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Subgraphs in random networks

S. Itzkovitz,1,2 R. Milo,1,2 N. Kashtan,2,3 G. Ziv,1 and U. Alon1,2

1Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
2Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel

3Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel
~Received 18 February 2003; published 25 August 2003!

Understanding the subgraph distribution in random networks is important for modeling complex systems. In
classic Erdo˝s networks, which exhibit a Poissonian degree distribution, the number of appearances of a
subgraphG with n nodes andg edges scales with network size as^G&;Nn2g. However, many natural
networks have a non-Poissonian degree distribution. Here we present approximate equations for the average
number of subgraphs in an ensemble of random sparse directed networks, characterized by an arbitrary degree
sequence. We find scaling rules for the commonly occurring case of directed scale-free networks, in which the
outgoing degree distribution scales asP(k);k2g. Considering the power exponent of the degree distribution,
g, as a control parameter, we show that random networks exhibit transitions between three regimes. In each
regime, the subgraph number of appearances follows a different scaling law,^G&;Na , wherea5n2g1s
21 for g,2, a5n2g1s112g for 2,g,gc , anda5n2g for g.gc , wheres is the maximal outdegree
in the subgraph, andgc5s11. We find that certain subgraphs appear much more frequently than in Erdo˝s
networks. These results are in very good agreement with numerical simulations. This has implications for
detecting network motifs, subgraphs that occur in natural networks significantly more than in their randomized
counterparts.
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I. INTRODUCTION

Many natural systems are described as networks of in
acting components@1–9#. Random networks have been stu
ied as models of these complex systems. The classic m
for a random network is the Erdo˝s model@10–13#, in which
each of the possible edges in the network exists with pr
ability p. There exists an analytical solution to many of t
properties of Erdo˝s networks, such as the diameter, clust
ing coefficient, component size distributions, and subgr
distributions@10–13#. The average number of appearancesG
of a subgraph withn nodes andg edges in a directed networ
of N nodes is

^G&5lS N
n D pg~12p!n(n21)2g;lNnS ^K&

N D g

,

^G&;Nn2g, ~1!

assuming a fixed mean connectivity^K&5pN. l is a term of
order 1 which stems from the symmetry of each subgra
Erdős networks have been extensively used as mo
for analyzing real networks. An excellent example is t
work of Davis, Holland, and Leinhardt on subgraphs in s
cial networks@14–17#.

Erdős networks exhibit a Poissonian degree distributi
the distribution of the number of edges per node isP(k)
5^k&ke2^k&/k!. Nodes with a number of edges much high
than the mean are exponentially rare. Many naturally occ
ring networks, on the other hand, obey a long-tailed deg
sequence, often described as a power law,P(k);k2g, with
g often between 2 and 3@18–29#. These networks, terme
scale-free networks, are characterized by the existenc
nodes with high degree, termed hubs~Fig. 1!. The existence
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of hubs dramatically influences the properties of these n
works. Some of the global properties of random netwo
with arbitrary degree distribution, and specifically scale-fr
networks, have been calculated. These include sizes of
nected components@3,30,31#, distances@32#, percolation
thresholds@33–35#, and clustering coefficients@36–38#.

There is much current interest in the local structure
networks@5,7–9,36,39–46,53#. Recently, subgraph structur
was analyzed in biological and technological networks@7,8#.
It was found that these natural or designed networks con
network motifs, subgraphs that occur much more often th
in an ensemble of randomized networks with the same
gree sequence. In biological networks, the network mo
were suggested to be elementary building blocks which ca
out key information processing functions@7,8#. In these stud-
ies, random networks generation and the enumeration
their subgraphs were performed numerically. To complem
this numerical work, it would be important to theoretical
characterize the subgraph distribution of random netwo
Here we present approximate formulas for the average n
ber of subgraphs in an ensemble of random networks with

FIG. 1. Example of~a! Erdős network and~b! scale-free net-
work (g52). Mean connectivity is 1.85 in both. Notice the hub
the scale-free network.
©2003 The American Physical Society27-1
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arbitrary degree sequence. In the random ensemble
node has a specified indegree, outdegree, and mutual de
These formulas give a very good approximation for rand
networks which allow for multiple edges between nod
~more than one edge in a given direction!, as in the well-
studied configuration model@13,31,32,47,48#. We also show
that they provide a reasonable approximation for netwo
where multiple edges are not allowed, which represent m
realistically many naturally occurring networks. We app
these formulas to arrive at scaling laws for networks with
scale-free degree distribution. We find that each subgraph
its own scaling exponent, influenced by its topology. Cons
ering the power exponent of the degree distribution,g, as a
control parameter, we show that the random networks exh
transitions between three regimes. In each regime, the
graph number of appearances follows a different scaling
We find that certain subgraphs appear much more freque
than in Erdo˝s networks.

II. NUMBER OF SUBGRAPHS:
APPROXIMATE SOLUTION

The following approximation assumes sparse netwo
(^K&!N). The network degree sequence is given by
outdegree$Ki% i 51

N ~the number of edges outgoing from ea
node!, indegree$Ri% i 51

N ~the number of incoming edges a
each node!, and mutual degree$Mi% i 51

N ~the number of mu-
tual edges at each node!. Mutual edges are cases where the
is a pair of edges in both directions between two nodes. T
property has been studied in social networks@14–17# and in
the world-wide web~www! @39#. We begin by computing the
probability of obtaining ann-node subgraph withga single
edges, gm mutual edges, subgraph outdegree seque
$kj% j 51

n , subgraph indegree sequence$r j% j 51
n , and subgraph

mutual degree sequence$mj% j 51
n in a given set of nodes

FIG. 2. A subgraph with one mutual edge and four single edg
The subgraph degree sequences$ki ,r i ,mi% and node degree
$Ki ,Ri ,Mi% are displayed in bold. Edge probabilities are display
in plain. Using Eq.~5!, the mean subgraph number of appearan
in an ensemble of random networks is^G&52^K(K21)M &^R(R
21)M &^RK&2/N^K&4^M &.
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Consider the example of Fig. 2. The probability of obtaini
a directed edge from node 1 to node 2 is approximately

P~edge 1!5
K1R2

N^K&
, ~2!

assumingK1R2!N^K& ~see Appendix A!. The probability of
obtaining a second edge from node 1 to node 3 is

P~edge 2uedge 1!5
~K121!R3

N^K&
. ~3!

This reasoning applies to all the subgraph edges. The m
number of appearances of a subgraph is found by taking
average of the resulting expression, with respect to
choices ofn distinct nodes$s1•••sn%, and multiplying by
the number of possible choices ofn nodes out ofN:

^G&5
aNn2ga2gm

^K&ga^M &gm
K )

j 51

n S Ks j

kj
D S Rs j

r j
D S Ms j

mj
D L

$s%

, ~4!

where^K& is the average outdegree~equals the average in
degreê R&) and^M & is the average mutual edge degree. T
symmetry factora is a0

21) j 51
n kj ! r j !mj !, where a0 is the

number of different permutations of the nodes that give
isomorphic subgraph.

The average~4! reduces to a product of moments of di
ferent orders of the indegree, outdegree, and mutual de
distributions:

^G&5
aNn2ga2gm

^K&ga^M &gm
)
j 51

n K S Ki

kj
D S Ri

r j
D S Mi

mj
D L

i

, ~5!

where the fact that each node should participate in the s
mation of only one termj introduces higher-order correction
which we neglect. For example, subgraph id102~Table I!,
has n53 nodes,ga52 single edges, andgm51 mutual
edge. The subgraph degree sequences arekj5$1,1,0%, r j
5$0,1,1%, andmj5$1,0,1%. Using Eq.~5!, we find

^G&5^ id102&5
^KM &^RM&^RK&

^K&2^M &
. ~6!

The approximation@Eq. ~5!# is exact in the case of Erdo˝s
networks. In Erdo˝s networks, both indegree and outdegr
are Poisson distributed and independent, and Eq.~5! reduces
to Eq. ~1!.

For nonsparse networks, a more accurate approxima
takes into account the probabilities of a nonexistent e
between two nodes~see Appendix B!.

We tested the equations on random networks taken w
the degree sequence of real-world networks—transcrip
interactions in the yeastS. cerevisiae@8#, synaptic connec-
tions between neurons inC. elegans@49#, and world-wide-
web hyperlinks between web pages in a single domain@18#.
When multiple edges in the same direction are allowed, a
the configuration model, Eq.~5! is within a few percent of
the numerical simulation results~Table I!. We have also

s.

s

7-2



degree

ed. The left
ble which
wn were
subgraph

omorphic

SUBGRAPHS IN RANDOM NETWORKS PHYSICAL REVIEW E68, 026127 ~2003!
TABLE I. Mean numbers of the thirteen connected directed subgraphs in an ensemble of random networks with a given
distribution. The degree distributions are those of transcription in the yeastS. cerevisiae@8#, synaptic connections between neurons inC.
elegans@19#, and world-wide-web hyperlinks between web pages in a single domain@18#. Shown are the theoretical values@Eq. ~5!#. The
values in parentheses are the percent deviations of the direct enumeration results—using the algorithms described in Ref.@8#, where 1000
random networks with the same degree distributions as those of the real networks were generated and all subgraphs were count
value is the percent deviation in an ensemble which allows for multiple edges, and the right value shows the deviation for an ensem
does not allow multiple edges. Values below 0.5 were rounded to zero. In subgraphs marked with *, the theoretical values sho
obtained using the correction of Appendix B to the table equations. Subgraph id is determined by concatenating the rows of the
adjacency matrix and representing the resulting vector as a binary number. The id is the minimal number obtained from all the is
versions of the subgraph.
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simulated random networks in which only one edge was
lowed in each direction between any two nodes. As can
seen in Table I, Eq.~5! is still within a few percent of the
numerical simulation results for most subgraphs. There
some discrepancies~most notably a factor of almost 4 fo
subgraph id38 in the randomized world wide-web networ!.
In addition, we find good agreement between our approxim
tion and numerical enumeration of subgraphs in simula
random networks with scale-free outdegree~Fig. 3!.

III. SCALE-FREE NETWORKS

Scale-free networks have degree distributions that fol
P(k);k2g at large k @18–29#. We consider directed net
works in which the outgoing edge degree is scale free, w
the incoming edge degree distribution is Poissonian. Our
sults can be easily extended to scale-free indegree. For
plicity, we choose the following form for the outgoing degr
02612
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distribution for a network withN nodes~this function was
used in Ref.@3# to fit world-wide-web data!:

P~k!5
g21

k0
12g

~k1k0!2g, k,N. ~7!

The mean connectivitŷK& is determined byk0.
The hub is the node with the maximal number of outgoi

edges,T. The hub size distribution~Fig. 4! is

P~T!5NP~k5T!@P~k<T!#N21

5
N~g21!

k0
~T/k0!2g@12~T/k0!2g11#N21, ~8!

assumingT@k0. For 2,g,3, the mean hub scales as
7-3
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FIG. 3. Subgraph numbers in 1000 rando
networks with N52000 nodes, with scale-free
outdegree and compact indegree. The outdeg
of each node,Ki , was picked from the distribu-
tion ~7!, with g52. The networks were con
structed using the algorithm of Newman, Str
gatz, and Watts@3# modified so that only a single
edge in a given direction is allowed between a
two nodes. Theoretical number of appearanc
were computed using the degree sequences
each network~equations in Table I!.
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^T&5E
1

N21

TP~T!dT;N1/(g21), ~9!

where the mean is over an ensemble of random netw
with the sameg and mean connectivity~see also Refs
@28,34# for an alternative method of deriving this result!. At
g<2, there is a condensation effect@50#, where a finite frac-
tion of the nodes have outdegree<1 and the mean hub siz
becomes proportional toN. Using Eq.~5!, and assuming a
compact distribution for the number of mutual edges, we fi
that the subgraph distribution is dominated by the hubs,
that the dominant term is that of the subgraph node w
maximal outdegrees. The number of appearances of ea
subgraph can be shown to scale as

^G&;aNn2g21^K&g2s(
i 51

N S Ki

s D;Na, ~10!

whereg5ga12gm is the total number of edges in the su
graph@51#. We derive the scaling exponenta in the follow-
ing section.

FIG. 4. Simulated and theoretical hub distribution for netwo
with N53000 nodes,g52.2 ~s! or g52.8 (h), and mean connec
tivity ^K&51.2. Lines represent theoretical calculations~8!.
02612
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IV. TRANSITIONS AT DIFFERENT g

The subgraph numbers scale as

^G&;Na. ~11!

We find three different regimes, in each of which the scal
exponenta behaves differently. Taking an ensemble avera
by integrating the largest term in Eq.~10! over the hub dis-
tribution ~8!, we get

^G&;Nn2g21E
1

N21

TsP~T!dT. ~12!

For g<2, the network is in a condensed regime, where
hub T5O(N). In this regime

^G&;Nn2g1s21. ~13!

For 2,g,gc , substituting Eq.~8! in Eq. ~12! yields

^G&;Nn2g1s2g11. ~14!

In this regime, the tail ofP(T) is the dominant contribution
to the integral. Finally, at values above a criticalg, another
transition occurs, wherea equals the scaling exponent i
Erdős networks,a5n2g5aErdos. The criticalg is gc :

gc5s11. ~15!

In this regime, the hubs no longer contribute significantly
the subgraph distribution. In summary,^G&;Na, wherea is

a5H n2g1s21, g<2

n2g1s2g11, 2,g,s11

n2g, g>s11.

~16!

Table II shows the expected scaling exponent for the 13 c
nected directed 3-node subgraphs, as well as for sev
4-node subgraphs. The scaling laws agree very well with
numerical results~Fig. 5!. The three regimes of scaling ar
clearly seen. Note that the topology of each subgraph aff
its scaling through the subgraph maximal outdegrees. These
results can be easily extended to the case of scale-free i
7-4
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SUBGRAPHS IN RANDOM NETWORKS PHYSICAL REVIEW E68, 026127 ~2003!
gree and nondirected networks. For loops of any size in n
directed networks, the criticalg is gc53. At g.3, loop
numbers scale asN0. This is consistent with Ref.@45#, which
shows logarithmic corrections for the number of loops
Barabasi-Albert scale-free networks which haveg53.

TABLE II. The scaling exponenta of subgraph numbers fo
random scale-free networks with outgoing degree exponentg. The
subgraph numbers scale as^G&;Na. Shown are all thirteen 3-nod
connected directed subgraphs and four examples of 4-node
graphs.n is the number of nodes in the subgraph,g, is the number
of edges, ands is the maximal degree within the subgraph. T
exponenta has three regimes :aErdos in the ‘‘Erdős regime,’’ when
g.gc ; as f in the ‘‘scale-free regime,’’ when 2,g,gc ; andacond

in the ‘‘condensed regime,’’ wheng<2.
02612
n-

V. DISCUSSION

To summarize, we have presented an approximate s
tion for the average number of directed connected subgra
in an ensemble of random networks with arbitrary deg
sequence. We have presented scaling formulas for the n
ber of subgraphs in scale-free random networks, and sho
that the subgraph numbers can be very different from th
in Erdős random networks. In Erdo˝s random networks, the
scaling exponent is strictly determined by the number
nodes and edges of the subgraph, whereas in scale-free
dom networks the exact topology of the subgraph determ
the scaling exponent. We showed that the scaling exponea
exhibits three different scaling laws in three regimes, d
pending on the control parameterg ~the power of the degree
distribution!. In the common case of scale-free networ
with g between 2 and 3, there are many more subgra
which contain a node connected to more than one other n
than in the corresponding Erdo˝s networks with the same
mean connectivity. For example, the feed-forward loop~id38
in Table I! is much more common forg,3. At g52.5, the
number of feed-forward loops scales asN0.5, as opposed to
N0 in Erdős networks. On the other hand, subgraphs such
the 3-node cycle~id98 in Table I! have the same scaling,N0,
as in Erdo˝s networks.

This study adds to our understanding of the random n
work models to which real-world networks are compared
highlights the importance of using random networks that p
serve the single and mutual degree sequence of the real
work. Our approach may be readily extended to netwo
with multiple colors of edges. The present results may
useful for enumerating subgraphs in very large random n
works, which are beyond the reach of current numerical
gorithms.
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APPENDIX A: EDGE PROBABILITIES

Here we give a more detailed derivation for the ed
probabilities used in Eqs.~2! and~3!. Without loss of gener-
ality, we treat a network with no mutual edges. We denote
E5N^K& the total number of edges. We begin by calculati
the probability that no edge connects a source node witK
outgoing edges and a target node withR incoming edges.
This happens when allK edges connect to a set of nod
$s i% i 51

k which does not contain the target node:

p~no edgeu$s i%!5 )
k50

K21 S 12
R

E2R82(
i 51

k

Rs i

D ,

~A1!

b-
7-5
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FIG. 5. Scaling exponent of 3-node subgraphs~a! and 4-node subgraphs~b! as a function ofg. The exponenta was obtained from the
slope of a log-log fit of the number of subgraphs vs network size, for nine different network sizes~30, 100, 300, 500, 1000, 1500, 200
2500, 3000! averaged over 5000 randomized networks for each size and outdegree power lawg. All the networks had mean connectivit
^K&51.2. The exponenta displays three regimes,g,2 ~the condensed regime!, 2,g,gc ~the scale-free regime!, g.gc ~Erdős regime!.
y

e

ili

d

g
ne

s
ak
ee
ifie
ll

s

-

whereR8 is the indegree of the source node~we do not allow
self-edges!. The probability of having no edge is obtained b
summing over all possible sets$s i% i 51

k :

p~no edge!5
1

K! S N22
K D (

$s%
)
k50

K21 S 12
R

E2R82(
i 51

k

Rs i

D .

~A2!

Assuming max(i51
k Rsi

!E, and taking the complement as th
probability of an edge existing, we obtain

p~edge!512S 12
R

N^K& D
K

512e2KR/N^K&;
KR

N^K&
,

~A3!

where our last approximation assumesKR!N^K&. Intu-
itively, this result can be understood asK attempts for the
source node to connect to the target node with a probab
of R/N^K& at each attempt.R/N^K& is the probability of an
arbitrary edge connecting into the target node. Pairs of no
in which KR is of the order ofN^K& will contribute multiple
edges in the same direction in the approximation, leadin
overestimation of subgraph numbers in the simulated
works where multiple edges are not allowed~Table I!.

APPENDIX B: NONSPARSE NETWORKS

In calculating the number of appearances of subgraph
nonsparse networks, a more accurate approximation t
into account the probabilities of a nonexistent edge betw
two nodes. For such subgraphs, in addition to the spec
subgraph, Eq.~5! counts a set of subgraphs, with the nu
edges replaced by single or mutual edges. The correction
the 3-node subgraphs are

^ id6* &5^ id6&2^ id38&2^ id108&,
02612
ty

es

to
t-

in
es
n
d

for

TABLE III. Matrix formulas for the numbers of all 3-node con
nected directed subgraphs.M is the adjacency matrix,S is its sym-
metric component, andA its asymmetric component.A8 is the

transposed matrix,Ã is the logical inverse of matrixA, trA is the
matrix trace.
7-6
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SUBGRAPHS IN RANDOM NETWORKS PHYSICAL REVIEW E68, 026127 ~2003!
^ id12*&5^ id12&2^ id38&2^ id102&,

^ id14*&5^ id14&2^ id46&2^ id102&2^ id110&,

^ id36*&5^ id36&2^ id38&2^ id46&,

^ id74*&5^ id74&2^ id102&2^ id108&2^ id110&,

^ id78*&5^ id78&2^ id110&2^ id238&, ~B1!

where^G& represents the values obtained from Eq.~5! and
^G* & is the corrected value. Generally, for larger subgra
the corrections made will be of an inclusion-exclusion typ

APPENDIX C: SUBGRAPH ENUMERATION

In numerically enumerating the subgraphs, we combin
dynamic programming method@8#, which is applied gener-
ally for n-node subgraphs withn>4, and a more rapid cal
culation, based on adjacency matrix operations, used
3-node subgraphs. The method generalizes the results of
@52#. Here we give formulas for the thirteen 3-node co
nected directed subgraphs based on the adjacency m
rin

c

ii,

i.

Bo

s
e,
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The network adjacency matrix is denoted byM, whereMi j
51 if a directed edge exists from nodei to nodej. We begin
by dividing the network into a network containing only a
tisymmetric arrows, whose adjacency matrix will be deno
by A, and a network containing only mutual arrows, who
symmetric adjacency matrix will be denoted asS,

M5A1S. ~C1!

We denote byAB the matrix multiplication of matricesA and
B, and byA•B the dot multiplication.Ã is the logical inverse
of matrix A, where the 0 elements ofA are the 1 ofÃ and
vice versa.A8 is the transpose matrix ofA. A summation
denotes summation of all the matrix indices. The matrix f
mulas for the 13 directed connected 3-node subgraphs
given in Table III. For example, id38 has two nodes whi
are connected by a path of two edges and a path of one e
A2

i j is the number of length 2 paths between nodei and node
j. Dot multiplication with matrixA and summation of the
terms of the resultant matrix gives the correct count. In so
of the subgraphs a correction is made for the terms on
diagonal~id6, id36, id78!.
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