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Connectivity distribution of spatial networks
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We study spatial networks constructed by randomly placing nodes on a manifold and joining two nodes with
an edge whenever their distance is less than a certain cutoff. We derive the general expression for the connec-
tivity distribution of such networks as a functional of the distribution of the nodes. We show that for regular
spatial densities, the corresponding spatial network has a connectivity distribution decreasing faster than an
exponential. In contrast, we also show that scale-free networks with a power law decreasing connectivity
distribution are obtained when a certain information measure of the node distribution~integral of higher powers
of the distribution! diverges. We illustrate our results on a simple example for which we present simulation
results. Finally, we speculate on the role played by the limiting caseP(k)}k21 which appears empirically to
be relevant to spatial networks of biological origin such as the ones constructed from gene expression data.
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I. INTRODUCTION

In contrast to abstract graphs, many real networks
embedded in a metric space: The interactions between
nodes depend on their spatial distance and usually take p
between nearest neighbors. Examples of such networks
transportation and communication networks, friendship
contact networks@1,2#. An especially important example i
the Internet@3,4#, which is a set of routers linked by physic
cables with different lengths. Several recent studies have
vestigated networks whose nodes are embedded in a m
space, and where the probability of connecting two no
with an edge depends on their distance@1,2,4–10#.

On the other hand, the concept of scale-free network
emerged in the last few years as a powerful unifying pa
digm in the study of complex systems of natural, technolo
cal, and social origins~see Refs.@11,12#!. It is therefore natu-
ral to investigate the possibility of embedding scale-fr
networks in space. In particular, in Refs.@9,10#, the general
problem of embedding a scale-free network of given conn
tivity distribution in a Euclidean lattice was studied.

In this paper, we take a somewhat reversed point of vi
Our starting point is a spatial distribution of points on
continuous manifoldM. Such points are the nodes of a ne
work built by joining two nodes whenever their distance
less than a certain cutoff. In the following, we will call thos
networks obtained by this procedure ‘‘spatial networks.’’ W
study how the connectivity distribution depends on the d
tribution of the nodes onM. The fact that the nodes live in
continuous manifold rather than a lattice is important in g
erating scale-free networks, since the number of neighb
that a node can have within a certain distance is not lim
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a priori by the lattice structure.
Spatial networks originating from a uniform distributio

of the nodes were studied in Ref.@7#, where it was shown
that while the connectivity distribution takes the same Po
son form as in the Erdos-Renyi random networks~see, e.g.,
Ref. @13#!, other important features, most notably the clust
ing coefficient, are radically different from the Erdos-Ren
case. The formation of giant clusters in such networks w
studied in Refs.@2,7#.

Spatial networks occur naturally and are the object of
tive investigation in various areas: We will mention thr
particularly relevant ones. First, spatial networks of biolo
cal origin have recently been constructed from gene exp
sion data obtained from microarray experiments@15–19#.
These networks are constructed by computing the correla
coefficient between the expression profiles of all gene p
included in the microarray experiment, and joining tw
nodes~genes! with a link whenever their correlation coeffi
cient is higher than a certain cutoff. It is easy to show th
these are spatial networks according to our definition. T
connectivity distribution turns out to be a truncated pow
law with the exponent of the power-law decay often close
unity. Interestingly, networks constructed from gene expr
sion data by a different rule@20#, which does not satisfy ou
definition of a spatial network, also display a similar conne
tivity distribution.

A second appplication of spatial networks can be found
ad hoctelecommunication networks. In these, the nodes~say,
cellular phones! act as bridges for the propagation of info
mation through the network~see, e.g., Refs.@1,2,7,21#, the
last one providing links to extensive bibliographies!. The
nodes have typically a finite communication range, a
©2003 The American Physical Society28-1
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therefore these networks are spatial networks in the se
defined above.

Finally, a natural application of this class of networks
the study of epidemics propagation. While scale-free n
works in which the connectivity does not depend on a p
existing metric structure do not display an epidemic thre
old @14#, the situation changes when geographical closen
of two nodes influences their probability to be connected@9#.
In our networks, geographical closenesscompletely deter-
mineswhether two nodes will be connected, so that we
pect to find an epidemic threshold. Spatial networks app
to be a rather realistic model for epidemic propagation
animal or plant populations, where we do not expect a
individual to have an interaction range very different fro
the average~as is the case for highly mobile human popu
tions!, while we do expect the population density to be no
uniform.

All the information needed to construct a spatial netwo
is, in principle, contained in the distribution of the nodes
the manifoldM ~which can be an abstract space, like in t
gene networks described above, or real space, like forad hoc
networks and epidemics propagation!. Therefore, spatial net
works should be considered as a method to extracting a
tain class of information from the spatial distribution of th
nodes. However, in the cases we have mentioned, it is c
that the information encoded in the network is the most
evant one for the problem at hand. This is obvious forad hoc
networks and epidemics propagation; but also in the cas
gene co-expression networks, the information encoded in
network is biologically relevant. Among high connectivi
genes, lethal genes involved in basic cellular functions
consistently over-represented. Moreover, the connecti
distribution of these networks is an interesting universal f
ture of gene expression data, which the network construc
is able to reveal.

These facts motivated us to study how the connectiv
distribution of a spatial network depends on the distribut
of the nodes in space, under which conditions a scale-
network can be obtained, and finally, whether an expon
close to unity plays any special role in this context.

II. THE CONNECTIVITY DISTRIBUTION OF A SPATIAL
NETWORK

A. General Expression

The N nodes of the network are supposed to be in
D-dimensional space and we will assume that they are
tributed randomly in space, with densityp(x). Given a node
chosen at random, the probability that it is placed within
given domain of spacem is

E
m

dx p~x! ~1!

~we denote the integration measure bydx independent of the
dimensionD). Once the nodes are distributed in this spa
we have to construct the edges. We will use a simple cu
rule: Given two nodesi and j located atxi and xj , respec-
tively, an edge will join them if
02612
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d~xi ,xj !<R, ~2!

where d(x,y) is the distance betweenx and y. Therefore,
once the nodes have been distributed, the network is c
pletely determined by the choice of the cutoffR. This model
follows strictly the rule used to construct networks based
gene expression data in Refs.@16–18#, but more generally, it
can be used to model the case where the interaction h
typical scale given byR.

Denoting byBR(x) the ball of radiusR centered inx:

BR~x![$yPM :d~x,y!,R%, ~3!

the probability that a given node is placed withinBR(x) is

qR~x!5E
BR(x)

dx8p~x8!. ~4!

If we consider a node located atx, the probability that it
will have k neighbors is then just the probability thatk addi-
tional nodes are located in theBR(x). The connectivity dis-
tribution for a node placed inx is thus given by the binomia
distribution

P~k;x,R!5S N21
k DqR~x!k@12qR~x!#N212k. ~5!

In the following, we will be concerned with the limitN
→`: In order to obtain a well-defined connectivity distribu
tion in this limit, one has to take the limitR→0, so as to
ensure that the product

N V~R!, ~6!

whereV(R) is the volume of the ball,

V~R!5E
BR(x)

dx, ~7!

tends to a finite constanta. This means thatR must scale as
N2D as N→`, and implies that the expected number
nodes found within the ballBR(x) remains finite in this limit:

N qR~x!→a p~x!. ~8!

The constanta fixes the scale of the average connectiv
^k& of the network. Indeed, from Eq.~11! derived below, it is
easy to obtain the following relation betweena and ^k&:

^k&5aE dx p2~x!. ~9!

Let us note that although the connectivity distribution is w
defined for any valuea, it has been shown in the case of
uniform density@2,7# that the existence of a giant connect
component implies a minimum value ofa ~or equivalently,
^k&). We will not address this problem here but we can e
pect that for other densities, there will be some similar co
ditions ona for the existence of a giant component.

In the limit N→`, R→0, the connectivity distribution
for a node located atx is Poissonian, and Eq.~5! becomes
8-2
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P~k;x,a!5
1

k!
akpk~x!e2ap(x). ~10!

For the whole space, the connectivity distribution of the n
work is then obtained as the spatial average of the for
expression and is

P~k;a!5
ak

k! E dx pk11~x!e2ap(x). ~11!

This formula solves the general problem of determining
connectivity distribution of a spatial network from the spat
distribution of the nodes. For a uniform distributionp(x),
we recover a Poissonian connectivity distribution as in R
@7#. However, Eq.~11! shows that other connectivity distr
butions can be obtained. In the following section, we w
determine under which condition a spatial node distribut
generates a scale-free network instead.

B. Scale-free spatial networks

Equation~11! allows us to determine the condition th
must be satisfied by the node densityp(x) for the corre-
sponding network to be scale-free. A network is scale-fre
the momentŝkn& of its connectivity distribution diverge fo
n larger than a certainnmax. It is easy to compute the mo
ments of the connectivity distribution of a spatial netwo
from Eq. ~11!: For integern, we have

^kn&a5(
k

ak
kn

k! EM
dx pk11~x!e2ap(x)

5 (
m50

n

(
k>m

ak

k!
Sn

(m)~k!mE dx pk11~x!e2ap(x)

~12!

5 (
m50

n

Sn
(m)amE dx pm11~x!, ~13!

where (k)m5k(k21)•••(k2m11) and Sn
(m) are the

Stirling numbers of the second kind~see, e.g., Ref.@22#!,
defined by

xn5 (
m50

n

Sn
(m)x~x21!•••~x2m11!. ~14!

It follows that ^kn&a exists if and only if the integrals

Ha[E dx pa11~x! ~15!

exist for all a<n. Conversely, the network is scale-free
there exists anmax such thatHa diverges for alla>nmax.
The integral Eq.~15! is a measure of the information con
tained in the probability distributionp(x), and is simply re-
lated to the Renyi entropy@23#
02612
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Rq5
1

12q
logHq21 . ~16!

C. Classes of spatial networks

More generally, Eq.~11! allows us to determine the typ
of spatial network obtained for a given spatial node distrib
tion. The networks can essentially be distinguished by
decay of the connectivity distribution for large connectiviti
@26#. For spatial networks, large connectivities are obtain
in high density regions, namely, maxima ofp(x). For the
sake of simplicity, we will limit the discussion to the case
an isotropic distributionp(x)5p(r ), wherer is the modulus
of x. We will also suppose that we have one density ma
mum located atr 50. We will then distinguish the following
two cases.

~1! p(0)5p0 is finite and decays sufficiently rapidly s
that all the quantitiesHa are finite. This could be, for in-
stance, the case for population density which is decrea
exponentially from the city center@24,25#. In this case, an
asymptotic evaluation of the integral in Eq.~11! shows that
for largek, the connectivity distribution decays as

P~k;a!;
~ap0!k

k!kD
. ~17!

As expected, the low density fluctuations are reflected in
fast decay of the connectivity distribution and the cor
sponding spatial network will be of the ‘‘exponential’’ typ
@26# ~i.e., the connectivity distribution decreases at least
fast as an exponential!.

~2! p(r;0);r 2b with b,D @if b.D a cutoff is needed
to normalizep(r ) and we are in the first situation where th
maximum of p(r ) is finite#. In this case, the information
measureHa will diverge for a>(D/b)21 and the connec-
tivity distribution is a power law: Its large-k behavior is
given by ~see Sec. III!

P~k;a!;k2D/nb, ~18!

wheren is the order of the first nonvanishing derivative
p(r ) ~taken atr 50). The large density fluctuations allow
here for the existence of nodes with very large connectivi
and the corresponding network is scale-free.

Even if it might appear unlikely that spatial densities b
have pathologically around some points, this is actually
case in many instances where the nodes live in an abs
space, with a distance defined by correlations. Such
amples are obtained in the case of gene expression netw
@16–18,20# ~or the stock market@27#! for which the distance
is defined in terms of Pearson correlation coefficient betw
nodes. The spatial network has then a simple meaning:
nodes are connected if their correlation is high enough. It
been observed that in this example, the connectivity distri
tion is a truncated power law with exponent of order 1@16–
18#.
8-3
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D. The dependence on the average connectivity

In this section, we consider the dependence of the con
tivity distribution ~11! of a spatial network on the paramet
a that, as discussed in Sec. II, is a measure of the ave
connectivity. From Eq.~11!, one immediately obtains the fol
lowing equation governing the dependence ofP(k;a) on k:

dP~k;a!

da
5

1

a
@k P~k;a!2~k11!P~k11;a!#. ~19!

Note that while all spatial networks obey this equation,
converse is not true: One can easily construct connecti
distributions P(k;a) satisfying Eq.~19!, which cannot be
obtained from a spatial network.

Inspection of Eq.~19! shows that the limiting caseP(k)
}k21 corresponds to a fixed point, where the connectiv
distribution does not depend ona. This observation might be
relevant in explaining the common appearance of scale-
networks with connectivity exponent;1 constructed as spa
tial networks from gene expression data@16–18#.

III. A SIMPLE EXAMPLE OF A SCALE-FREE SPATIAL
NETWORK

In this section, we discuss an explicit example of a o
dimensional distribution of nodes that generates a scale-
network. We calculate exactly the connectivity distribution
the limit of infinite number of nodes, using Eq.~11!. We also
address the issue of finite-size effects and we compare
exact result for infinite size to numerical simulation for fini
networks.

A. Connectivity distribution for an infinite network

We consider the space to be the open interval (0,1)
the node distribution to be

p~x!5~12b!x2b, b,1. ~20!

The information measureHa is given by

Ha5~12b!a11E
0

1

dx x2b(a11), ~21!

and diverges for

a>
1

b
21. ~22!

Therefore, we expect a scale-free network with^kn&a diver-
gent forn>(1/b)21.

The connectivity distribution can be computed explici
from Eq. ~11!, and is

P~k;a!5
ak

k!
~12b!k11E

0

1

dx x2b(k11)e2a(12b)x2b

~23!
02612
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@a~12b!#1/b

GFk112
1

b
,a~12b!G

G~k11!
, ~24!

whereG(x,a) is the incomplete Gamma function

G~x,a!5E
a

`

dt tx21e2t. ~25!

Since forz→`

G~z,a!

G~z!
→1, ~26!

we have, fork→`,

P~k;a!;
1

ab
@a~12b!#1/b

GS k112
1

b D
G~k11!

~27!

;
1

ab
@a~12b!#1/bk21/b. ~28!

This result shows explicitly that scale-free networks with a
value of the connectivity exponent down to 1 can indeed
obtained as a spatial network, as observed in gene expres
networks. Finally, we remark that the transition to a pow
law behavior of the connectivity distribution~27! depends on
a andb. Indeed, when the second argumenta(12b) of the
incomplete gamma function tends to zero, we have a pow
law behavior forP(k;a) even at smallk, as can be seen from
Fig. ~1!.

B. Finite-size effects: Numerical results

Since real spatial networks contain a finite number
nodes and our analytical results were obtained in the limi

FIG. 1. Monte Carlo simulation of the spatial networks co
structed from the one-dimensional node distribution~20!, compared
to theN→` limit Eq. ~24!. The two figures refer, respectively, t
b50.5 ~0.9! with a55, and show for each case the result forN
51000 andN520 000.
8-4
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infinite networks, it is important to address the issue
finite-size effects. In this section, we approach the prob
from a numerical point of view, by constructing finite spat
networks by Monte Carlo methods and comparing their c
nectivity distribution with the theoretical predictions.

Figure 1 shows the result of such comparison for the o
dimensional spatial networks studied in the previous sect
at b50.5 andb50.9, anda55. For a finite network,a is
naturally defined as 2NR, whereN is the number of nodes
andR is the distance cutoff used to define links. In each p
of the figure, the connectivity distributions forN51000 and
N520 000 points are superimposed to the theoretical dis
bution given by Eq.~24!. We can conclude that for mode
ately sized networks, the connectivity distribution is alrea
very close to theN→` behavior Eq.~24!, thus indicating
that our results provide a good approximation to the conn
tivity distribution of finite spatial networks.

IV. DISCUSSION

We have presented a systematic analysis of the conne
ity distribution of spatial networks constructed by joinin
nodes closer to each other than a cutoff distance, in the l
in which the number of nodes tends to infinity. The ma
results of our analysis can be summarized as follows. F
the connectivity distribution can be expressed as a functio
of the spatial distribution of the nodes, Eq.~11!. The mo-
ments of the connectivity distribution are related to a cert
measure of informationHa of the node distribution through
Eq. ~13!. In particular, scale-free networks arise from th
construction whenever the information measureHa diverges
for somea and we showed that scale-free networks with a
exponentg.1 can be constructed as spatial networks. O
results were obtained in the limit of infinite numberN of
nodes but numerical results suggest that they provide an
cellent approximation of real, finite spatial networks alrea
for moderateN. Finally, the analysis of the dependence of t
connectivity distributionP(k;a) on the connectivity scalea
suggests that the limiting caseP(k)}k21 corresponds to a
p//
h

d

lin
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fixed point, a fact that might be related to the empirical o
servation that several spatial networks constructed from g
expression data show a scale-free connectivity distribu
with exponent close to 1.

Intuition suggests that spatial networks will behighly
clusteredandhighly assortative. The clustering coefficient of
spatial networks was studied in Ref.@7# for a uniform node
distribution: However, since the clustering coefficient is
local quantity and does not depend on the spatial densit
nodes, the results of Ref.@7# should hold unchanged for a
spatial networks, as long as the node distribution is isotro
in space. Moreover, spatial networks can be expected to
play a high degree of assortativity, since high connectiv
nodes are placed in high density regions and are there
more likely to be connected to other high connectivity nod
Indeed, empirical spatial networks constructed from gene
pression data show a high degree assortativity@17#. A closely
related issue is the determination of the diameter of spa
networks. Due to the embedding in a metric space, we ex
the diameter to grow as a power of the number of nodes,
therefore we do not expect spatial networks to belong to
small-world networks class.

Perhaps the most interesting open problem is to clarify
role of the limit caseP(k)}k21, namely, to classify the node
distributions that flow to this fixed point in some limit. A
example is given by Eq.~24! in the b→1 limit. P(k)}k21

implies that the measure of informationHa diverges for alla,
which in turn implies that the node distribution must becom
degenerate~that is, its support must shrink to zero measur!.
However, this is not a sufficient condition, since, for e
ample, a Gaussianp(x) in the limit of zero variance, while
becoming degenerate, does not flow toP(k)}k21.
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