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Connectivity distribution of spatial networks
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We study spatial networks constructed by randomly placing nodes on a manifold and joining two nodes with
an edge whenever their distance is less than a certain cutoff. We derive the general expression for the connec-
tivity distribution of such networks as a functional of the distribution of the nodes. We show that for regular
spatial densities, the corresponding spatial network has a connectivity distribution decreasing faster than an
exponential. In contrast, we also show that scale-free networks with a power law decreasing connectivity
distribution are obtained when a certain information measure of the node distrikintegral of higher powers
of the distribution diverges. We illustrate our results on a simple example for which we present simulation
results. Finally, we speculate on the role played by the limiting &($&<k ! which appears empirically to
be relevant to spatial networks of biological origin such as the ones constructed from gene expression data.
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I. INTRODUCTION a priori by the lattice structure.
Spatial networks originating from a uniform distribution

In contrast to abstract graphs, many real networks aref the nodes were studied in Réf], where it was shown
embedded in a metric space: The interactions between thbat while the connectivity distribution takes the same Pois-
nodes depend on their spatial distance and usually take plasen form as in the Erdos-Renyi random netwofgse, e.g.,
between nearest neighbors. Examples of such networks aRef.[13]), other important features, most notably the cluster-
transportation and communication networks, friendship oiing coefficient, are radically different from the Erdos-Renyi
contact network$1,2]. An especially important example is case. The formation of giant clusters in such networks was
the Interne{3,4], which is a set of routers linked by physical studied in Refs[2,7].
cables with different lengths. Several recent studies have in- Spatial networks occur naturally and are the object of ac-
vestigated networks whose nodes are embedded in a mettiwe investigation in various areas: We will mention three
space, and where the probability of connecting two nodegarticularly relevant ones. First, spatial networks of biologi-
with an edge depends on their distafte2,4—1Q. cal origin have recently been constructed from gene expres-

On the other hand, the concept of scale-free network hasion data obtained from microarray experimefis—19.
emerged in the last few years as a powerful unifying paraThese networks are constructed by computing the correlation
digm in the study of complex systems of natural, technologi-coefficient between the expression profiles of all gene pairs
cal, and social origingsee Refs[11,17). Itis therefore natu- included in the microarray experiment, and joining two
ral to investigate the possibility of embedding scale-freenodes(gene$ with a link whenever their correlation coeffi-
networks in space. In particular, in Ref8,10], the general cient is higher than a certain cutoff. It is easy to show that
problem of embedding a scale-free network of given connecthese are spatial networks according to our definition. The
tivity distribution in a Euclidean lattice was studied. connectivity distribution turns out to be a truncated power

In this paper, we take a somewhat reversed point of viewtaw with the exponent of the power-law decay often close to
Our starting point is a spatial distribution of points on aunity. Interestingly, networks constructed from gene expres-
continuous manifoldM. Such points are the nodes of a net- sion data by a different rulg20], which does not satisfy our
work built by joining two nodes whenever their distance isdefinition of a spatial network, also display a similar connec-
less than a certain cutoff. In the following, we will call those tivity distribution.
networks obtained by this procedure “spatial networks.” We A second appplication of spatial networks can be found in
study how the connectivity distribution depends on the dis-ad hoctelecommunication networks. In these, the nodesy,
tribution of the nodes oM. The fact that the nodes live in a cellular phonegact as bridges for the propagation of infor-
continuous manifold rather than a lattice is important in gen-mation through the networksee, e.g., Refd.1,2,7,21, the
erating scale-free networks, since the number of neighborast one providing links to extensive bibliographie3he
that a node can have within a certain distance is not limitechodes have typically a finite communication range, and
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therefore these networks are spatial networks in the sense d(x; X)) <R, 2
defined above.

Finally, a natural application of this class of networks iswhere d(x,y) is the distance betweex andy. Therefore,
the study of epidemics propagation. While scale-free netonce the nodes have been distributed, the network is com-
works in which the connectivity does not depend on a prepletely determined by the choice of the cutBff This model
existing metric structure do not display an epidemic threshfollows strictly the rule used to construct networks based on
old [14], the situation changes when geographical closenesgene expression data in Ref$6—18, but more generally, it
of two nodes influences their probability to be conne¢@d can be used to model the case where the interaction has a
In our networks, geographical closenessmpletely deter- typical scale given byr.
mineswhether two nodes will be connected, so that we ex- Denoting byBg(x) the ball of radiusR centered inx:
pect to find an epidemic threshold. Spatial networks appear
to be a rather realistic model for epidemic propagation in Br(X)={yeM:d(x,y)<R}, ©)
animal or plant populations, where we do not expect an o . . . .
individual to have an interaction range very different from){he probability that a given node is placed withBg(x) is
the averagéas is the case for highly mobile human popula-
tions), while we do expect the population density to be non- qR(X)=f dx’'p(x’). (4)
uniform. Br()

All the information needed to construct a spatial network
is, in principle, contained in the distribution of the nodes on
the manifoldM (which can be an abstract space, like in the
gene networks d_escrlbed above, or real space, Ilka_dchoc tribution for a node placed iris thus given by the binomial
networks and epidemics propagatiomherefore, spatial net- distribution
works should be considered as a method to extracting a cer-

If we consider a node located atthe probability that it
will have k neighbors is then just the probability tHaaddi-
tional nodes are located in thgx(x). The connectivity dis-

tain class of information from the spatial distribution of the _

nodes. However, in the cases we have mentioned, it is clear P(k;X,R):( K dr()1-gr(x)IN"IK (5)
that the information encoded in the network is the most rel-

evant one for the problem at hand. This is obviousa@thoc In the following, we will be concerned with the limN

networks and epidemics propagation; but also in the case of,«: |n order to obtain a well-defined connectivity distribu-
gene co-expression networks, the information encoded in thgon in this limit, one has to take the limR—0, so as to
network is biologically relevant. Among high connectivity ensure that the product
genes, lethal genes involved in basic cellular functions are
consistently over-represented. Moreover, the connectivity N V(R), (6)
distribution of these networks is an interesting universal fea-
ture of gene expression data, which the network constructiowhereV(R) is the volume of the ball,
is able to reveal.

These facts motivated us to study how the connectivity V(R)= dx, )
distribution of a spatial network depends on the distribution BRr(X)
of the nodes in space, under which conditions a scale-free
network can be obtained, and finally, whether an exponerf€nds to a finite constamt. This means thaR must scale as

close to unity plays any special role in this context. N™P asN—=, and implies that the expected number of
nodes found within the baBz(x) remains finite in this limit:

N gr(X)— a p(X). ®

The constantx fixes the scale of the average connectivity
(k) of the network. Indeed, from Eq11) derived below, it is

The N nodes of the network are supposed to be in gasy to obtain the following relation betweenand(k):
D-dimensional space and we will assume that they are dis-

tributed randomly in space, with densjyx). Given a node
chosen at random, the probability that it is placed within a <k>:af dx pP(x). 9
given domain of spacme is

II. THE CONNECTIVITY DISTRIBUTION OF A SPATIAL
NETWORK

A. General Expression

Let us note that although the connectivity distribution is well
f dx p(x) (1) defined for any valuey, it has b_een shown in_ the case of a
m uniform density[2,7] that the existence of a giant connected
component implies a minimum value af (or equivalently,
(we denote the integration measuredyindependent of the (k)). We will not address this problem here but we can ex-
dimensionD). Once the nodes are distributed in this spacepect that for other densities, there will be some similar con-
we have to construct the edges. We will use a simple cutoflitions on« for the existence of a giant component.
rule: Given two nodes andj located atx; andx;, respec- In the limit N—o, R—0, the connectivity distribution
tively, an edge will join them if for a node located at is Poissonian, and E@5) becomes
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P(k; = L pk (e ap 10 Ry= ! logH 16
(kx,a)=ira’pi(xe : (10 1=1-q°9Ha-1- (16)
For the whole space, the connectivity distribution of the net- _
work is then obtained as the spatial average of the former C. Classes of spatial networks
expression and is More generally, Eq(11) allows us to determine the type

of spatial network obtained for a given spatial node distribu-
tion. The networks can essentially be distinguished by the
decay of the connectivity distribution for large connectivities
[26]. For spatial networks, large connectivities are obtained
This formula solves the general problem of determining theén high density regions, namely, maxima ptx). For the
connectivity distribution of a spatial network from the spatial sake of simplicity, we will limit the discussion to the case of
distribution of the nodes. For a uniform distributiqu{x), an isotropic distributiorp(x) =p(r), wherer is the modulus
we recover a Poissonian connectivity distribution as in Refof x. We will also suppose that we have one density maxi-
[7]. However, Eq.(11) shows that other connectivity distri- mum located at =0. We will then distinguish the following
butions can be obtained. In the following section, we will two cases.
determine under which condition a spatial node distribution (1) p(0)=p, is finite and decays sufficiently rapidly so
generates a scale-free network instead. that all the quantitiedd, are finite. This could be, for in-
stance, the case for population density which is decreasing
exponentially from the city centd24,25. In this case, an
asymptotic evaluation of the integral in Eq.1) shows that
Equation(11) allows us to determine the condition that for |argek, the connectivity distribution decays as
must be satisfied by the node densjigx) for the corre-

sponding network to be scale-free. A network is scale-free if (apo)X

the momentgk”) of its connectivity distribution diverge for P(kia)~ KI KD

v larger than a certaim,,,,. It is easy to compute the mo- '

ments of the connectivity distribution of a spatial network

from Eq.(11): For integerv, we have As expected, the low density fluctuations are reflected in the

) fast decay of the connectivity distribution and the corre-
<kv>a:2 akk_f dx Pt i(x)e P sponc_iing spatial netvv_o_rk wi_II b_e o_f the “exponential” type

K!' Jm [26] (i.e., the connectivity distribution decreases at least as

fast as an exponentjal

k

P(K; )= % dx Pt I(x)e Pt (11)

B. Scale-free spatial networks

. (17)

k

_ e a” Kl —ap(x (2) p(r~0)~r~# with <D [if 8>D a cutoff is needed
_mE:o gm WS(” )(k)mJ dx pi (e P to normalizep(r) and we are in the first situation where the
maximum of p(r) is finite]. In this case, the information
(12 measureH, will diverge fora=(D/g)—1 and the connec-
) tivity distribution is a power law: Its larg&- behavior is
_ E S(Vm)amJ dx P (). 13 given by (see Sec. Il
m=0
. _1l—DIng
where K)n=k(k—1)---(k—m+1) and S™ are the Plkia)~k ’ (18
Stirling numbers of the second kin@ee, e.g., Refl22]),
defined by wheren is the order of the first nonvanishing derivative of
p(r) (taken atr=0). The large density fluctuations allow
v here for the existence of nodes with very large connectivities
x'= > SMX(x—1)- - (x—m+1). (14)  and the corresponding network is scale-free.

m=0 Even if it might appear unlikely that spatial densities be-

have pathologically around some points, this is actually the
case in many instances where the nodes live in an abstract
space, with a distance defined by correlations. Such ex-
Han dx pA*L(x) (15) amples are obtained in the case of gene expression networks
[16-18,20Q (or the stock markdt27]) for which the distance
is defined in terms of Pearson correlation coefficient between
exist for alla<w. Conversely, the network is scale-free if nodes. The spatial network has then a simple meaning: Two
there exists avpa Such thatH, diverges for alla= v, nodes are connected if their correlation is high enough. It has
The integral Eq.(15) is a measure of the information con- been observed that in this example, the connectivity distribu-
tained in the probability distributiop(x), and is simply re-  tion is a truncated power law with exponent of ordgrl6—
lated to the Renyi entropj23] 18].

It follows that(k"), exists if and only if the integrals
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D. The dependence on the average connectivity B =05 B =0.9

In this section, we consider the dependence of the connec R R I
tivity distribution (11) of a spatial network on the parameter ol P, o e Y
« that, as discussed in Sec. Il, is a measure of the averag ; *\x + N=1000 [ 4
connectivity. From Eq(11), one immediately obtains the fol- i ~= theoretical curve

3 L -
lowing equation governing the dependencePgk; «) on k: ‘;ﬁ“ 1 F ’ 50'01
A I

dP(kia) 1 _ _ 2o
— =~ [kP(ca)~ (k+ DP(k+ Lia)]. (19 =

10.001

Note that while all spatial networks obey this equation, the o.001;
converse is not true: One can easily construct connectivity ;
distributions P(k; @) satisfying Eq.(19), which cannot be
obtained from a spatial network. 1
Inspection of Eq(19) shows that the limiting casB(k)

«k~1 corresponds to a fixed point, where the connectivity . . .
distribution does not depend an This observation might be /G- 1. Monte Carlo simulation of the spatial networks con-

. . structed from the one-dimensional node distributi2@), compared
relevant in explaining the common appearance of scale-fre

. - % the N— oo limit Eqg. (24). The two figures refer, respectively, to
networks with connectivity exponent1 constructed as spa- 5=0.5 (0.9 with a=5, and show for each case the result for

| 40.0001

1 10 100 1000

tial networks from gene expression dai®—19. —1000 andN =20 000.
I1l. A SIMPLE EXAMPLE OF A SCALE-FREE SPATIAL 1
NETWORK 1 Fk+l-—,a(1-p8)
. . . . =—la(1-B)]" . (24
In this section, we discuss an explicit example of a one- aﬂ[a( Bl I'(k+1) (24)
dimensional distribution of nodes that generates a scale-free ) . )
network. We calculate exactly the connectivity distribution inWhereI'(x,a) is the incomplete Gamma function
the limit of infinite number of nodes, using EQ.1). We also .
address the issue of finite-size effects and we compare the F(x,a)=f dt - le t. (25)
exact result for infinite size to numerical simulation for finite a
networks. )
Since forz—o
A. Connectivity distribution for an infinite network I'(z,a)
We consider the space to be the open interval (0,1) and I'(z) e (26)
the node distribution to be
we have, fork—oo,
pO)=(1-B)xF, B<l. (20) )
. . o +1——
The information measure , is given by B(k: 1 1 Wr k1 ,8) )
(k; @) a,g[“( B)] T (kT 1) (27)
1
Ha=(1—ﬁ)a+1f dx x~A@r), (21 1
° ~—[a(1-B) "k VP, (28)
ap

and diverges for
g This result shows explicitly that scale-free networks with any

value of the connectivity exponent down to 1 can indeed be
a=-—1 (22)  obtained as a spatial network, as observed in gene expression
networks. Finally, we remark that the transition to a power-
law behavior of the connectivity distributiq27) depends on
Therefore, we expect a scale-free network wikfi) , diver-  « andg. Indeed, when the second argumet(t. — 3) of the

gent forv=(1/B)— 1. incomplete gamma function tends to zero, we have a power-
The connectivity distribution can be computed explicitly law behavior folP(k; @) even at smalk, as can be seen from
from Eg.(11), and is Fig. (1.

k

a 1 _ B. Finite-size effects: Numerical results
P(k:a)= k_l(l_B)kﬂjo dx x~Bk+1g—a(l-B)x B

Since real spatial networks contain a finite number of
(23 nodes and our analytical results were obtained in the limit of
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infinite networks, it is important to address the issue offixed point, a fact that might be related to the empirical ob-
finite-size effects. In this section, we approach the problenservation that several spatial networks constructed from gene
from a numerical point of view, by constructing finite spatial expression data show a scale-free connectivity distribution
networks by Monte Carlo methods and comparing their conwith exponent close to 1.
nectivity distribution with the theoretical predictions. Intuition suggests that spatial networks will leghly
Figure 1 shows the result of such comparison for the oneelusteredandhighly assortativeThe clustering coefficient of
dimensional spatial networks studied in the previous sectiorspatial networks was studied in RET] for a uniform node
at 3=0.5 andB=0.9, anda=5. For a finite networke is  distribution: However, since the clustering coefficient is a
naturally defined as 2R, whereN is the number of nodes local quantity and does not depend on the spatial density of
andR s the distance cutoff used to define links. In each parnodes, the results of Ref7] should hold unchanged for all
of the figure, the connectivity distributions fof=1000 and spatial networks, as long as the node distribution is isotropic
N=20000 points are superimposed to the theoretical distriin space. Moreover, spatial networks can be expected to dis-
bution given by Eq(24). We can conclude that for moder- play a high degree of assortativity, since high connectivity
ately sized networks, the connectivity distribution is alreadynodes are placed in high density regions and are therefore
very close to theN—oe behavior Eq.(24), thus indicating more likely to be connected to other high connectivity nodes.
that our results provide a good approximation to the connecindeed, empirical spatial networks constructed from gene ex-

tivity distribution of finite spatial networks. pression data show a high degree assortatj\ti#f}. A closely
related issue is the determination of the diameter of spatial
IV. DISCUSSION networks. Due to the embedding in a metric space, we expect

the diameter to grow as a power of the number of nodes, and

We have presented a systematic analysis of the connectiyherefore we do not expect spatial networks to belong to the
ity distribution of spatial networks constructed by joining small-world networks class.
nodes closer to each other than a cutoff distance, in the limit Perhaps the most interesting open problem is to clarify the
in which the number of nodes tends to infinity. The mainygle of the limit casé”(k) <k ™1, namely, to classify the node
results of our analysis can be summarized as follows. Firsigistributions that flow to this fixed point in some limit. An
the connectivity distribution can be expressed as a functionzgxampb is given by Eq24) in the B—1 limit. P(k)ock™*
of the spatial distribution of the nodes, E@1). The mo-  jmplies that the measure of informatibty, diverges for all,
ments of the connectivity distribution are related to a certaifyhich in turn implies that the node distribution must become
measure of informatiom'la of the node distribution through degeneratéthat iS, its support must shrink to zero mea$ure
Eq. (13). In particular, scale-free networks arise from this However, this is not a sufficient condition, since, for ex-
construction whenever the information meashrediverges  ample, a Gaussiap(x) in the limit of zero variance, while
for somea and we showed that scale-free networks with anypecoming degenerate, does not flowrtek) =k 2.
exponenty>1 can be constructed as spatial networks. Our
results were obtained in the limit of infinite numbksr of
nodes but numerical results suggest that they provide an ex- ACKNOWLEDGMENTS
cellent approximation of real, finite spatial networks already
for moderateN. Finally, the analysis of the dependence of the One of us(M.B.) thanks the department of physics-INFN
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