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Numerical study of the Sherrington-Kirkpatrick model in a magnetic field

Alain Billoire and Barbara Coluzzi
Service de Physique Ttiéque, CEA-Saclay, Orme des Merisiers, 91191 Gif-sur-Yvette, France
(Received 7 February 2003; published 29 August 2003

We study numerically the Sherrington-Kirkpatrick model as a function of the magnetichfielith fixed
temperaturel =0.6T.. We investigate the finite size scaling behavior of several quantities, such as the spin-
glass susceptibility, searching for numerical evidences of the transition on the de Almeida—Thouless line. We
find strong corrections to scaling which make difficult to locate the transition point. This shows, in a simple
case, the extreme difficulties of spin-glass simulations in a nonzero magnetic field. Next, we study various sum
rules(consequences of stochastic stabjlityolving overlaps between three and four replicas, which appear to
be numerically well satisfied, and in a nontrivial way. Finally, we present dat(qh for a large lattice size
(N=23200) at low temperaturé=0.4T., where the shape predicted by the replica symmetry breaking solution
of the model for a nonzero magnetic field is visible.
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[. INTRODUCTION cally investigated to our knowledge.
We present results on the spin-glass susceptibility and dif-

The Sherrington-KirkpatricKkSK) model was introduced ferent dimensionless ratios Bf(q) moments, looking for the
some time ag$1] as a mean-field model for spin glasses. Itsquantities that are most appropriate for obtaining numerical
analytical, replica symmetry breakingRSB), solution[2]  evidence of the transition on the AT line. We will show in
displays, in the glassy phase, intriguing features such as avarticular that finite size effects are strongly reduced if one
infinite number of pure states, described by an order parantonsiders the probability distribution of the absolute value of
eter which is the nontrivial probability distribution of the the overlap, and not the overlap itself.
overlap between two of then®(q). We moreover consider the overlaps between three and

The applicability of the mean-field picture to short rangefour replicas, checking the validity of some relatiditise so
spin glasse$3] is however still debated, and an alternative called stochastic stability sum rujewhich are an evident
(family of) scenari¢s) called the droplet model has been put manifestation of the non-self-averagenesspPgf]) [30,31]
forward by several authors. One may, in principle, distin-that have been recently derived under very general properties
guish between these two theories of finite-dimensional spih32—33.
glasses by observing the fate of the glassy phase for a non- Finally, we present data foP(q) in a magnetic field,
zero magnetic field. In the SK mod@nd accordingly in the where the shape predicted by the solution of the model, with
mean field picturgone finds[4,5] that a magnetic fieldof =~ two peaks separated by a continuum is visible. All simula-
absolute valuelower than the critical de Aimeida—Thouless tions presented up to now show only a broad peak around
(AT) valueh,+(T) [6] does not destroy the spin-glass order-Qea. Both large system sizelsve haveN=3200) and low
ing, since the number of states is still infinite. On the othertemperaturgwe go down toT=0.4) are needed to see this
hand, in the droplet picture one has only two state$at asymptotic shape.
=0, related by the global inversion symmetry of the spins,
and any small magnetic field makes the system paramagnetic Il. MODEL AND OBSERVABLES
[7-9.

It turned out unfortunately10—24 that strong finite size
corrections make it difficult to obtain a clear answer from
equilibrium simulations in a magnetic fiel@f the system
sizes that can presently be handledery recently, for ex- H,= E Jijoio;—h E gi, (1)
ample, the authors of a study of the local excitations of the I=i<j=N I<i=N
Edwards-AndersoiEA) model [23] claim that there is no where o= =1 are Isin ins. Th m runs over all spin
transition, whereas results on the out-of-equilibrium behavior__. oi~= =1 are I1sing spins. 1Ne sum runs over afl sp
of this model[24] appear in good agreement with the mean-P3" andJ; are-quenchclad identically distributed mdepen-
field picture. On the theoretical side, it has been recentyf€nt random vanablei\//gnh mean valdig=0 and variance
proposed 25] that the transition below the upper critical di- IN. We takeJ;;==N" "~

mensiond,=8 is governed by a fixed point different from In order to sample the probability distribution of the over-
the AT mean-field fixed point. lap P(q), one usually considers two independent replicas

This state of affairs motivated us to revisit the case of the.i) and {7} evolving contemporaneously and indepen-
SK model in a magnetic field. There have been indeed fevfi€Nty:
numerical studies on the SK model in a fixed magnetic field
h[15,16,26-29 and the behavior of the system as a func- o=
tion of the magnetic field at fixedl has never been numeri-

The Sherrington-Kirkpatrick spin-glass model witk
sites[4,5] is described by the Hamiltonian

N
Zl oiTi, (2

Zl -
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P(q)=P;(a)=(s(q—Q)), 3

where the thermal averagde- - ) corresponds to the time average during the simulation, whérea$ stands for the average
over theJ;; realizations. This is the order parameter of the model, which in the thermodynamic limit behaves like

o(q—0ea), [h|>h(T)
P(q)= im&q—qm>+f>(q>+xM5<q—qEA), 0<|h|<har(T) "

S[P(@)+P(— Q)1+ 2 a(a-den) + Sa+aea], h=0T<T,

whereh,(T) is the critical value of the magnetic field on h N)=NY5 < INY3(h—h T fixed. (9
the AT line, with har(T)~ (4/3)Y%T,—T)%2 for T—T; xslhN)=NTxsd N =han] ®

(Te=1 in this model [6]. For T—T, one finds thatx,,  The finite size behavior of the spin-glass susceptibility in the
xQmh?® and @ea—Om) % (Xm—Xm)<[har(T)—h]. Note  SK model on the AT line was numerically studied in Ref.
that ath=0 the functionP(q) is symmetric, reflecting the [15], and the scaling=N*® was checked.

global flip {o}—{—oi} symmetry of the system, and tfée The non-self-averageness®(q) is among the many fas-
function atqy, disappears. As we will discuss in detail, this cinating features of the SK model. For instance, considering
implies a singular behavior for different quantities in the four replicas of the system, one find$31] that

—0 limit, which is among the main sources of difficulties in p,(q.,)P,(qs4) # P(q1,) P(gss), Whereas the following rela-
finding evidence for the phase transition in a magnetic fieldtions hold:

In order to locate numerically phase transitions, in our
case the AT line, it is a common practice to consider dimen- o =P (0P (Oas)
sionless ratios of moments &f(q), which are expected to (12,030 =P3(012) Po(d30)
have a fixed poin{with respect toN) at the critical point, =2P(Q12)P(034) + 3 P(012) (01— G34),

such as théconnectejl Binder parametef36,37] (10)

/4 -
B(h,T)= E 3— w (5) P(d12,013) =P3(d12) P3(d13)
(q—(a)?* = 1P(010)P(019) + 3P(019) 8015 Gr).-
and the skewness (11

These kind of relations, which are nontrivially verified if the
©) replica symmetry is brokefP(q)# 6(q—qga)], were re-

a2 cently derived under very general conditigi@2—-35, such
((a=(a)%) as stochastic stabilit}8]. Infinitely many sum rules follow.
We consider in particular the following relations:

((a=(a)?
S(h,T): f—

Here, B(h,T) is defined in such a way that it is O for a
Gaussian distribution and 1 for a two-equal-weight — —

_ _27N2_ 172\

S-function distribution, whereas the skewness is a measure Rizsd N, T)=(d12050) — 5(01) 3(0%)=0, (12
of P(q) asymmetry, which is nonzero in our case of nonzero
magnetic field. N2 12341 T 1

Further evidence for the presence of a phase transition R?zsz&h:T): M: ﬂ: —, (13
should come from the behavior of the spin-gldS&) sus- (9% —(q) 2 xsc(h,T) 3
ceptibility

S
XSG(h,N)ocN(@—@Z)' ) Riz4h,T)=(01019) — 3(q) "~ 3(g®) =0, (14

which is expected to diverge, in the thermodynamic limit, (q12q13>—@2 YZ23hT) 1
when entering in the spin-glass phase, like REZlgh,T)z = =—, (15

(@ —(@? xsdhT) 2

1
xsc(h,®)xc——, h—ha, T fixed. (8)
n=Rar RE,5dh.T)=(abZy) — 40 *~§(a")=0, (10
According to usual finite size scaling arguments, the finite )
size behavior igfor h near toh,y) RZ,,4h,T)=(a?,0%) —3(g®) "= 3{qH=0. (17
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Relations R32(h,T) and R&54h,T), which have to our sition. Nevertheless, we will show that their finite size be-
knowledge never been previously investigated numericallyhavior, as well as the one @ itself, is definitely different
are expected to be verified only at nonzero magnetic fieldfrom that ofG,, (at least for the considerédvalues and that
since these relations are not invariant under a global flip, anthey do not help in locating the transition point.
an infinitesimal magnetic field was implicit in the derivation =~ The main source of finite size effects is the global reversal
of Egs. (10) and (11). On the other hand, relations of all spins. It does not occur in the thermodynamic limit, but
R3,.4h,T) and R3,,{h,T) are valid for a zero magnetic Whenh is exactly zero. It does occur however in a finite
field also, and were already studi¢fdr three-dimensional Vvolume, and as a consequerieéq) develops a tail in the
(3D) and 4D Ising spin glasses at zero magnetic fieldd<<O region. This tail is significaritl6,27] even for a size as
[3,39,4Q). large adN= 1024 and a magnetic field valire=0.3 (at tem-
We also measured the following ratios of moments whichperature T=0.6). This was observed also in finite-
are nonzero when the system is non-self-averaging, and hawmensional system$11,15,16,20 and it is expected to

been introduced for locating the transition pdiag,29: strongly affect the scaling of different quantities. In order to
_ reduce its importance, one may Uset,15 the “absolute”
(g%2—(q?) 2 spin-glass susceptibility defined as
G(h,T)=ﬁ, (18) .
(a%)—=(a%) X35(h,N)=N((a®) —(|al) ). (22)
((q—(q})z)z—((q—<q))2)2 More generally, one can define “absolute” variants of all
GChTN=—r——, (19  quantities defined in Eq$5), (6), and(12)—(21). In the fol-
{(a=(a)*H—{(a—(a)? lowing we will systematically study the differences between
- usual quantities and absolute ori#sat will be labeled by the
(9%)2—(q?) 2 superscript abs trying to clarify which are the most appro-
A(h,T)= —, (20 priate to look at in order to get evidence for the transition.
(a?)
55 52 IIl. SIMULATIONS
A(h,T)= (@ <qM2(q>) ) ) (22) We fixed the temperature dt=0.6, where the AT line
{(g—(q»)? corresponds to the critical value,+(T=0.6)=0.382[46].

We use the magnetic parallel tempering algoritimPT),
In the infinite volume limit,G(h,T) is expected to take described in detail in our previous pagd&7]. We consider
the constant value 1/3 in the glassy phase because of relatior=49 replicas, each one at a different magnetic frefdom
(10), whereasG.(h,T), A(h,T), andA.(h,T) are nontrivial a set ofn different values both within and without the AT
functions ofh and T, which are zero in the whole paramag- lines, fromh,,;,= — 0.6 toh,,,,= 0.6 at equally spaced inter-
netic phase. vals of sh=0.025. Exchange oh values between nearest
These parameters should be particularly useful when thaeighbor replicas are allowed with the usual Monte Carlo
Binder parameter behaves non monotonically, taking botlacceptance probability. Moreover, the sign of all spins of a
positive and negative values, as it is found to happen whereplica ath=0 can be reversed with probability 1/2. This
there is no time-reversal symmetry in the Hamiltonianmakes easier the passage from negative to poditivalues
[15,17,20,41,4R(such as in our case of nonzero magneticand vice versa.
field) and in systems where the mean-field solution is one- This h-PT algorithm is ideally suited to obtain the behav-
step replica symmetry breakingt3]. Their behavior has ior of quantities as a function of the magnetic field at fixed
been extensively studied and they have been applied to temperature. However, it was foufd7] that its efficiency
number of model$28,29,41,42,44,45 rapidly decreases when simulating large systems, most prob-
The study ofA andA, allows us to check if the numerator ably because of chaos with the magnetic field. At variance
in G and G, is really nonzero or if it approaches zero for with the case of temperature chaos, the effect of chaos with
increasing volumes together witbr more slowly thapthe  the magnetic field becomes evident already on a size of order
denominatof28,29. This is obviously not expected to hap- N=1024 andsh~0.15. This means that the phase spaces
pen in the glassy phase of the SK model. As a matter of facexplored by the system at equilibrium latand h+ sh be-
it was shown[29] that G and G, should take the universal come quite different whedh~0.15. ThereforeN=1024 is
values 1/3 and 13/31, respectively, at zero temperature fahe largest size we could thermalize with this method.
any finite volume Ising system under quite general hypoth- We perform 50008 50 000,100 00¢ 100000, and
esis, i.e., even if the order parameter is self-averaging. 300 000+ 300 000h-PT sweeps foN=64, 256, and 1024,
The connected paramet€, should be the most effective respectively, the first half of each run being discarded from
quantity to look at for locating the transition point, since it the statistics. Thermalization was checked by comparing the
seems to be the one that is less affected by finite size corredata obtained in the second part with the ones of the second
tions to scalind 29]. quarter. We simulated four sets of replicas evolving contem-
RelationsR%,5,, R%,,5 should behave a& and are in  poraneously and independentlye., 49x 4=196 replicas
principle good candidates for obtaining evidence of the tranData are averaged over 256 disorder configurations for each
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system size. Statistical errors are evaluated ffdieordejy

-0.65

sample-to-sample fluctuations by using the Jack-knife kg ' ' ' Nlr\f;gﬂ'%ﬁ
method. KR I, NA0Zd it

Looking for evidences of the shape Bf(q) with h#0 0.7 1 "B 1
predicted by the solution of the modgkgs. (4)], we per- " i
formed a large scale simulation for a systemN# 3200 075 | 'y
spins, with the usual PT in temperature algorithm, taking o : ',
=38 equally spaced temperature values betwggpn=0.4 i
andT .= 1.325, at magnetic field=0.3. Results were av- Ha T .
eraged over 128 different disorder realization and we per- .
formed 400 008-400 000 PT steps for each sample, check- 085 | ey
ing thermalization by comparing the(q) obtained in the
second half and in the second quarter of the run. 09 . . . . .

“o 0.1 0.2 0.3 0.4 0.5 0.6
IV. RESULTS AND DISCUSSION (a) h
A. Energy, magnetization, and magnetic susceptibility 0.6 — '

We plot in Fig. 1 the energy density and the magnetization 0.5 | N=256 - )
as a function oth for the different sizes considered. In the B o= g e
same figure, we also present data on the mean ovégap 0.4 1 Lz
and on the mean absolute value of the overlag). It is o2 | . "
evident from these data that the two quantities definitely dif- ¢ . P
fer for h as large ash=0.4 (i.e., larger thanh,t) for N 0.2 L '
=64 and up tch=0.2 for N=1024. =

In Fig. 2 we plot the magnetic susceptibility computed as 0.1 | i ,

R 0# *
a(m)
X(h,N)=W (23 01 . . . " .
0 0.1 0.2 0.3 0.4 0.5 0.6
and as ®) n
0.6 ; .
R — g @ .
x(h,N)=Ng(m?)—(m)?). (24) 05 | YL L |
E3 :rziIif it g
An excellent agreemehis observed between the two esti- 0.4t * P x ¥ i g )
mates, showing that a good sampling has been achieved. W s, .
also plot the analytical estimafel7] (obtained in the so- § 03r n quNjgg‘
called Parisi approximation for the Landau potential, and for s "I m‘ﬁ‘N:{aQZ ..... ot
T—>T;) T 02r¢f G641 —»
o1l qN=1024
x(h,»)=1—(3/4)?*n*3, (25) NE

which is in quite good agreement with the data lianot too 0.1 , , ‘ , ,
small? In the thermodynamic limit,y=8(1—(q))=p/8 0 0.1 0.2 0.3 0.4 0.5 0.6
=1 in the whole spin-glass phase for-0. On a finite sys-  (©) h
tem however, one must take into account the symmetry with
respect to the flip of all the spins ang(h=0:2)= (1 FIG. 1. (a) The energy densityb) the magnetization density,

—(q))=B=1.666. Our data fory show clearly the cross- and(c) the mean value of the overlafg) and(|q|) atT=0.6, as a
over between these=0 andh#0 regimes. Figure 2 shows function of the magnetic field, for the different system sizes.
that finite size effects are positive for ldwand negative for
largerh. This change of sign must occur since the susceptibility has sizable finite size corrections, whereas the magne-
tization is (trivially) size independent foh=0 and very
weakly size dependent for larde
Although formulas(23) and (24) are identical mathematically, For a better clarification of the situation, we also consider
their Monte Carlo estimates can disagree, if the sampling is bad dhe absolute magnetic susceptibiligg®s (see the same figure
if 5h [we use finite difference to estimate E@3)] is too large. on the righj, obtained from the probability distribution of
2A different formula appears if48,49, with the orderh*3term  the absolute value of the magnetization. Note that for the
multiplied by 7/3. absolute susceptibility the estimates of E@8) and(24) do
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N=64 ——
N=256 X E
N=1024 %

1-(3/4)23n 3 _

FIG. 2. (a) Usual magnetic susceptibility &=0.6, as a function of the magnetic field, for the different values of the system size,
compared with the predicted infinite volume analytic behaysme text (b) The magnetic susceptibility from the absolute value of the
magnetization. In both plots the two estimates of the susceptibility, 8sand(24), are plotted.
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FIG. 3. The behavior of the Binder parameBit,T) (a) and of the skewnesS(h,T) (b) at T=0.6, as a function of the magnetic field
for the different system sizes. Heha1=0.382. On the right are plotted the corresponding quantB@$(h,T) (c) and S2°S(h,T) (d),
obtained from the distribution of the absolute values of the overlap.
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FIG. 4. The behavior of the parameteggh,T) and A(h,T) (a), G.(h,T) and G2°S(h,T) (b), and A.(h,T) and A%*S(h,T) (c) at T
=0.6, as a function of the magnetic field for the different system sizes.

not coincide, but they do when finite size effects are negliFig. 3 the behavior of the Binder parameter and of the skew-

gible.

B. Critical behavior at the AT line
Let us now look at the dimensionless ratiosR{fg) mo-

ness. The originaB and S of Egs.(5) and(6) are on the left

of the figure and the absolute variants on the right. We see
that in all cases it would be a hard task to get a clear unam-
biguous determination of the critical point from the data. At
variance with the behavior of the=0 Binder parameter

ments which should intersectlag+(T), providing evidences which is always positive and increases continuously for de-
for the phase transitiofHere, hy1=0.382). We present in creasingT’s, all four quantities in Fig. 3(the absolute
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data forN=64, 256, and 1024, we now find a monotonous
crossing point behavior which approaches; from above,
with the intersection betweel=256 and 1024 data occur-
ing (within the erroy at the correct valub,t, the agreement
being best in the case of the skewness.

Next, we consider in Fig. 4 the parameters base® @)
glassy phase non-self-averageness. The first observation is
that in order to obtain some information one has to look at
connected quantities, sin€gandA have definitely a differ-
ent behavior from the others and do not cross as one could
expect. More in detail, curves fo& corresponding taN
=64 and 256 are nearly constaftithin the error$ in the
whole consideredh range. FoiN=1024, G is in agreement
within errors with the thermodynamic limit value 1/3 in the
glassy phase, and is smaller in the paramagnetic phasé. For
as large as 0.6 one still find3=0.28. In the case of the EA
model at a fixed magnetic field, the parameBwas found
to be[29] less appropriate tha@,. . It decreases more slowly
when entering the paramagnetic region and curves for differ-
ent sizes cross at definitely too large temperat(inese quite
small sizes withN between 5 and 64 were considered

Curves forA are monotonic and approach zethough
with strong finite size correctionst largeh, making evident
that P(q) is self-averaging in the paramagnetic phase, but
they do not cross correctly and in particulahat O one finds
A(N=1024=A(N=256)<A(N=64).

The connected parameters display a more interesting be-
havior and they do indeed cross. We find a qualitatively simi-
lar behavior near the transition point f@. and A.. Our
statistical errors are quite large and do not allow a precise
determination of the crossing points, nevertheless curves for
the two smaller sizes seem to roughly intersect at the correct
valueh=0.4=h,7, whereas data foN=256 and 1024 ap-
pear to cross at a lowdr value, this being more evident in
the case of\;. The behavior seems still better when looking
at the corresponding absolute parameters. In particular, there
is no irregular behavior fon— 0 and the statistical errors are
definitely smaller, allowing for a more precise evaluation of
the crossing points. Curves correspondingNte 64 and 256
intersect ah=0.6, whereadN=256 and 1024 clearly cross
at the right valueh=0.4=h,7.

To conclude the discussion on these parameters, we note
that althoughG. and A; are certainly interesting to look at
for obtaining evidences of the transitigand of non-self-

FIG. 5. (a) The behavior of the spin-glass susceptibilities gyeraging, one should not overlook their large statistical

xsa(h,T) and(b) x2%(h,T). (c) Scaling plots, i.e.xsg(h, T)/N*3
and x2%(h, T)/N*? plotted as functions of the scaling variable (

—har)N¥® at T=0.6, for the different system sizes.

fluctuations, much larger than the fluctuations of the usual
Binder parameter or the skewness, therefore a larger number
of samples would be required in order to obtain precise mea-
sures.

value does not hejpdisplay a nonmonotonic behavior, tak-  An even better evidence for the presence of a phase tran-
ing negative values on a large part of the interval. Band  sition comes from the behavior of the spin-glass susceptibil-
S, the intersection betweed= 256 andN= 1024 occurs at a ity which is clearly divergingsee Fig.  when entering the
definitely too smallh=0.2, showing the presence of strong spin-glass phase. We see that the behavigrd8f (plotted in
finite size scaling correctiondn all cases, the valubl=64  Fig. 5) is definitely different for the largest size considered
turns out to be too small to give interesting resulfshe = N=1024 also. Here, the susceptibility seems to approach a
effect of the absolute value is strong, particularly fdr  constant in the small field region, i.e., fohp,;,(N). Nev-

=64 and 256. It goes in the right direction since comparingertheless,h.,in(N) clearly approaches zero for increasing
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FIG. 6. We compare the behaviors(@f;,0ss), {q12013), @2
and(qg®) (c) as functions of the magnetic field for=1024. We plotfor N=1024 agai relationsR3,s, (d), R34

and(q?) (@; ([a)2 {[af) °,

and(q?) (b); and(a%,02y, (92023, (a7 °,
(e), andR},,5(f), which

are well satisfied, together with the modified ofigss,, T25S,, andT;,13, respectively, which are not in the SG phdsee text

sizes and also in this case one gets evidence for a divergirigoking at the scaling plot presented in Fig. 5. We find strong

spin-glass susceptibility. corrections to scaling in the glassy phase, such that it would
The importance of considering both the usygk and the  be hard to evaluate the correct critical point and exponents

corresponding absolute quant';(»g%S becomes evident when from these data. On the other hand, correctiongdgare in
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FIG. 7. The behavior oR%,., (a), R2,2bs (b), R? (0), RD.abs (d), R%,,5 (e), and RP (f) as a function of the magnetic field for the
1234 1234 1234 1234 1213 1213
different system sizes considered.

the direction opposite to those of%’, and therefore it is C. The sum rules

useful to look at both quantities for understanding the true  Our next aim is to investigate the validity of the stochastic
scaling behavior. We also note that data i, andxgt(’;s are  stability sum rule10)—(17). Some are supposed to be non-
nearly coincident in the whole relevant interyaé., down to trivially valid for h<h,y, and trivially valid for h>hu7,
h=0.3) for N=1024, which means that when looking at namely,R%,5,, R%,,5, RZ,3,, andR3,;5. On the other hand,
sizes of this order or larger one can expect to find not togelationsR?,3, and R%,,5, which are ratio of moments, are
important corrections to scaling. supposed to be only valid below the AT line. We will also
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FIG. 8. (8 The behavior oR?;,,, and (b) R?;,,5as a function of the magnetic field for the different system sizes.
consider relation®3:35° andR2:45°, obtained from the prob- do not present data fdr<0.1). On the other hand, relation
ability distribution of the absolute values of the overlap.  R%25° appears very well satisfied within the errors down to

We first look at the behavior, as a function of the magnetich=0.

field, of the different terms entering the sum rules, consider- |y Fig. 7 we present our data for relatioR8,,,, R3AS,

ing the case oN=1024, where finite size corrections are 5nqR2, with a finer vertical scale than in Fig. 6, together
less important. We see from Fig. 6 that with data forR,,,, R%:25%, andRY,,,. The situation is quite
~TTaNZ~ TN 2T clear: forN=1024 relationdR?,,,, R®A%S, andR?,,,are not

(Aaziod =(lal)"=(Ausd =(a) "=(a) 8 verified above the AT line, v;ﬁse‘lrealszﬁey are é;lt?sfied within

for h=0.4, which is quite reasonable since this is the replicahe statistical error belowup to crossover effects for small

symmetric region wher®(q) is self-averaging. The tail of h’s for the non absolute quantities

P(qg) in the negative overlap region has practically disap- In any event, the change of behavior in the sum rules

peared foN=1024, so thatq)=(|q|), and we have more- when going from then<0.4 region to the other side of the

over (assuming a Gaussian distribution with variamcg AT line is small. This is trivial in the case of relatiof,,,,
., R3PS, and R%,,5 since all terms become very similésee
(99) =0+ dea=0ea=(a)". (27)  Fig. 6) as we already discussed. This can be undersjt6od

b b,abs b ; ; 1234
for Risss Rissa, and Riys (i.e., the ratiosxss7xsc

On the other hand, these quantities are different when" abslm’){ se=1/3 andxégégl)(se: 112, respectively
aps, ]

N ; XSG
;r;\t:lrllng Into the glassy phase, though the differences appeaging the results of Ref51]. TheseR"'s can be calculated

We plot in the Fig. 6 the relation&ys,, ?,2%35' and from the massesg, r_, and ¢_—r,)/n computed in this

a g . paper. Rather surprisingly, the ratio condition becomes true
Riz13. In order to show that they are nontrivially verified We 54 iy the high field limit, and thR™s gain back their 1/2
also, plot following Ref[3], the relations

and 1/3 values. This means that th&$&s have only a very
TV 172 17 v slight variation in the replica symmetric phase, with probabl
T12adh.T)=(d139 —2(@) "~ 2(a")=0, (28 a rgninimum, and they a?e conéc/inuous atpthe AT Iine.pWe not)t/a
abs B 5 . 2 1 that their behavior is very similar to the behavior®f fur-
TisAah T=(la[)?=z(lal) "=2(a®=0, (29  ther confirming that appropriate parameters for getting evi-
o o dence for the transition are the ones which involve connected
Tid N T)=(dpl1a) — 2(q) — (q®)=0, (300  quantities, such a6, andA..

In Fig. 6 we also present the behavior of the different
which should also be verified iRS,,, R3Sy, and R3,;;  terms entering the relatiofR?, 55, andR? ;5. (02)2 is defi-
were trivial. They are clearly not verified in the spin-glassnitely different from the other terms, and quite surprisingly it
phase, and accordingi;,;, andR,,; are nontrivial in this  remains clearly different also on the other side of the AT line,
phase. We moreover note that to look at the probability diswhich is to be interpreted as a reminiscence of non-self-
tribution of the absolute value overlap very is useful also inaverageness due to finite size effects.
this case, since as we already pointed out these relations are Finally, we plot in Fig. 8 relationsR?;,5, and R? ;.
derived assuming an infinitesimal magnetic field whichHere, finite size effects are less important because these re-
breaks the global symmetry for inversion of all the spins. Aslations are valid also in the—0 limit. Nevertheless these
a matter of fact, relationRj,;, andR},,; are no more veri- quantities are compatible with zero within our statistics for
fied as soon ak=<0.15, where the tail oP(q) in the nega- h=0.3 only forN=1024. Also, in this case we find only a
tive overlap region becomes important alsofor 1024(we  small difference between thle<0.4 behavior and the one
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FIG. 9. The behavior of the probability distribution of the over-
lap P(g) with h=0.3 and temperatureb=0.4, 0.5, and 0.6, re-
spectively, for the large sizd=3200.

outside the glassy phase. From this point of view, it shoul
be recalled thatq?)? is definitely different from the other
terms in the wholeh range, which means that data fbr

PHYSICAL REVIEW E 68, 026131 (2003

ferences we observe here between the behaviors inside and
outside the glassy phase do indeed reflect the factGhiat

not an appropriate observable to look at for obtaining evi-
dence of the transition.

D. P(q) for a large size

Our data forP(q) at h=0.3 for a system of 3200 spins
can be found in Fig. 9 foml=0.4, 0.5 and 0.6. The corre-
sponding values oz, are 0.759, 0.640, and 0.505, respec-
tively. We have been very careful in checking that thermali-
zation is achieved for all values of the temperature. It is clear
from the figure why the asymptotic behavior of this distribu-
tion has escaped observation up to now. 74t 0.6 only a
single peak(corresponding tag,) is visible, with substan-
tial asymmetry(the distribution is wider in the lovg side.
The asymmetry is stronger far=0.5, but there is still no
sign of the lowq peak® Only for T=0.4 does one see the
expected continuum on the left of the self-overlap peak, with
some indication of the lovg peak at a location in agreement
with the value[46] g,,i,=0.44. It should be noted that the
peak corresponding tq,,;, is predicted to be broader than
the one corresponding -, [52]. This explains why we do
not observe this minimum overlap peak.

V. CONCLUSIONS

We performed numerical simulations of the SK model in a
magnetic field at temperatur€=0.6, both in the glassy
phase and above the AT line. We used a modified version of
the PT algorithm in which the system is allowed to move
between a chosen set of magnetic field values, an algorithm
well suited for our purpose.

We measured quantities such as the magnetic susceptibil-
ity, which turns out to be in agreement with the predicted
analytical behavior of Ref47] as a function oh.

Dimensionless ratios d?(q) moments such as the Binder
parameter and the skewness display a nhonmonotonic behav-
ior, making it difficult to get a clear determination of the
transition point on the AT line. Als@ad hocparameters for
locating replica symmetry breaking transitions, based on the
non-self-averageness of the order parameter, are considered.
The connected ones turn out to be effective for locating the
transition.

An even better evidence for the transition comes from the
divergence of the spin-glass susceptibility, though its scaling
behavior is affected by strong finite size corrections.

We also investigate the behavior of various quantities de-
fined in terms of the probability distribution of the absolute
value of the overlap. This allows one to reduce the finite size
effects due to the long tail dP(q) in the negative overlap
region. As a matter of fact, the dimensionless parameters turn

Gbut to behave better in this case, the crossing points being
nearer to the correct critical value. It is interesting to note

>0.4 are far from being in the asymptotic self-averaging
I’eglme in Wh|Ch these sum ru|eS ShOU|d be trIVIa||y SatISerd 3Th|s result disagrees with RQﬂ_G]’ where a |0V\q peak is found’

We note that from relatiofR?, 5, the expected behavior of
the paramete6 immediately follows and that the small dif-

using the Metropolis algorithm with 100 000 sweeps for equilib-
rium and only 20 disorder samples.
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that the usual and absolute susceptibilities have correctionghich show how slowly the shape predicted by the RSB
of opposite signs. solution develops on a large system.
Moreover, we studied the behavior of some sum rules
(related to stochastic stabiljtyinvolving overlaps between
three and four replicas. We found strong finite size correc- ACKNOWLEDGMENTS
tions particularly for those sum rules that are valid only at a
nonzero magnetic field, and it turns out to be particularly We are particularly grateful to Giorgio Parisi for many
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