use finite difference to estimate Eq.~23!# is too large.

2A different formula appears in@48,49#, with the orderh4/3 term
multiplied by 7/3.
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i-bility has sizable finite size corrections, whereas the mag
tization is ~trivially ! size independent forh50 and very
weakly size dependent for largeh.

For a better clarification of the situation, we also consid
the absolute magnetic susceptibilityxabs ~see the same figure
on the right!, obtained from the probability distribution o
the absolute value of the magnetization. Note that for
absolute susceptibility the estimates of Eqs.~23! and~24! do

or

FIG. 1. ~a! The energy density~b! the magnetization density

and~c! the mean value of the overlap:^q& and^uqu& at T50.6, as a
function of the magnetic field, for the different system sizes.
1-4
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FIG. 2. ~a! Usual magnetic susceptibility atT50.6, as a function of the magnetic field, for the different values of the system
compared with the predicted infinite volume analytic behavior~see text!. ~b! The magnetic susceptibility from the absolute value of t
magnetization. In both plots the two estimates of the susceptibility, Eqs.~23! and ~24!, are plotted.

FIG. 3. The behavior of the Binder parameterB(h,T) ~a! and of the skewnessS(h,T) ~b! at T50.6, as a function of the magnetic fiel
for the different system sizes. HerehAT.0.382. On the right are plotted the corresponding quantitiesBabs(h,T) ~c! and Sabs(h,T) ~d!,
obtained from the distribution of the absolute values of the overlap.
026131-5
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FIG. 4. The behavior of the parametersG(h,T) and A(h,T) ~a!, Gc(h,T) and Gc
abs(h,T) ~b!, and Ac(h,T) and Ac

abs(h,T) ~c! at T
50.6, as a function of the magnetic field for the different system sizes.
gl w-

see
am-
At

de-
not coincide, but they do when finite size effects are ne
gible.

B. Critical behavior at the AT line

Let us now look at the dimensionless ratios ofP(q) mo-
ments which should intersect athAT(T), providing evidences
for the phase transition~Here, hAT.0.382). We present in
02613
i-Fig. 3 the behavior of the Binder parameter and of the ske
ness. The originalB andS of Eqs.~5! and~6! are on the left
of the figure and the absolute variants on the right. We
that in all cases it would be a hard task to get a clear un
biguous determination of the critical point from the data.
variance with the behavior of theh50 Binder parameter
which is always positive and increases continuously for
creasing T’s, all four quantities in Fig. 3~the absolute
1-6
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value does not help! display a nonmonotonic behavior, tak
ing negative values on a large part of the interval. ForB and
S, the intersection betweenN5256 andN51024 occurs at a
definitely too smallh.0.2, showing the presence of stron
finite size scaling corrections~In all cases, the valueN564
turns out to be too small to give interesting results!. The
effect of the absolute value is strong, particularly forN
564 and 256. It goes in the right direction since compar

FIG. 5. ~a! The behavior of the spin-glass susceptibiliti
xSG(h,T) and ~b! xSG

abs(h,T). ~c! Scaling plots, i.e.,xSG(h,T)/N1/3

and xSG
abs(h,T)/N1/3 plotted as functions of the scaling variable (h

2hAT)N1/3 at T50.6, for the different system sizes.
02613
g

data forN564, 256, and 1024, we now find a monotono
crossing point behavior which approacheshAT from above,
with the intersection betweenN5256 and 1024 data occur
ing ~within the error! at the correct valuehAT , the agreement
being best in the case of the skewness.

Next, we consider in Fig. 4 the parameters based onP(q)
glassy phase non-self-averageness. The first observatio
that in order to obtain some information one has to look
connected quantities, sinceG andA have definitely a differ-
ent behavior from the others and do not cross as one c
expect. More in detail, curves forG corresponding toN
564 and 256 are nearly constant~within the errors! in the
whole consideredh range. ForN51024, G is in agreement
within errors with the thermodynamic limit value 1/3 in th
glassy phase, and is smaller in the paramagnetic phase. Fh
as large as 0.6 one still findsG.0.28. In the case of the EA
model at a fixed magnetic field, the parameterG was found
to be@29# less appropriate thanGc . It decreases more slowly
when entering the paramagnetic region and curves for dif
ent sizes cross at definitely too large temperatures~here quite
small sizes withN between 5 and 64 were considered!.

Curves forA are monotonic and approach zero~though
with strong finite size corrections! at largeh, making evident
that P(q) is self-averaging in the paramagnetic phase,
they do not cross correctly and in particular ath50 one finds
A(N51024).A(N5256),A(N564).

The connected parameters display a more interesting
havior and they do indeed cross. We find a qualitatively sim
lar behavior near the transition point forGc and Ac . Our
statistical errors are quite large and do not allow a prec
determination of the crossing points, nevertheless curves
the two smaller sizes seem to roughly intersect at the cor
valueh.0.4.hAT , whereas data forN5256 and 1024 ap-
pear to cross at a lowerh value, this being more evident in
the case ofAc . The behavior seems still better when lookin
at the corresponding absolute parameters. In particular, t
is no irregular behavior forh→0 and the statistical errors ar
definitely smaller, allowing for a more precise evaluation
the crossing points. Curves corresponding toN564 and 256
intersect ath.0.6, whereasN5256 and 1024 clearly cros
at the right value,h.0.4.hAT .

To conclude the discussion on these parameters, we
that althoughGc and Ac are certainly interesting to look a
for obtaining evidences of the transition~and of non-self-
averaging!, one should not overlook their large statistic
fluctuations, much larger than the fluctuations of the us
Binder parameter or the skewness, therefore a larger num
of samples would be required in order to obtain precise m
sures.

An even better evidence for the presence of a phase t
sition comes from the behavior of the spin-glass suscept
ity which is clearly diverging~see Fig. 5! when entering the
spin-glass phase. We see that the behavior ofxSG

abs ~plotted in
Fig. 5! is definitely different for the largest size consider
N51024 also. Here, the susceptibility seems to approac
constant in the small field region, i.e., forh<hmin(N). Nev-
ertheless,hmin(N) clearly approaches zero for increasin
1-7
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FIG. 6. We compare the behaviors of^q12q34&, ^q12q13&, ^q&
2
, and^q2& ~a!; ^uqu&2, ^uqu&

2
, and^q2& ~b!; and^q12

2 q34
2 &, ^q12

2 q13
2 &, ^q2&

2
,

and^q4& ~c! as functions of the magnetic field forN51024. We plot~for N51024 again! relationsR1234
a ~d!, R1234

a,abs ~e!, andR1213
a ~f!, which

are well satisfied, together with the modified onesT1234, T1234
abs , andT1213, respectively, which are not in the SG phase~see text!.
gi

n

ng
uld
nts
sizes and also in this case one gets evidence for a diver
spin-glass susceptibility.

The importance of considering both the usualxSG and the
corresponding absolute quantityxSG

abs becomes evident whe
02613
nglooking at the scaling plot presented in Fig. 5. We find stro
corrections to scaling in the glassy phase, such that it wo
be hard to evaluate the correct critical point and expone
from these data. On the other hand, corrections toxSG are in
1-8
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FIG. 7. The behavior ofR1234
a ~a!, R1234

a,abs ~b!, R1234
b ~c!, R1234

b,abs ~d!, R1213
a ~e!, andR1213

b ~f! as a function of the magnetic field for th
different system sizes considered.
ru

at
to

tic
n-

,
e
o

the direction opposite to those onxSG
abs, and therefore it is

useful to look at both quantities for understanding the t
scaling behavior. We also note that data forxSG andxSG

abs are
nearly coincident in the whole relevant interval~i.e., down to
h.0.3) for N51024, which means that when looking
sizes of this order or larger one can expect to find not
important corrections to scaling.
02613
e

o

C. The sum rules

Our next aim is to investigate the validity of the stochas
stability sum rules~10!–~17!. Some are supposed to be no
trivially valid for h,hAT , and trivially valid for h.hAT ,
namely,R1234

a , R1213
a , R1234

2 , andR1213
2 . On the other hand

relationsR1234
b and R1213

b , which are ratio of moments, ar
supposed to be only valid below the AT line. We will als
1-9
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FIG. 8. ~a! The behavior ofR 1234
2 and ~b! R 1213

2 as a function of the magnetic field for the different system sizes.
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consider relationsR1234
a,abs andR1234

b,abs, obtained from the prob-
ability distribution of the absolute values of the overlap.

We first look at the behavior, as a function of the magne
field, of the different terms entering the sum rules, consid
ing the case ofN51024, where finite size corrections a
less important. We see from Fig. 6 that

^q12q34&.^uqu&2.^q12q13&.^q&
2.^q2& ~26!

for h>0.4, which is quite reasonable since this is the rep
symmetric region whereP(q) is self-averaging. The tail o
P(q) in the negative overlap region has practically disa
peared forN51024, so that̂ q&.^uqu&, and we have more
over ~assuming a Gaussian distribution with variances2)

^q2&5s21qEA
2 .qEA

2 5^q&2. ~27!

On the other hand, these quantities are different w
entering into the glassy phase, though the differences ap
small.

We plot in the Fig. 6 the relationsR1234
a , R1234

a,abs, and
R1213

a . In order to show that they are nontrivially verified w
also, plot following Ref.@3#, the relations

T1234~h,T!5^q12q34&2 1
2 ^q&

2
2 1

2 ^q2&50, ~28!

T1234
abs ~h,T!5^uqu&22 1

2 ^uqu&
2
2 1

2 ^q2&50, ~29!

T1213~h,T!5^q12q13&2 2
3 ^q&

2
2 1

3 ^q2&50, ~30!

which should also be verified ifR1234
a , R1234

a,abs, and R1213
a

were trivial. They are clearly not verified in the spin-gla
phase, and accordinglyR1234

a andR1213
a are nontrivial in this

phase. We moreover note that to look at the probability d
tribution of the absolute value overlap very is useful also
this case, since as we already pointed out these relation
derived assuming an infinitesimal magnetic field whi
breaks the global symmetry for inversion of all the spins.
a matter of fact, relationsR1234

a andR1213
a are no more veri-

fied as soon ash&0.15, where the tail ofP(q) in the nega-
tive overlap region becomes important also forN51024~we
02613
c
r-

a

-

n
ar

-

are

s

do not present data forh<0.1). On the other hand, relatio
R1234

a,abs appears very well satisfied within the errors down
h50.

In Fig. 7 we present our data for relationsR1234
a , R1234

a,abs,
andR1213

a with a finer vertical scale than in Fig. 6, togeth
with data forR1234

b , R1234
b,abs, andR1213

b . The situation is quite
clear: forN51024 relationsR1234

b , R1234
b,abs, andR1213

b are not
verified above the AT line, whereas they are satisfied wit
the statistical error below~up to crossover effects for sma
h’s for the non absolute quantities!.

In any event, the change of behavior in the sum ru
when going from theh<0.4 region to the other side of th
AT line is small. This is trivial in the case of relationsR1234

a ,
R1234

a,abs, and R1213
a since all terms become very similar~see

Fig. 6! as we already discussed. This can be understood@50#
for R1234

b , R1234
b,abs, and R1213

b ~i.e., the ratiosxSG
1234/xSG

5xSG
abs,1234/xabs,SG51/3 and xSG

1213/xSG51/2, respectively!,
using the results of Ref.@51#. TheseRb’s can be calculated
from the massesr R , r L , and (r L2r A)/n computed in this
paper. Rather surprisingly, the ratio condition becomes t
again in the high field limit, and theRb’s gain back their 1/2
and 1/3 values. This means that theseRb’s have only a very
slight variation in the replica symmetric phase, with probab
a minimum, and they are continuous at the AT line. We n
that their behavior is very similar to the behavior ofG, fur-
ther confirming that appropriate parameters for getting e
dence for the transition are the ones which involve connec
quantities, such asGc andAc .

In Fig. 6 we also present the behavior of the differe
terms entering the relationsR 1234

2 andR 1213
2 . ^q2&2 is defi-

nitely different from the other terms, and quite surprisingly
remains clearly different also on the other side of the AT lin
which is to be interpreted as a reminiscence of non-s
averageness due to finite size effects.

Finally, we plot in Fig. 8 relationsR 1234
2 and R 1213

2 .
Here, finite size effects are less important because thes
lations are valid also in theh→0 limit. Nevertheless these
quantities are compatible with zero within our statistics
h&0.3 only for N51024. Also, in this case we find only
small difference between theh,0.4 behavior and the one
1-10
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outside the glassy phase. From this point of view, it sho
be recalled that̂ q2&2 is definitely different from the other
terms in the wholeh range, which means that data forh
.0.4 are far from being in the asymptotic self-averagi
regime in which these sum rules should be trivially satisfie
We note that from relationR 1234

2 the expected behavior o
the parameterG immediately follows and that the small dif

FIG. 9. The behavior of the probability distribution of the ove
lap P(q) with h50.3 and temperaturesT50.4, 0.5, and 0.6, re-
spectively, for the large sizeN53200.
02613
d

.

ferences we observe here between the behaviors inside
outside the glassy phase do indeed reflect the fact thatG is
not an appropriate observable to look at for obtaining e
dence of the transition.

D. P„q… for a large size

Our data forP(q) at h50.3 for a system of 3200 spin
can be found in Fig. 9 forT50.4, 0.5 and 0.6. The corre
sponding values ofqEA are 0.759, 0.640, and 0.505, respe
tively. We have been very careful in checking that therma
zation is achieved for all values of the temperature. It is cl
from the figure why the asymptotic behavior of this distrib
tion has escaped observation up to now. AtT50.6 only a
single peak~corresponding toqEA) is visible, with substan-
tial asymmetry~the distribution is wider in the lowq side!.
The asymmetry is stronger forT50.5, but there is still no
sign of the lowq peak.3 Only for T50.4 does one see th
expected continuum on the left of the self-overlap peak, w
some indication of the low-q peak at a location in agreemen
with the value@46# qmin.0.44. It should be noted that th
peak corresponding toqmin is predicted to be broader tha
the one corresponding toqEA @52#. This explains why we do
not observe this minimum overlap peak.

V. CONCLUSIONS

We performed numerical simulations of the SK model in
magnetic field at temperatureT50.6, both in the glassy
phase and above the AT line. We used a modified versio
the PT algorithm in which the system is allowed to mo
between a chosen set of magnetic field values, an algori
well suited for our purpose.

We measured quantities such as the magnetic suscep
ity, which turns out to be in agreement with the predict
analytical behavior of Ref.@47# as a function ofh.

Dimensionless ratios ofP(q) moments such as the Binde
parameter and the skewness display a nonmonotonic be
ior, making it difficult to get a clear determination of th
transition point on the AT line. Alsoad hocparameters for
locating replica symmetry breaking transitions, based on
non-self-averageness of the order parameter, are consid
The connected ones turn out to be effective for locating
transition.

An even better evidence for the transition comes from
divergence of the spin-glass susceptibility, though its sca
behavior is affected by strong finite size corrections.

We also investigate the behavior of various quantities
fined in terms of the probability distribution of the absolu
value of the overlap. This allows one to reduce the finite s
effects due to the long tail ofP(q) in the negative overlap
region. As a matter of fact, the dimensionless parameters
out to behave better in this case, the crossing points be
nearer to the correct critical value. It is interesting to no

3This result disagrees with Ref.@16#, where a lowq peak is found,
using the Metropolis algorithm with 100 000 sweeps for equil
rium and only 20 disorder samples.
1-11
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that the usual and absolute susceptibilities have correct
of opposite signs.

Moreover, we studied the behavior of some sum ru
~related to stochastic stability! involving overlaps between
three and four replicas. We found strong finite size corr
tions particularly for those sum rules that are valid only a
nonzero magnetic field, and it turns out to be particula
appropriate to look at absolute quantities in this case. T
are satisfied within our statistical accuracy forN51024 in
the glassy phase. On the other hand, they would not be g
indicators for the transition, since their behaviors chan
very slightly when crossing the AT line, being still near
verified also forh.hAT , some trivially ~all the terms be-
come very similar! and others nontrivially.

Finally, we presented data forP(q) in the magnetic field,
, J

ur

.J

s.

ys

G

02613
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s

-
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e

which show how slowly the shape predicted by the R
solution develops on a large system.
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