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Counting multiple solutions in glassy random matrix models
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This is a first step in counting the number of multiple solutions in certain glassy random matrix models
introduced by N. DedPhys. Rev. B65, 056115(2002]. We are able to do this by reducing the problem of
counting the multiple solutions to that of a moment problem. More precisely, we count the number of different
moments when we introduce an asymmetapping in the random matrix model and then take it to vanish.

It is shown here that the number of moments grows exponentially with respicthe size of the matrix. As

these models map onto models of structural glasses in the high temperature(lghadg this may have
interesting implications for the supercooled liquid phase in these spin glass models. Further, it is shown that the
nature of the asymmetritapping is crucial in finding the multiple solutions. This also clarifies some of the
puzzles raised by E. Brin and N. Ded Phys. Rev. 59, 3901(1999].
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[. INTRODUCTION important differences observed in these models is that these
have multiple solutions, which show up in certain correlation
Random matrix models can be used very effectively agunctions. Here, we count the number of multiple solutions
simple mathematical toy models, where many new ideas i&nd explore the possibility that these multiple solutions arise
physics, biology, and economics can be tested analyticallyy taking different paths in phase spaeach path may cor-
Ref. [1-3]. Here, we try to understand the idea of tappingrespond to a different metastable glassy stdtés important
and counting, well studied in the context of granular mediato establish the correspondence between the multiple solu-
in the glassy random matrix model introduced in Rf. tions and the metastable glassy states. The barrier heights
There, it was demonstrated that the matrix models with gapgorresponding to these various solutions are also future
in their eigenvalue distribution had multiple solutions andgoals. _ _
were related to the h|gh temperature phase of Cepﬁpin | W|” d|SCUSS here the matrix m0de| W|th double'We” pO—
g|ass models, Re[S] We approach the pr0b|em in much the tential, theM* model (the Gaussian Penner model where
same spirit as done for spin systems in R6f. This is a first ~ Similar things happen will be pursued elsewheretapping
step in understanding what happens when we tap the modd$, introduced, which corresponds to coupling the matrix
i.e., introduce a perturbation and remove it. This enables ugodel to an external source. The limit of taking the external
to count the number of different configurations. Studies tosources to vanish gives different values for the moments in
understand the fluctuation-dissipation relations and the reldhese models. This may result in different values for the par-
tions between the dynamical and Edwards temperature in tHéion function and, hence, the free energy. Taking different
dynamical matrix models await further work. This study will tappings corresponds to exploring the full space of configu-
also help us understand some of the puzzles that we raised fiations. Here, we present the first steps in counting the num-
Ref.[7]. One of the puzzles in these models is that the |0n€{)er of different configurations and find it to be exponentially
range correlators found in R€f8] by the mean field calcu- l'arge.
lations differ from that found in Ref9,7] using the orthogo- After this work was completed, we find that in a different
nal polynomial methods. A resolution of this has been sugcontext the results of exponentially large number of minima
gested in Ref[10] where it is claimed that the difference have been reported in a renormalizable matrix potential with
arises due to the discreteness of the number of eigenvalués using a different method given by Soljacic and Wilczek,
for double-well models with equal depths. Here, we try toRef. [11].
understand these results using the method of moments.
Most of the studies and applications of matrix models Il. NOTATIONS AND CONVENTIONS
correspond to eigenvalue distributions on a single cut in the
complex plane where the eigenvalue density is nonzero, Ref. Let M be a Hermitian matrix. The partition function to be
[1]. Here, we study a one-Hermitian matrix model with aconsidered is Z=[dMe ™), where M=NXxN,
more complicated eigenvalue structure. These have found Hermitian matrix. The Haar measuredM
applications in two-dimensional quantum gravity, string=I1}",d MiiHi<dei(jl)dMi(j2) with Miszi(jl)+iMi(j2) and
theory, disordered condensed matter systems, supercondubt? independent variablesvV(M) is a polynomial in M:
ors (with complex vector potential and with impuritiesnd V(M) =g;M + (g2/2)M 2+ (g3/3)M3+ (go/4)M*+ - - .. The
glasses. Here, we study these models with applications tpartition function is invariant under the change of variable
glasses in mind, as discussed in Rdfl. To illustrate some M’=UMUT, whereU is a unitary matrix. We can use this
of the generic properties, we study a one-Hermitian matrixnvariance and go to the diagonal basis, iB/,=UMU"
model with two cuts for the eigenvalue density. One of thesuch thatD’ is the matrix diagonal toM with eigenvalues
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V(x) p(x) tential, the density isp(x)=(1/7){(x—a)(b—x) where
[a,b] are the ends of the cuts. See Figs. 1.

On changing the potential more drastically by having two
i humps or wells, the simplest example being a potential
o~ V(M) =—(u/2)M?+(g/4)M*, the density can get discon-
in a band nected support. The precise expressions for the density of
eigenvalues are as follows:

X -a a

p(x):%x\/(xz—az)(bz—xz), a<x<b

(2) (b)

=0, —b<x<-—a, (2.1
FIG. 1. (a) The confining potentiakb) The density of eigenval-
ues. 2 2
where a =(f1/9)[|/1«|—2@] and b?=(1/g)[|u|+2vg]
.. . with >2+/g, which is the condition that the wells are
Ni,N2, ..., Ayn. Then, the partition function becomes | g

SN N sufficiently deep. The eigenvalues sit in the symmetric bands
=C[7 L dNA(N)2e NEi=1Y) | where A(N) =I1i<j|\;  centered around each well. Thyshas support on two line
—)\j| is the Vandermonde determinant. The integrationsegments. A$u| approaches g@ a—0 and the two bands

over the groupU with the appropriate measure is trivial merge at the origin. Then the density is
and is just the constant. By exponentiating the deter-

minant as a “trace log,” we arrive at the Dyson gas 5
or Coulomb gas picture. The partition function is simgy p(X)= 9 e 2w /2|M|<x< \ 12l
=C[* 1IN ;d\je SN with S(\)=N=N V(A w g’ g g’

=23 ji#jInN—Nl.

This is just a system dl particles with coordinates; on
the real line, confined by a potential and repelling each other
with a logarithmic repulsion. The spectrum or the density ofThe phase diagram and density of eigenvalues forhte
eigenvaluesp(x)=(1/N)=N_,8(x—\;) is in the largeN  potential are shown in Fig. 2.
limit or doing the saddle point analysis just the Wigner semi- The simplest way to determing(z) explicitly is to use
circle for a quadratic potential. The physical picture is thatthe generating functiorF(z)=(1/NTr1/(z—M)) and its
the eigenvalues try to be at the bottom of the well. But itsaddle point or Schwinger-Dyson equation also known in the
costs energy to sit on top of each other because of logaritinathematics literature as the Riemann-Hilbert problem
mic repulsion, so they spreag.has a support on a finite line F(2)=3[V'(2) + VA(2)] with A(z)=V’'(2)>~4b(z) and
segment. This continues to be true whether the potential i8(z)=9Z°+u+g(1/NTrM?) (see Ref[12]). The density
quadratic or a more general polynomial, and only depends op(x) is then determined by the formulap(z)
there being a single well though the shape of the Wigner= —(1/27)ImyA(z). In what follows, the matrix model is
semicircle is correspondingly modified. For the quadratic potapped(that is, a small perturbation is added, which breaks

=0, otherwise. (2.2

p&) K
V(x)
G RS e YT

| g FIG. 2. (a) The double-well potential(b)
Density of eigenvaluegc) The phase diagram.
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FIG. 3. The asymmetric potenti®¥(x).
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FIG. 4. Derivative of the asymmetric potenthal (x).

the Z, symmetry and the number of solutions corresponding ~ Therefore, the behavior ohy(a) for smalla is indepen-

to the different moments of the model is counted.

[1l. INTRODUCING ASYMMETRY  (TAPPING)

Let us put a matrix sourcé, with an eigenvaluen,,
which will ultimately vanish in the partition function

ZN(A):f dMe N TV(M)=AM) (3.2

Using Harish-Chandra-ltzykson-Zuber formula

N

zN(A)=JH d)\,A( )e 2 VOW-anl - (3.9)

where
A(N)=Detn) 1. (3.3
Then, in terms of the moments, the partition function be-
comes
Det(m,(ay))
Zn(A) = TTA(a) (3.9
with
mn(a)=f dxe NV)—axiyn, (3.5

Let us considem,(a) if N goes to infinity beforea—0.

(a) First take a norg, symmetricV(x) with two wells,

dent of the sign of. This corresponds to the case studied in
Ref. [8], where the difference between the depths of the
asymmetric wells is large.

(b) However, if V is symmetric, for exampleV(x)
=—1/2x?+gl4x*, whena—0 the saddle points are

L. +O(a2) (3.6

=

(x~0 has a higher actigrthen

S(x.) = i;i_ (3.7
29 g
The integralm,, is dominated by
1 a
x=+\/—§+§ for a>0,
1 a
=— J_g + > for a<Oo. (3.8

The moments are thus given by

1 — 27
mn:gW?efNIZQeJraN/\eg ﬁ
-1\" .
— —N/2go—aN/\g <
(\/_) e e 3N for a<0. (3.9

g

for a>0,

For n even, the two results are the same; butrfardd, we
get opposite signs. Note that tdg symmetry would say that
=0 for n odd anda—0. The set of moments would be

2’\"2 corresponding to the number of different possible mo-

(i) If ais positive, we have three solutions but the actionments(only the odd moments are different for differemt.

see Fig. 3.

(i) The saddle point is the solution d (x)=a, see Fig.
4.
is lowest atxs.

(iii) x5 is still the leading saddle-point solution fa
<Q0.

(c) We have to check whether the nonuniformity of the
limits N—o0, a— 0 may be present ¥ is nonsymmetric but
has two wells of equal depths.
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form easily comparable to formulas in REE3]. We consider

Vi
b the measure

Z lexp(—NtrV(M)+NtrMA)AV'M, (4.

where V is an arbitrary polynomial and A

=diag(@y, - - . ,an_1) can be assumed diagonal.
One diagonalizes M; if M=QAQ" where A
S =diag(\g, - .- An_1), the integral over() is the usual

Itzykson-Zuber integral on the unitary group and one finds

dei(expNA;ay)
A(a)
FIG. 5. The asymmetric potenti®(x) with two wells of equal N-1
depths. ><exp< N> V()\i)> . (4.2
i=0

pN()\O!)\li [ ,)\N_l):Z_lA()\i)

The same series of arguments follows through for the
asymmetric potential with two wells of equal depths as forReplacing powers of\ in the Van der Monde with
the purely symmetric potential. Hence, there would be multhe orthogonal polynomials P, (\) of the measure

tiple solutions of the same multiplicity™? in the moments exd —NV(\)]d\. The partition functionZ can then be ex-
for this problem as well. This is the same situation considpressed as

ered in Ref.[10] (though here only one of the? the
symmetric solution, as is referred to in REE2] was consid- N-1
ered and we arrive at the same symmetric answer as in Ref, _ N! B

[10] where they make the unequal wells eq(asymmetry Z= A(a) iHo dh;def Py(A;)JexpN ;O [=V(Ai)+ain]
tending to zero limi (Fig. 5).

N—-1

N!
IV. FIRST STEPS IN COUNTING MULTIPLE SOLUTIONS - A(a,)dEt(J ANP(M)eXpNL= V(M) +ah] . “.3
Let us reformulate the problem in a slightly different way
to enable counting and bring out some different results in alence,py becomes
1 det(Py ()i k= _,detexpNa\); - _ .
puNoMt, s A= PN -o,... n-rdeXexpNa )ii=o. .. x 1exp( “NX vy (4.9
' de<fd)\Pk()\)expN[—V()\)Jraﬁ\] a
kI=0,... N—1
|
This formula has a simple structure. On introducing the 1
functions F (\) =h{"Y2P, (\)exd —N/2V(\)] and G,(\) PN(Noi N1, - A1) = AN A )i =0, N-1
=expMNar—N/2V(\)), we have (4.6)
NN N1, - ANC ) where
1 det(Fi(N))ik=o,... n—1d€(G|(N)))j1=0. . .N-1 Nt
= NI KO\ u)= 2 FN)auG(w). 4.7)
de“ d)\Fk()\)G|()\)) kl=0
k,I=0,...] N—1
4.5 The kernel satisfies the following property:
[K*K](N,p)=K(N\,p) (4.9

The matrix [ JdNG;(N)Fg(N)]i k=o,... n—1 has an inverse
ay . Putting the three determinants together, we get the fol{[ K* K](A,p) =fduK(\,w)K(w,p)). Thus, we obtain the
lowing: determinant formulas
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(N— )! a, taken. Forpy(Ng, ... An_1) @ndZ, i.e., Egs.(4.3 and
Pn(No N1, oo Ao 1) = ——detK(X\ ,\j))i j=o,.. (4.4 which are related td through a determinant, it is risky
(4,9) to consider the largeN behavior of | before computing

detnxnyl.  Counting at  the level of K(\,u),

for anyn<N. The kernelK has the form pn(No, - .. An—1), Z and the free energy still remains an
N~1 R open problem and needs a nonperturbative treatn(@snt
K\, u)= kZo FrOVF(w) (4.10 shown in Ref[12]). This will be pursued in a future work.
with Fi(u) =2 @Gi(u), butFy#Fy. Thus,Kis not sym- AN EXPLICIT CALCULATION OF THE INTEGRAL

metric. In order to get further properties f& we consider EQUATION (4.12 FOR THE DOUBLE-WELL PROBLEM
the integral
For the double-well matrix model the orthogonal polyno-

mials, are not known polynomials but we do know the form
I—f dAN[G(MF(M) ] k=0, ., 1 for the p(_)lynomial at largd\, i.e., when N—n)~O(1). The
polynomials are given by

_J’d Pk(N)
= N exp(N[ =V(N)+aA])

1
Vhy o0 = | cONE = (N= )+ (1))
1 k
—f d\Y, CNexp(N[—V(\)+an]) 1
h 1=0 +0 N”, (5.1

k
ZJ__E ifdwexp(N[—vo\HaM)

wheref, ¢, ¢, x, andy are functions ok and are given by

(b2_ 2

0 as) .
x TSIH 2¢()\),

-

A Cimi, (41]) f()\)=

%\H
g

m; are the moments. For symmetric potenti&\), the
above expression becomessing the expression for the mo- '(N)=—mp(N),
ments found in the preceding section

(a®+b?)
= [ G OIFO o N
L K 5 COS2¢()\): (b2_a2) ’
. — ar [ —
:\/T IZO Cig|/ZefN/29+a|N/\«‘g, ,ﬁ: 01;51 for a,>0 2
e
k i
:i C 1 efN/297a|N/\f§w/2_7T:a'*l cos 2p(N) = b (b()\),
hki:0 i \/a 3N kl
for a,<O0. (4.12 2000 sing(\)
sin = ,
Summarizing 7 N
akjl, a|>0,
=y ,_3 1 ™
ay ., a<0. XM =56\ =7 (5.2

Recall that x,==*1/\g+a/2, thus only for =1/\g
=a/2 the above result holds, i.e., the integral equatt?)
has two values depending on whethar>0 or a,<O0.
Whereas for+1/\g<a/2, the usual single-well result, as
given in Ref.[13], is found.

From the equation foK(\,u), i.e., Eq.(4.10 which de-
pends on the integral equatié#.12) through a sum, it may
be possible that there are'Zolutions for certain kernels,
this would correspond to an exponentially large number of
solutions depending on the path or different combinations of P (N)e” N2V = h (M),

Let us consider the Ed4.12 with the above asymptotic
ansatz forg, for largek, then

| = J Pk()\)e—N[V(x)—”ax] ’
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=JhRRe

VE(N)

_ Q” k7 1 P 4 T
=JhRRe dxexp< [ZNlnf()\)+|§+lyNkN+l( DAt e gaN AN — T |

where yy  is given by —(N—Kk)+3. In the saddle point
approximation, the exponer8(\) is to be minimized. The
action

. 1
WHHN—DK%\)* ZHN?—g/8N*

S(N) = 7

1
+AN+ —Inf(\)

5N (5.9

will have a first derivative which vanishes as shown below:

i "N ‘() 1 3

%—H{’-ﬁ-l(—l)kn,\l +5uA=0/20 43
2Nf( )f()\) S'(N)=0,

M—im)()\)ﬂ(—l)kn W) +%M—g/27\3+5

—f'(\)=0, (5.9

T INFOY

where we have used the relation #imn terms ofp from Eq.
(4.14). Solving for the density(\), we get

i 1 - "(N)
()= —| ~Sur+o/23-E %
I Y w7 )
oo WD 6O

For the symmetric potential using the expression g0x)
and in the largeN limit neglecting the last terms, for small
the equation forx has solutions\,, and 0. Thus, in the
saddle point approximation, the integralfor large k be-
comes

| =1gP(\s)e NV =ars) 4 h ot (5.7)

(the A ~0 solution gives a higher actipnwherel ; is a con-

el INC=(N=K) ¢+ x+ (1) 5] o=

PHYSICAL REVIEW E 68, 026130(2003

N[L/2(—1/2uN2+glan*) an]

(5.3

ing on the path{a,} taken as these functions all depend on
the integrall, Eq. (4.12. Thus, here evidence is presented
that there exists an exponentially large number of solutions,
i.e.,eN'"2 in the double-well matrix models depending upon
the path taken in parameter spdeg}. It will be interesting

to explore the possibility that these exponentially large num-
ber of solutions correspond to the metastable solutions of the
supercooledp-spin glass that these random matrix models
map into.

VI. CONCLUSIONS

We have been able to map the problem of counting the
number of multiple solutions found in R€fl2] to a moment
problem. The multiple solutions were discovered in the re-
currence coefficients of the orthogonal polynomials in Ref.
[12]. It was known that there are an infinite number of solu-
tions. The counting problem is mapped onto counting the
number of ways to get different moments. The set of mo-
ments grows exponentially a$"2. In order to show this, we
have to introduce a small perturbation that bregakssym-
metry into the moment integral and then take the small
asymmetry parameter to zefwhich we call tapping the ma-
trix). As an added bonus, we are able to understand some of
the puzzles and controversies that are found in Refl and
studied in Refs[9,7]. The counting at the level of the kernel,
pn(Ng, - - An_1), Z, and the free energy still remains an
open problem and needs a nonperturbative treatment. This
will be pursued in a future work.

The number of moments in these random matrix models
are exponentially rising witiN. These matrix models are
connected with the high temperature phase of structural-
glasses as has been discussed in Réf5]. There could be
interesting properties of the supercooled liquid phase, which
may be explored analytically in these simple models. For
example, it will be worthwhile to study how the metastable
states of the liquid are related to the different paths of taking
the small perturbation parameter, as introduced here, to zero.
Future work on finding barrier heights is underway.

ACKNOWLEDGMENTS

| would like to thank Professor E. Brezin for many dis-

stant. Hence, we have shown in an explicit example for theussions. Jorge Kurchan and Letitia Cugliandolo are grate-
symmetric double-well potential that the integral equationfully acknowledged for the communication of R¢L1] and
(4.12 for a largek in the saddle point approximation has two for introducing N.D. to the interesting subject of spin glasses
solutions, which solution is chosen depends on whether and granular materials along with the dynamical Edwards
= or <0. This result indicates the possibility that the kernel,temperature. | also thank Professor S. Jain for many ideas,
partition function, free energy can hav# golutions depend- suggestions, and discussions.

026130-6



COUNTING MULTIPLE SOLUTIONS IN GLASSY ... PHYSICAL REVIEW B68, 026130 (2003

[1] M. L. Mehta, Random MatricegAcademic Press, New York, [6] D.S. Dean and A. Lefevre, Phys. Rev. L&, 5639(2001).

1992); T. Guhr, A. Mueller-Groeling, and H.A. Weidenmueller, [7] E. Brezin and N. Deo, Phys. Rev.39, 3901(1999.

Phys. Rep299 189 (1998. [8] G. Akemann and J. Ambjorn, J. Phys.28, L555 (1996; G.
[2] H. Orland and A. Zee, e-print cond-mat/0106359. Akemann, Nucl. Phys. B482 403 (1996, ibid. 507, 475
[3] L. Laloux, P. Cizeau, J.P. Bouchaud, and M. Potters, Phys. (1997.

Rev. Lett. 83, 1467 (1999; V. Plerou, P. Gopikrishnan, B.  [9] N. Deo, Nucl. Phys. B504, 609 (1997).

Rosenow, L.A.N. Amaral, and H.E. Stanlefid. 83, 1471 [10] G. Bonnet, F. David, and B. Eynard, J. Phys.38 6739

(1999. (2000.
[4] N. Deo, Phys. Rev. B5, 056115(2002. [11] M. Soljacic and F. Wilczek, Phys. Rev. Le&4, 2285(2000.
[5] L.F. Cugliandolo, J. Kurchan, G. Parisi, and F. Ritort, Phys.[12] R.C. Brower, N. Deo, S. Jain, and C.I. Tan, Nucl. Phy<.(5,
Rev. Lett. 74, 1012 (1995; G. Parisi, e-print 166 (1993.
cond-mat/9701032. [13] P. Zinn-Justin, Nucl. Phys. B97, 725(1997).

026130-7



