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Understanding the subgraph distribution in random networks is important for modeling complex systems. In
classic Erds networks, which exhibit a Poissonian degree distribution, the number of appearances of a
subgraphG with n nodes andg edges scales with network size é8)~N""9. However, many natural
networks have a non-Poissonian degree distribution. Here we present approximate equations for the average
number of subgraphs in an ensemble of random sparse directed networks, characterized by an arbitrary degree
sequence. We find scaling rules for the commonly occurring case of directed scale-free networks, in which the
outgoing degree distribution scalesR&k) ~k™?. Considering the power exponent of the degree distribution,

v, as a control parameter, we show that random networks exhibit transitions between three regimes. In each
regime, the subgraph number of appearances follows a different scalingGaw,N* , wherea=n—g+s

—1 fory<2, a=n—g+s+1—yfor 2<y<y., anda=n—g for y> ., wheresis the maximal outdegree

in the subgraph, ang.=s+1. We find that certain subgraphs appear much more frequently than iis Erdo
networks. These results are in very good agreement with numerical simulations. This has implications for
detecting network motifs, subgraphs that occur in natural networks significantly more than in their randomized

counterparts.
DOI: 10.1103/PhysReVvE.68.026127 PACS nun)er89.75.Hc, 87.10te, 89.75.Fb
[. INTRODUCTION of hubs dramatically influences the properties of these net-

works. Some of the global properties of random networks

Many natural systems are described as networks of intewith arbitrary degree distribution, and specifically scale-free
acting componentsl—9]. Random networks have been stud- networks, have been calculated. These include sizes of con-
ied as models of these complgx systems. The classic modgkcted component$3,30,31, distances[32], percolation
for a random network is the Erdanodel[10-13, in which  thresholdd33-35, and clustering coefficien{86-38.
each of the possible edges in the network exists with prob- There is much current interest in the local structure of
ability p. There exists an analytical solution to many of the networks[5,7-9,36,39—46,53 Recently, subgraph structure
properties of Erds networks, such as the diameter, clusteryag analyzed in biological and technological netwdiks.

ing coefficient, component size distributions, and subgraply 45 found that these natural or designed networks contain
distributions[10-13. The average number of appearanGes network motifs, subgraphs that occur much more often than

of a subgraph witn nodes and edges in a directed network in an ensemble of randomized networks with the same de-

of N nodes is gree sequence. In biological networks, the network motifs
N (K)\9 were suggested to be elementary building blocks which carry
(G)zh( N ) p9(1— p)”(”1)9~)\N”(W> , out key information processing functiofig,g]. In these stud-

ies, random networks generation and the enumeration of
their subgraphs were performed numerically. To complement

this numerical work, it would be important to theoretically
characterize the subgraph distribution of random networks.
Here we present approximate formulas for the average num-
her of subgraphs in an ensemble of random networks with an

(G)~N""9, .

assuming a fixed mean connectiv{t¢)=pN. \ is a term of
order 1 which stems from the symmetry of each subgrap
Erdas networks have been extensively used as model
for analyzing real networks. An excellent example is the
work of Davis, Holland, and Leinhardt on subgraphs in so-
cial networks[14-17.

Erdcs networks exhibit a Poissonian degree distribution:
the distribution of the number of edges per nodePik) k
—(k)*e~(9/k!. Nodes with a number of edges much higher °
than the mean are exponentially rare. Many naturally occur-
ring networks, on the other hand, obey a long-tailed degree
sequence, often described as a power R(k)~k™?, with
vy often between 2 and BL8-29. These networks, termed FIG. 1. Example of(a) Erdds network and(b) scale-free net-
scale-free networks, are characterized by the existence @fork (y=2). Mean connectivity is 1.85 in both. Notice the hub in
nodes with high degree, termed hulpég. 1). The existence the scale-free network.
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Consider the example of Fig. 2. The probability of obtaining

n=4
g,=4 a directed edge from node 1 to node 2 is approximately
=1
node 1 ag’=2 K,R
k (=2.r,=0,m,=1 P(edge )= —2, 2
Ky RyM, PPN
KRy / N<K> o, (K1)Ry/N<K> assuming;R,<N(K) (see Appendix A The probability of
& 2 ‘%e obtaining a second edge from node 1 to node 3 is
node 2 ¥ node 3 (K,~1)R
k ,=1,r,=1,m,=0 Y k ,=11.=1,m=0 1~ 3
2K2,RzzM;n2 E‘. 3K3,€3,M3 3 P(edge Zedge ]) = W (3)
KRq IN<K> KolRy- TV Nk This reasoning applies to all the subgraph edges. The mean
node 4 number of appearances of a subgraph is found by taking the
k ,=0,r,=2,m,=1 average of the resulting expression, with respect to all
KyReM, choices ofn distinct nodeq o, - - - o}, and multiplying by

the number of possible choices oiodes out oiN:
FIG. 2. A subgraph with one mutual edge and four single edges.

The subgraph degree sequendds,r;,m;} and node degrees aN" " 9%a~9m < n Ko\ [Ry\ (M,

{K;,R;i ,M;} are displayed in bold. Edge probabilities are displayed (Gy=——— ( ! ( ! J) > , (4

in plain. Using Eq.(5), the mean subgraph number of appearances (K)%2(M)Im | j=1 Kj j m; {0}

in an ensemble of random networks(i6)=2(K(K—-1)M}R(R

—1)MYRKYZIN(K)HM). where(K) is the average outdegréequals the average in-

degreg/R)) and(M) is the average mutual edge degree. The
arbitrary degree sequence. In the random ensemble easimmetry factora is ay 'TI]_k;!r;!m;l, where a, is the
node has a specified indegree, outdegree, and mutual degreéeimber of different permutations of the nodes that give an
These formulas give a very good approximation for randonisomorphic subgraph.
networks which allow for multiple edges between nodes The averagé4) reduces to a product of moments of dif-
(more than one edge in a given directipas in the well- ferent orders of the indegree, outdegree, and mutual degree
studied configuration mod¢l3,31,32,47,4B We also show distributions:
that they provide a reasonable approximation for networks
where multiple edges are not allowed, which represent more aN"" 9% 9m K\ (R [ M;
realistically many naturally occurring networks. We apply <G>:W =1 <( K (rj) mj)><’ ®
these formulas to arrive at scaling laws for networks with a . '
scale-free degree distribution. We find that each subgraph hag,ere the fact that each node should participate in the sum-
its own scaling exponent, influenced by its topology. Consid+yation of only one ternpintroduces higher-order corrections
ering the power exponent of the degree distributipnas a  \hich we neglect. For example, subgraph idi02able I,
contrgl parameter, we show thgt the random net\(vorks exhibit o s h=3 nodes,g,=2 single edges, ang,=1 mutual
transitions between three regimes. In ea(_:h regime, Fhe S“%‘dge. The subgraph degree sequenceskard1,1,0}, T,
graph number of appearances follows a different scaling Iaw.:{0 1,1}, andm;={1,0,1}. Using Eq.(5), we find
We find that certain subgraphs appear much more frequently '’ ! B o
than in Erds networks. (KMYRM)(RK)
(G)=(id102) = 5 ) (6)
(K)yAM)
II. NUMBER OF SUBGRAPHS:
APPROXIMATE SOLUTION The approximatior{Eq. (5)] is exact in the case of Efrdo
The following approximation assumes sparse network networks. In Erde networks, both indegree and outdegree
A %re Poisson distributed and independent, andBqeduces
({(KY<N). The network degree sequence is given by the[0 Eq. (1).
outdeg_ree{Ki}i’\'zl (thNe number of edges outgoing from each £, 1y5nsparse networks, a more accurate approximation
node, indegree{R;}i_; (the number of incoming edges at (5yes into account the probabilities of a nonexistent edge
each nodg and mutual degn—:-{elVIi}i’\':1 (the number of mu-  petween two nodetsee Appendix B
tual edges at each nodéutual edges are cases where there e tested the equations on random networks taken with
is a pair of edges in both directions between two nodes. Thighe degree sequence of real-world networks—transcription
property has been studied in social netwdrké—17 and in  interactions in the yeas$. cerevisiad8], synaptic connec-
the world-wide wel{www) [39]. We begin by computing the  tions between neurons i8. elegang49], and world-wide-
probability of obtaining am-node subgraph witly, single  web hyperlinks between web pages in a single dorfia#i
edges, g, mutual edges, subgraph outdegree sequenc@/hen multiple edges in the same direction are allowed, as in
{kj}j-1, subgraph indegree sequereg}]_ ;, and subgraph the configuration model, E5) is within a few percent of
mutual degree sequem{mj};‘:1 in a given set of nodes. the numerical simulation result§fable ). We have also
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TABLE I. Mean numbers of the thirteen connected directed subgraphs in an ensemble of random networks with a given degree
distribution. The degree distributions are those of transcription in the Beastrevisiad 8], synaptic connections between neuronsCin
elegang19], and world-wide-web hyperlinks between web pages in a single dofh&jnShown are the theoretical valugsg. (5)]. The
values in parentheses are the percent deviations of the direct enumeration results—using the algorithms descrij&d, wlee¢ 1000
random networks with the same degree distributions as those of the real networks were generated and all subgraphs were counted. The left
value is the percent deviation in an ensemble which allows for multiple edges, and the right value shows the deviation for an ensemble which
does not allow multiple edges. Values below 0.5 were rounded to zero. In subgraphs marked with *, the theoretical values shown were
obtained using the correction of Appendix B to the table equations. Subgraph id is determined by concatenating the rows of the subgraph
adjacency matrix and representing the resulting vector as a binary number. The id is the minimal number obtained from all the isomorphic
versions of the subgraph.

subgraph  id equation transcription neurons www

6 * /\ N(K(K -1))/2 1.2x10%(—0.16%/— 0.02%) | 4.3x10%(+2%/ + 8%) | 4.7x107(40.06%/+ 0.5%)
12 * /\ N(KR) 3.6x10%(+0.16%/— 0.1%) | 8.7x10%(+2.7%/+ 3.0%) |  2.5x10%(+9%/+ 10%)
14 * »/\ N (KM) 1.9x10% (—0.06% /— 0.06%) {8.7x10' (—0.15%/+ 1.9%)| 3.8x10%(—0.2%/— 0.3%)
36 * \v/ N{(R(R-1))/2 9.6x10% (—2%/— 0.03%) | 6.0x10%(~0.4%/+ 0.7%) | 2.2x108(+0.01%/+ 0.1%)
38 & K(K-1)XRKYR(R - 1)){K)§ 1.3x10*(+1.6%/+ 2.1%) | 1.2x10%(4+0.6%/— 28%) | 3.4x10°(+0.7%/— 74%)
46 \/ (KM)Y? (R(R-1)) /2 (K)? (M) 0(0%/0%) 9.3 (—10%/—57%) | 8.5x10%(—0.02%/+ 8.8%)
74 * /\ N (RM) 2.9(~1.2%/ — 1.8%) 1.3x10%(+1.1%/+ 1.2%) |4.8x10°(—0.01%/ — 0.01%)
78 * /\ N (M(M - 1)) /2 0(0%/0%) 6.6 (—0.2%/—0.5%) | 2.5x107(—0.4%/— 0.4%)
98 A (KR)® /3(K)* 0(0%/0%) 45 (—40%/— 39%) 3.3x10" (—31%/— 26%)
102 & (KM) (RM) (RK) [ (K)* (M) 0(0% /0%) 2 (—22%/— 15%) 1.4x10%(—11%/— 4%)
108 a (RM)? (K(K — 1)) /2(K)* (M) 0(0%/0%) 1.4 (—18%/— 6%) 2.9x10%(—11%/— 44%)
110 & (K MYRMYMM-1)){KXM)* 0(0%/0%) 0(0%/0%) 2.3x10%(~1.8%/— 4%)
238 & (M(M —1))® /6 (M)? 0(0%/0%) 0(0%/0%) 5x10%(—0.04% /- 3.6%)

simulated random networks in which only one edge was aldistribution for a network withN nodes(this function was
lowed in each direction between any two nodes. As can besed in Ref[3] to fit world-wide-web data

seen in Table I, Eq(5) is still within a few percent of the

numerical simulation results for most subgraphs. There are

some discrepancieSnost notably a factor of almost 4 for P(k)=
subgraph id38 in the randomized world wide-web network ktl)’
In addition, we find good agreement between our approxima-

tion and numerical enumeration of subgraphs in simulateéne mean connectivityK) is determined by.

random networks with scale-free outdegteg. 3. The hub is the node with the maximal number of outgoing
edges,T. The hub size distributiofFig. 4) is

y—1 _
~(k+ko) 77, k<N. (7)

Ill. SCALE-FREE NETWORKS

Scale-free networks have degree distributions that follow P(T)=NP(k=T)[P(ksT)]""*
P(k)~k™7 at largek [18—29. We consider directed net- N(y—1)
works in which the outgoing edge degree is scale free, while = -
the incoming edge degree distribution is Poissonian. Our re- Ko
sults can be easily extended to scale-free indegree. For sim-
plicity, we choose the following form for the outgoing degree assumingl>k,. For 2<y<3, the mean hub scales as

(Tlko) ™ML= (Tlko) 7 11N74, (8
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10* 10*
> -
(@) (o]
2 2 3 FIG. 3. Subgraph numbers in 1000 random
710 10 networks with N=2000 nodes, with scale-free
& g outdegree and compact indegree. The outdegree
3 R o of each nodeK;, was picked from the distribu-
§‘° %10 tion (7), with y=2. The networks were con-
_g A _g /\ structed using the algorithm of Newman, Stro-
g g gatz, and Watt§3] modified so that only a single
510 510 edge in a given direction is allowed between any
S % two nodes. Theoretical number of appearances
@ . . K were computed using the degree sequences of
10100 e T 101 o0 e o each networkequations in Table)!
subgraph numbers subgraph numbers
direct enumeration direct enumeration
N-1 IV. TRANSITIONS AT DIFFERENT vy
<T>=f TP(T)dT~NY0~1), (9)
1 The subgraph numbers scale as
where the mean is over an ensemble of random networks (G)~N*. (13)

with the samey and mean connectivitfsee also Refs. ] ) ] ) ) )
[28,34 for an alternative method of deriving this regult We find three different regimes, in each of which the scaling

y<2, there is a condensation eff¢60], where a finite frac- exp_onenta_behaves differently. _Taking an ensemble average
tion of the nodes have outdegreel and the mean hub size PY integrating the largest term in E(LO) over the hub dis-
becomes proportional tdl. Using Eq.(5), and assuming a tribution (8), we get

compact distribution for the number of mutual edges, we find N-1

that the subgraph distribution is dominated by the hubs, and <G>~angflf TSP(T)dT. (12)
that the dominant term is that of the subgraph node with 1

maximal outdegree. The number of appearances of each

subgraph can be shown to scale as For y=<2, the network is in a condensed regime, where the

hub T=0O(N). In this regime

~Ne, (10) (Gy~Nn-9rs L, (13)

N K.
(@)~aN9 K3, [
i=1
For 2<y<,, substituting Eq(8) in Eq. (12) yields
whereg=g,+ 29,, is the total number of edges in the sub-

graph[51]. We derive the scaling exponeatin the follow- (G)~N"-grsTyHd, (14
ing section. ) ) ) ) ) o
In this regime, the tail oP(T) is the dominant contribution
003 ; ‘ . ‘ ; to the integral. Finally, at values above a critigal another
o transition occurs, wherex equals the scaling exponent in

ol L,C“ Erdcs networks,a=n—g=ag,qos. The criticaly is y,:

| B
= L Ye=s+1. (19
g 0.02 1 ql —
g ' ‘?;n In this regime, the hubs no longer contribute significantly to
2 h & the subgraph distribution. In summa¢%)~N®, wherea is
= 0.015
g | F
s : il n—g+s—1, y=<2

o]
Q 4ol I| of 1 a= n—g+S— ’y+1, 2<’)/<S+1 (16)
.L n—g, y=s+1.
0.005 ;:I
Table 1l shows the expected scaling exponent for the 13 con-
nected directed 3-node subgraphs, as well as for several

° * 1 1 s g node subgraphs. The scaling laws agree very well with the
hub size . . . .
numerical resultgFig. 5. The three regimes of scaling are
FIG. 4. Simulated and theoretical hub distribution for networksclearly seen. Note that the topology of each subgraph affects
with N=3000 nodesy= 2.2 (O) or y=2.8 (O), and mean connec- its scaling through the subgraph maximal outdegrekhese
tivity (K)=1.2. Lines represent theoretical calculati¢8s results can be easily extended to the case of scale-free inde-
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TABLE Il. The scaling exponentr of subgraph numbers for V. DISCUSSION

random scale-free networks with outgoing degree expomeiithe . .
subgraph numbers scale @)~ N Shown are all thirteen 3-node 10 Summarize, we have presented an approximate solu-

connected directed subgraphs and four examples of 4-node sufon for the average number of directed connected subgraphs
graphsn is the number of nodes in the subgraghis the number 1N an ensemble of random networks with arbitrary degree
of edges, ands is the maximal degree within the subgraph. The S€quence. We have presented scaling formulas for the num-
exponentx has three regimesag, 4< in the “Erdds regime,” when  ber of subgraphs in scale-free random networks, and showed
Y> 7. ag in the “scale-free regime,” when2 y<y.; anda.o,q  that the subgraph numbers can be very different from those
in the “condensed regime,” whey<2. in Erdés random networks. In Efdorandom networks, the
scaling exponent is strictly determined by the number of

subgraph  id n | g |S|crdos| sy |Gcond|7e nodes and edges of the subgraph, whereas in scale-free ran-
dom networks the exact topology of the subgraph determines
nodesledges| |7> Y |2 <y <7[v<2 the scaling exponent. We showed that the scaling expanent
/\ exhibits three different scaling laws in three regimes, de-
6 3 2 J2[ 1 4—v 2 13 pending on the control parametgr(the power of the degree
/4\ distribution. In the common case of scale-free networks
12 3 2 1] 1 1 1 |2 with y between 2 and 3, there are many more subgraphs
which contain a node connected to more than one other node
14 /\ 3 13 [2] o 3y 1 1|3 than in the corresponding Erslanetworks with the same
mean connectivity. For example, the feed-forward 16038
36 \/ 3 2 1| 1 1 1 |2 in Table ) is much more common fop<3. At y=2.5, the
number of feed-forward loops scales I4%°, as opposed to
38 A 3 3 la|l o 3 1|3 N° in Erds networks. On the other hand, subgraphs such as
V the 3—no§e cycl¢id98 in Table ) have the same scaliny’,
as in Erde networks.
46 S L 2-7 S This study adds to our understanding of the random net-
- / ( 3 3 1l o 0 o lo vv_ork_models to which real-wor_ld networks are compared. It
highlights the importance of using random networks that pre-
/\ serve the single and mutual degree sequence of the real net-
8 3 14211 2-9 | 0 |3 work. Our approach may be readily extended to networks
& with multiple colors of edges. The present results may be
98 3 311 0 0 0 (2 useful for enumerating subgraphs in very large random net-
& works, which are beyond the reach of current numerical al-
102 3 4 |21 -1 2—~ 0 |3 gorithms.
108 & S P4 t] 2oy |08 ACKNOWLEDGMENTS
110 & 3 5 (2| -2 1—v 4113 We thank S. Maslov, R. Cohen, A. Mayo, A. Natan, M.
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9238 & 3 6 l2| =3 — 2 13 discussions. We acknowledge support from the Israel Sci-
ence Foundation, the Human Frontier Science Program, and
subgraph  id n g |s|aerdos a5 Ceond |Ye the Minerva Foundation.
nodesfedges| [v> 7 [2<y <]y <2
/I\‘ APPENDIX A: EDGE PROBABILITIES
14 4 13 3] 1 5-7 3 14 Here we give a more detailed derivation for the edge
N probabilities used in Eqg2) and(3). Without loss of gener-
204 4 4 421 0 3—v 1|3 ality, we treat a network with no mutual edges. We denote by
i]: E=N(K) the total number of edges. We begin by calculating
206 4 5 3] -1 3—v 1 |4 the probability that no edge connects a source node With
ﬁ outgoing edges and a target node wRhincoming edges.
2190 4 5 |31 -1 3—v 1 |4 This happens when aK edges connect to a set of nodes
{o}_, which does not contain the target node:
gree and nondirected networks. For loops of any size in non- K-1 R
directed networks, the criticaj is y,=3. At y>3, loop p(noedgg{o)=1[] [ 1-————|,
numbers scale a$°. This is consistent with Ref45], which k=0 E-R -3 R
o . . o
shows logarithmic corrections for the number of loops in i=1
Barabasi-Albert scale-free networks which hayve 3. (A1)
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o sf erdos o ! (o™

cond

| N
2% | | N s
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—O
—dq

3.5 4 4.5 1

v

FIG. 5. Scaling exponent of 3-node subgragiysand 4-node subgraplib) as a function ofy. The exponentr was obtained from the
slope of a log-log fit of the number of subgraphs vs network size, for nine different network(3&e$00, 300, 500, 1000, 1500, 2000,
2500, 3000 averaged over 5000 randomized networks for each size and outdegree powerAdivthe networks had mean connectivity
(K)=1.2. The exponent displays three regimes;<2 (the condensed regime2< y< vy, (the scale-free regimey>y. (Erdcs regime.

whereR’ is the indegree of the source nogee do not allow
self-edgel The probability of having no edge is obtained by
summing over all possible sefs}*_ :

K-1 R

p(noedge:%EH 1——
<]

K
{o} k=0
K E-R’ —2 R, TABLE IlI. Matrix formulas for the numbers of all 3-node con-
=1 nected directed subgraphd.is the adjacency matrix§is its sym-
(A2) metric component, and\ its asymmetric componenfd’ is the

Assuming mai!‘:lRai<E, and taking the complement as the :;iirtlﬁ)p()otf:gematrixé\ is the logical inverse of matri¥, trA is the
probability of an edge existing, we obtain i

R \K KRINK) KR subgraph id formula
p(edge)—l—(l—) =l-e ~ -
N(K) N<K>(A3) VAN (CAA-M- M —trA'A)/2
12 /\ .MM
where our last approximation assumEfR<<N(K). Intu- rA-M-M
itively, this result can be understood Ksattempts for the 14 f\ S SA-M-M
source node to connect to the target node with a probability ——
of R/N(K) at each attempR/N(K) is the probability of an 36 \/ (NAA'-M-M' —trAA")/2
arbitrary edge connecting into the target node. Pairs of nodes A )
in which KR is of the order oN(K) will contribute multiple 38 YA-A
edges in the same direction in the approximation, leading to ,
overestimation of subgraph numbers in the simulated net- 46 v (A4 5)/2
works where multiple edges are not allow@able ). 74 /\ S SA N - M
APPENDIX B: NONSPARSE NETWORKS VAN (8% M-M —tr5%)/2
In calculating the number of appearances of subgraphs in 98 & (A A)/3
nonsparse networks, a more accurate approximation takes
into account the probabilities of a nonexistent edge between 102 & Y A%-S
two nodes. For such subgraphs, in addition to the specified & ,
subgraph, Eq(5) counts a set of subgraphs, with the null 108 (X A'A-5)/2
edges replaced by single or mutual edges. The corrections for 110 & S5 4
the 3-node subgraphs are &
2 .
(id6*) = (id6) — (id38) — (id108), 238 (5 -5)/6
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(id12*)=(id12)—(id38) — (id102), The network adjacency matrix is denoted ldy whereMj;
=1 if a directed edge exists from nodé& nodej. We begin
(id14*) = (id14) — (id46) — (id102) —(id110), by dividing the network into a network containing only an-
tisymmetric arrows, whose adjacency matrix will be denoted
(id36*) = (id36) —(id38) — (id46), by A, and a network containing only mutual arrows, whose

symmetric adjacency matrix will be denoted &s
(id74*)y=(id74) —(id102) —(id108) — (id110),
M=A+S. (C1)
(id78*)=(id78) — (id110) — (id239), (B1)
h G h | btained f q We denote byAB the matrix multiplication of matrice8 and
where(G) represents the values obtained from E8.and g poa B the dot multiplication is the logical inverse

(G*) is the corrected value. Generally, for larger subgraphs ) ~
f matrix A, where the 0 elements & are the 1 ofA and

the corrections made will be of an inclusion-exclusion type.C! v . !
vice versa.A’ is the transpose matrix oA. A summation

denotes summation of all the matrix indices. The matrix for-
mulas for the 13 directed connected 3-node subgraphs are
In numerically enumerating the subgraphs, we combine given in Table Ill. For example, id38 has two nodes which

dynamic programming methdd], which is applied gener- are connected by a path of two edges and a path of one edge.
ally for n-node subgraphs with=4, and a more rapid cal- Azij is the number of length 2 paths between nodad node
culation, based on adjacency matrix operations, used far Dot multiplication with matrixA and summation of the
3-node subgraphs. The method generalizes the results of Réérms of the resultant matrix gives the correct count. In some
[52]. Here we give formulas for the thirteen 3-node con-of the subgraphs a correction is made for the terms on the
nected directed subgraphs based on the adjacency matridiagonal(id6, id36, id78.
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