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Variational formula for the free energy based on incomplete sampling in a molecular simulation
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Finite sampling in free-energy perturbatifEP calculations by molecular simulation leads to reproducible
systematic errors, with sign shown to depéimda known way only on which system governs sampling in the
simulation. Thus the result of a FEP calculation can be used as a bound on the true free energy. This inequality
is of a wholly different nature from established forms such as the Gibbs-Bogoliubov inequality or the second
law, in that its origins relate to the performance of a molecular simulation. If one can identify a suitable
reference system having a free energy known as a function of some defining parameter, variational schemes
based on the finite-sampling inequalities can be implemented. This idea is demonstrated through calculation of
the free energy of a hard-sphere solid by perturbing from harmonic references and of a hard-sphere fluid by
perturbing from infinitely polydisperse references. The tightness of the bounds increases with the amount of
sampling in the simulation and correlates with the entropy difference between the target and reference systems.
The bounds are tightest near the point where the entropy difference is least.
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I. INTRODUCTION B
AliAo—Zlen<exp{—E(Ul—Uo)D , ()

Variational methods are well established in statistical ther- 0

r_nodynamics. They rely on rigqrous expression; _that eStaQK/hich was derived through an application of the Schwartz
lish bounds on the free energy in terms of quantities that arfhequality

more tractable theoretically or computationally than the free The other common way to develop free-energy inequali-

energy itself. In a vqrigtipnal scheme, one adjusts a paranyag begins with the second law of thermodynanii¢$]. A
eter (orlseveral to mlgltrrr:lzeban E?;E.er br(])un(;sal:ﬁ/ ort_mr?txr Hamiltonian system coupled to an external work source and
Miz€ a lower one, and thereby obtaone hopesrather tig thermal bath evolves from system 0 to system 1 via a finite-

limits on the possible value of the free energy. Free-energ)(ime (nonequilibrium switching proces$4]. From the sec-

bounds can be useful in other ways. The relative thermody(—)nd law, the free-energy change is bounded by the Wairk

namic stability of two systems is analyzed in terms of their . : i
. associated with the process:
free energy, and if a lower bound for systéntan be estab- P

lished above an upper bound for systBrrone can conclude Ay=<Ag+(W). 3)
thatB is the more stable of the two, without measuring either
free energy precisely. The Gibbs-Bogoliubov inequality arises as a special case,

Established approaches to the formulation of free-energyhen the change from 0 to 1 is instantanedus., very
bounds proceed in either of two ways. In one, exactrreversible, with no equilibration at ajlwhile the equality
statistical-mechanical relations are analyzed to y|e|d in'holds 0n|y for an |nf|n|te|y S|0V\(reversib|e process. Free-
equalities based on purely mathematical considerations. Théhergy bounds computed via molecular simulation using an
Gibbs-Bogoliubov inequality, perhaps the best known variainequality based on the second law will approach equality as
tional formula, describes limits on the free enefgin terms  aqditional sampling is performed, but only if this sampling is

of simple averages of the enerff/] directed toward slowing down the rate of change. Then the
added sampling better enables the system to remain in equi-
Ar<Ag+(U;—Uo)o, (1) librium with its surroundings and thus makes the process

more reversible.

In an interesting development, Jarzyngkj reestablished
where the subscripts “0” and “1” represent the reference an equality between work and free energy for the general
(unperturbegl and target (perturbed states, the angular irreversible process:
brackets indicate an ensemble average in the reference sys-
tem, andJ,— Uy is the perturbation in energy from system 0 exd — B(A;—Ag) J=exp(— BW), (4)
to system 1. This result is a consequence of the concavity of
the exponential functiof2]. As another example, Frend]  where the overbar indicates an ensemble of independent
recently presented this inequality: measurements—each based on an initial condition sampled

from the 0 ensemble—for the irreversible process. In the
same way that Eq3) reduces to Eq1) for an instantaneous
*Present address: Department of Physiology, School of Medicinegghange, in this situation the Jarzynski equality reduces to the
Johns Hopkins University, Baltimore, MD 21205, USA. well known free-energy perturbatiodFEP formula of
TCorresponding author. Electronic address: kofke@buffalo.edu Zwanzig[7]:
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exd — B(A1—Ag)]=(exd — B(U;—Ug)1)o. (5) The inequalities plrop.osed here can bg tightened _and
brought toward equality in two ways. One is by increasing
L . . the amount of sampling of the FEP average. Indications are
;rg;slgr%?ngi?sboefef?eg-rgﬁgrsedc?sjlrsggsbas's for experlmen@at the entropy difference is relevant to the question of how
9y 4 L much sampling is needed to approach equdbge below,
In the present work, an entirely different principle is em- so the necessary amount depends on the nature of the sys-
ployed to formulate free-energy bounds suitable for varias

tional calculations. Although statistical mechanics providestems being studied. Thus for a fixed amount of sampling it

; might be possible to approach equality instead by varying
exact formulas—such as Eqél) and (5)—that prescribe features of the 0 system for a given definition of the 1 sys-

how to calculate the free energy in a molecular simulation, in[em and this presents the second method to tighten the

practice the S|mulat|0n tends to sample inadequately al relBounds. One can devise an effective variational scheme if a
evant molecular configurations, and consequently the fre

Suitable reference system can be identified that has known

energy so calculated .Wi” _be systematiqally in_ error. This_ er'(or readily evaluatedfree energy, and which permits exami-
ror is highly reproducible in repeated simulations of a given -iion of a range of some variational parameter without re-

length. Moreover, the nature of the error is such that one Caauiring a separate simulation for each 0 and 1 pair
conclude with near certainty that the actual free energy is Other variational methods and free-energy équalities

gLec?;%rEﬁ;rlﬁii’ rﬁgggﬂgelggvzgzeh?r:vvm:t ?;:ngt'ﬁ?s':hzwnwhen _emplpygd_in molecular simulation.must first overcome
in particular that these inaccur.ate data can p'rovide fre sampling .I|m|tat|.or.15 before they can yleld_a useful result
energy bounds according to the following inequality: eThe_ pracnc_al validity of the J.arz.yn.skl equality an_q the Fren-
' kel inequality, for example, is limited by the ability of the
, , simulation to sample configurations relevant to both the ref-
(A1=Ag)*™=<(A;=Ag) ¥ S (A1 —A9)*™%  (6)  erence and perturbed systems. Without supporting simula-
tions and analysis, it can be very difficult to know if these

where the superscript “exact” indicates the exact value 01J_imitatic.>ns are overcome. The inequalities proposed here are
free energy, and “simk’ indicates the result of a simulation Immediately useful, because they are a statement of the con-
that samplesor begins with the k system and gives the Seduences of these self-same sampling limitations. The
free-energy difference via E¢5) [or Eq.(4)]. Unlike for the smgle_-step FEP inequality is partlcularly appealing in the
second-law inequalities, equality is reached by performind’a”at'onal context becal_Jse, un_I|ke most second—lavy methods
additional sampling. However, this sampling is not directed®’ the general Jarzynski equality, the FEP calculation never
at making the process infinitely slow and reversible; rather, if€auires sampling of any systems other than the target or
is applied to repeating thérreversible process an infinite eference. _ o _
number of times, sampling different initial configurations N the next section we present a derivation of the inequal-
each time. ity given by Eq.(6). Then in Sec. lll we present examples of

It is very well known[9,10] that FEP calculations exhibit appllcauons of the variational scheme,l and in Sec. IV we
a bias of the type described here, such that when performéﬂiscuss ggneral features and a connection to the entropy. We
in “one direction” they overestimate the free-energy differ- COnclude in Sec. V.
ence, and in “the other direction” they underestimate it.
There is also realization that this situation applies in connec-
tion with the nonequilibrium formul,8,11]. In recent work Il. SAMPLING-BASED INEQUALITIES
Lu and Kofke[10] indicated that the FEP calculation adheres
to an inequality with the form given in Eq6). Zuckerman

and Woolf [12] also observed an inequality related to theye \york valuesh involved in transitioning from state 0 to
sampling size in their study of nonequilibrium free-energy

tate 1, weighted by th@ormalized distribution of
calculations. In the present work we wish to emphasize ths welg y then ized distribution po(W)

T Qvork encountered in simulations beginning from the O sys-
general nature of these statements. The direction of the i em[13-15

equality does not depend on the nature of the systems being

compared, but instead depends only on which system gov-

erns sampling in the FEP calculation. A consequence of this %

observation is that the systematic error can be used as the ex;{—ﬂ(Al—AO)]=f dWexp — BW)po(W). (7)
basis for a variational method. Without the benefit of this -

analysis, one might expect that a sequence of inaccurate data

taken in a FEP calculation as a function of a variational o ) )

parameter could somewhere cross the correct value of tHeh @nalogous distributiop, (W) is defined for the perturba-
free energy. But such an outcome would be nearly uselesdon conduct_ed in the reverse direction, beginning from state
because there would be no indication of where the correct @nd evolving back to state 0:

value lies. Instead, Eq6) shows that simulations dbr be-

ginning with) the 0 and 1 systems for different values of the

parameter can in fact be used to place bounds on the free exd + B(A—Ag)]= fw dWexp( + BW)py(W).  (8)
energy. —

The ensemble average in Ed), or more specifically in
Eq. (5), can be expressed as a one-dimensional integral over
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We retain the sense that the work is from 0 to 1, so must For a given sample of;—U,), the mathematical in-
change the sign in this formula; so in the case of a HER  equality[16]

(5)], W is always defined abl;—U,. The distributions are

related by{13-19 exd — B(A;—Ag) 15M=(exd — B(U;—Uy) )s™

Po(W)exp(— BW)=pi(W)exi — B(A1—=Ag)].  (9) =exp(—B(U1=Ug*™) (19

When beginning from the 0 system, the exponential in Eqjeads to the conclusion
(7) greatly weights the contributions to small valuesVif
perhaps even into the region where the sampling deipgity (Ag—Ag)SM< (U, —Ug)Sm, (15)
is almost negligible. Accordingly, systematic error in the free
energy afises largely from fai'“Te to sammein this range. n other words, a given set of data taken for a FEP calcula-
An effective way to model this inaccuracy is to assume tha{ion via Eq.(5) will always yield a tighter bound than if the
Wis sampled perfectly above a minimum valdg, and that o5 ata were used in the Gibbs-Bogoliubov inequality. A

Itis not s?n}pled at all bzl_?fw this V?A@?O]:”";th's VIew, tze_ similar analysis will show that the Frenkel inequality will,
(inaccuratg free-energy difference that will be measured in Afor the same set of perturbation data, always yield a looser

simulation is bound on the free energy than that given by the sampling-
% _ based bound.

exd — B(A;— A )]sim’oszOdWexp( BW)po(W) It must be emphasized that the inequalities considered

oo T, AW (W) ’ here are not inviolable, in the way that, e.g., the Gibbs-

(10) Bogoliubov inequality is when fully ensemble averaged. In-
stead, they are a statement of the likely outcome of a mea-
where the superscript “sim,0” indicates the result of a simu-surement. It is possible that in a given molecular simulation
lation that samples the O system. The denominator on thevents will conspire to yield a result that violates the inequal-
right-hand side will be nearly unity and can safely be ignoredty. This outcome becomes increasingly probable as the FEP
(barring sampling problems of a different nature from thosecalculation approaches the correct value, i.e., as the equality
considered here, in which a class of configurations importanimit is reached and the noise in the calculation becomes
to the sampled distribution is not represented in the simulacomparable to the free-energy difference. In this sense these
tion average If Eq. (10) is subtracted from Eq(.7) and Eq. inequalities have features in common with the second law,
(9) is applied, a simple expression for the systematic errowhich can be irreproducibly violated, particularly in small
results[10]: systems; they are both more statistical than purely math-
exact <im0 ematical in natur¢17,18. For example, consider a calcula-
exfd — B(A1—Ag) """ —exd — B(A1—Ag) ™™ tion of the free energy of a system of 100 hard spheres
exd — B(A;—Ag) &t (HS’s) via Eq.(5) using an ideal-gadG) reference. In simu-
W lating the ideal gas, zero is contributed to the FEP average if
:J' OdW p(W). (11) the perturbatlon_ to the harq sp.hertl—:ts fmds no _overlappllng
—w spheres; otherwise the contribution is unity. At high density
. . _ the free-energy difference is larglfe> AR, and it will
That is, the fractional error in ekp B(A,—Ag)] measured in  take very much sampling before a no-overlap perturbation is
a simulation of the 0 system is given by the area under th@ncountered. Until then, the FEP calculation gives the HS
complementary §;) distribution that lies below the mini- fee energy as infinityi.e., — In(0)], in accord with Eq(12).

mum sampled energy difference. . ~ However, it is possiblgbut improbable that a no-overlap
The right-hand side of Eq(11) is non-negative, and it configuration is encountered early in the FEP calculation, say
follows that in the very first configuration sampled. At this point, before

any further sampling is performed, the calculation indicates
Aus=A, Which meansAZI<AfE%in violation of Eq.
Thus, measurement of the free-energy difference by a simi12- The point of the inequality presented here is that, al-
lation beginning from the 0 system using E4) or (5), when thoygh such an outcome may be possible, it is extremely
added to the exact free energy of the O system, provides Wlikely to be observed.

value that will be greater than or equal to the exact free

energy of the 1 system. The simulation data provide an upper ll. EXAMPLES

bound on the free energy of the 1 system. A complementary , . )
result can be derived following a similar path from E§) Two examples involving systems of hard spheres will

[or by simply switching the indices in E412)]: demonstrate. We consider only applications involvifigr
stantaneoysFEP measurementfEq. (5)], rather than the

AixaC‘;Agxacbr(Al_AO)Simvl_ (13 more general nonequilibrium method offered by Jarzynski.

We think this variational approach is more useful in the con-

Simulation beginning from the 1 system provides a lowertext of simple FEP, as it then involves only two systems and
bound on this free energy. parameter variation is more easily implemented.

AixaC'S Agxact+ (Al_ AO)Sim'O. (12)
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A. HS solid and harmonic references . ! . 1 . I . I

20
Hard spheres of diameter are known to form a stable Lz_‘ ] o104 r 000 m
: N £ ] -o-120 _ o
crystalline phase for densitigsr> greater than 1.0419,2Q. g 1 = 1.30 [ 400 5
The free energy of this phase has been measured very pre‘s e IR S r 2
cisely, so it presents a suitable system to test and demonstratg’ [ 500 E
the variational formulas. An appropriate reference is found in $ E i g
a system of coupled harmonic oscillators arranged on a fcc E ] [ o §
lattice. For the HS crystal, one can perform simulations at a - 5
given density to measure the covariance matix=((r; 2 [ 200 &
—ri0(rj—rjo)us describing the correlation between the & - 0’5
excursions of the spheres from their lattice sitgs Then a _§ [ 400 &
suitable “base” harmonic system is defined such that it has r j‘
the same covariance matfig1]. A variational parameter can =4 [ =
be identified as a scaling facterthat uniformly tightens or = - -600

loosens all harmonic interactions with respect to the base - 10°
. _ base

SyStem' ,Uharm_suhafm' ) Harmonic scale factor

Variational calculations of this type were performed for
systems of 32 fcc hard spheres and a corresponding har- FIG. 1. Error in free energyper particle of pure fcc hard-
monic reference. Three densitip3r3= 1.04 (melting), 1.2, sphere crystal at several densities, given as a function of the scale
and 1.3, respectively, were examined. When sampling the Hfctor of the harmonic reference system. Values plotted are free
system, each configuration can be perturbed into a range &nergy as_measured by molecul_ar simulation, minus the correct
harmonic reference systems, and because the HS energyV@lue as given by the Hall equation of st§@?] and the data of
always zero, the appropriate ensemble average is Simppi,renkel and Ladd20]. Results above the zero line are data in

exp(— BsLPas . Study of the reverse perturbation, Sam_which the FEP simulations sampled configurations of the harmonic
(exp( L'ﬁa”mHS y P rFference and perturbed into the hard-sphere system, while results

22\2% t\?;ur;ag‘got?&? fgjtseimh[:ggﬁ]fzg rs]g{)?égﬁrzlr:L'Ug:ﬁg\IQalling below the zero line were taken from simulations sampling

. ’ . the hard-sphere crystal and perturbing into the harmonic reference.
qhaln for Monte CarIo(MC) sampling. Instead, each con- The dotted line is the difference in theonstank entropy of the
figuration of the harmonic system can be generatedovo hard-sphere target system and teelependententropy of the ref-

by Sampllng th_e har_monlc normal-mode Co_ordlnates from %rence(extensive entropies, not per partiléor the system of den-
Gaussian of width given by the corresponding normal—mod%ity 13
eigenvalue scaled by. Each configuration so generated is
then examined for HS overlaps, and if no overlap is foundferent for each density. Nevertheless, it is interesting to find
the quantity exp{-BsUﬁgf,i) is added to the ensemble aver- that the optimal accuracy is obtained not when the covari-
age (otherwise zero is add@dThe HS-based simulations ances of the reference and target maftte base systens,
sampled 5 10° MC cycles (1 cycle=32 MC trial sphere =1), but when a significantly tighter harmonic system is
displacements, with one contribution to the FEP average fo#sed.
eachs performed at the end of the cyglewhile for the
harmonic-based simulationsx6L® independent configura- B. HS fluid and infinitely polydisperse references
tions were usedeach contributing to the FEP averaggcale The second example considers the hard-spiieid. A
factorss were considered on a logarithmic scale from 40 g itaple variational reference for this system can be found in
to 10 - a system of infinitely polydisperd#P) hard spheref23]. An

The results are presented in Fig. 1. The data are presentgs miytyre is formulated in a semigrand ensemble, where the

as the simulation-m_easured free energy minus the corregfisiribution of species chemical potential differenqetr)
value for each densit}20,22. The curves above the zero — (o) is an independent quantithere, species are desig-

hated by their hard-sphere diameter, angdis an arbitrarily

reference(0) and thus are a test of E412), while those  gojacted reference spedies particular, in an IP mixture

found below the zero line sample the target systémof

hard sphe_res and test E(q.3). Adherence to t_he variational w(o)— u(o)=CcoIn(oloy) (16)
formulas is clear: sampling the 0 system gives free-energy . . .

estimates that bound the true free energy from above, whiléhere co>—1 is a dimensionless parameter that can be
sampling the 1 system gives a lower free-energy bound. Thiteated as a state variable. This mixture is interesting because
extrema in the measurements are prominent, showing hoit has no intrinsic molecular length scale. Consequently, all
the tightness of the bounds is affected by the choice of th@roperties have a trivial scaling dependence on the density
reference system. The accuracy of the measurements do@in to the way hard spheres depend on temperatlite

not depend much on density, and all series give their mog@ressureP obeys[23]

accurate results at about the same value of the scale factor, - _

approximatelys=100. In considering this fact it should be Z=PPlp=(4+co)3, (9
remembered that the base harmonic reference system is ddnd the semigrand free eneryis of the form
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BY=In(pA®)+(co+1)In(pY304) +InK(cy), (18  semble averagéif overlap results, zero is addedin this
manner averages are easily taken for multiple densities of the
whereK (c,) is independent of density. It is worth emphasiz- target system. Parallel temperiig8,29 was used to en-
ing that these results are not limited to hard-sphere systembance sampling of IP systems at different values 40
but are true for any spherically symmetric potential polydis-systems were simulated at once, with valuesgfelected
perse in the sphere size. such that “adjacent” systems were in constant ratios @f (
The density-scaling properties of this system make it ap-+ 1) [30]. Results were tabulated for perturbation into five
pealing as a reference for the fluid phase, including mixturespure-fluid densitiespo®: 0.1, 0.3, 0.5, 0.7, 0.9. Approxi-
A simulation performed at one density can be used to perturnately 13 elementary Monte Carlo trials were performed
into a target systenta pure fluid or a conventional mixture for each IP system, and about 300000 FEP samples were
at the same or any other density. The match between the lfaken in each.
reference and the target can be adjusted with the parameter Complementary simulations of 32 pure hard spheres were
Co. Small values of this parameter cause the IP mixture to b@erformed to demonstrate the inequality ELB). Each pure-
populated by small particles, thus giving a low-density sysluid density was simulated independently. Perturbation into
tem in the sense of the total volume occupitmiv packing the full range of IP referenceg( varying from 0 to 40 was
fraction). As cq is increasedat fixed number densitythe  performed simultaneously by selecting the “fictitious” diam-
distribution of diameters moves to larger spheres, and theters from the distribution eXgBu(o)—Bu(o,)]:} using a
mixture becomes suitable for the description of high-volumerejection method31] (choosing a different realization of the
fraction phases. distribution for eaclcy). With the diameters thus assigned,
Simulations were performed of systems of 32 IP hardthe system was examined for overlaps, reflecting the realiza-
spheres with values afy ranging from 0 to 40. The system tion of the diameters in the IP system. If no overlap was
of interest, pure hard spheres, was represented by a systemd#tected, the quantity ekp[Bu(o)—Bu(oo)]i+CoIn(olay)}
hard spheres polydisperse in “fictitious” diameters that arewas added to the ensemble averggero added otherwise
completely decoupled from the interparticle potential. ThisAbout 1¢ elementary trials were performed at each density
approach permits perturbing between two semigrandand about X 10° FEP measurements. The IP-reference-
ensemble systems without dealing with the singularity thakystem free energy as a functionayfcan be evaluated from
arises in relating monodisperse and polydisperse fll8ds  a previously determined value by integrating the log-moment
Decoupled from the potential, the fictitious diameters havesf the distribution of diameter3].
nothing constraining their size, so it is necessary to adopt a The results are presented in Fig. 2. All free-energy mea-
different chemical potential distribution for them. It is help- surements taken by FEP from the IP referetibe 0 system
ful to select a distribution that leads to a diameter distribudie above the correct valuéhere given by the Carnahan-
tion similar to the one adopted by the IP hard spheres. Thgtarling equatiorf32]) at each densityin accord with Eq.
following choice is suitabl¢25—27: (12)], while those measured in simulations of the pure hard-
sphere fluid(the 1 systemlie below[in agreement with Eq.

5[4+co |*° (13)]. The IP reference at low densit®.1) is best suited to
[Bula)=Brioo)li=Coln(aloo) =7/ —5—p| o describe its pure-fluid counterpart: it gives the tightest bound
213 and provides gnoninfinite) result over the entire range of
_ E 4+¢ 2T 4+¢ o3 Cp, With the best resulithe minimum free energyeached at
473 °F 6 3 "7 smallcy. At high density nonoverlap perturbations are rarely
(19) encountered, and noninfinite results arise only at the largest
values ofcg.
The real quantity of interest, the Helmholtz free enefgy Opposing this, the FEP calculations from sampling the

of the pure hard spheres, is simply related to the simulationpure fluid produce the broadest range of rinagative-
measured semigrand free enerdy of the hard-sphere/ infinite results for the highest-density system. But the low-
fictitious-diameter system: density calculations again provide the tightest bounds. In
fact, none of these FEP averages will converge to the exact
o result, regardless of the amount of sampling performed. The
fo exfd fu(o)—Buloo)lhdo . IP system always has some particles with diameters smaller
(20) than the pure fluid and thus separated by distances smaller
than can be possible in the pure fluid of hard spheres. The
The IP mixture is simulated at any convenient density.inability to sample these configurations contributes to the
Contributions to the FEP ensemble average, (By(written  systematic error in the FEP calculation. In accord with the
with free energyY) are made as follows. The IP system is theme of this work, the inadequate sampling manifests itself
scaled to the density of interest, which entails rescaling alhs a free-energy estimate lying below the true value.
particle positions and diameters and thus causes no change in
the energy(no overlaps result Then for the FEP trial, all
diameters are converted to the size of the pure hard-sphere
target, and if no overlap then results, the quantity In both examplegfluid and solid, the upper and lower
expl[ Bu(o) — Bu(oo)l1—CoIn(alay)} is added to the FEP en- bounds given by the inaccurate averages are asymmetric—

BAHS: BY]_"' N In

IV. DISCUSSION
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. ' ' ' lations produces systematic error in the calculated free en-
5 01/ ergy. The direction of the bound.e., upper or loweris
Y determined only by the direction of perturbatidine., the
. 057 choice of which system governs sampling in the simulation

- 100 and not by the nature of the systems. In addition, the bound

can be tightened b{l) increasing the sample size and(@y
adjusting the variational parameter. Relatively small systems
were used in the demonstration of variational schemes based
on the principle, but one can expect that the proposed in-
equalities will applya fortiori for larger systems, where sam-
pling inadequacies are exacerbated. The examples here focus
on the hard-sphere potential, but there is nothing about the
inequality that limits it to this system. Solid-phase free ener-
gies for other models can be bounded using direct applica-
tion of the ideas presented in the example here, using the
| 1 , — same type of harmonic reference as employed for hard
0 Refere:ge_system poly%?spers"y oara n?gter “ 40 spheres. Extension of the fluid-phase example to other mod-
’ els is less straightforward, because the IP reference would be
FIG. 2. Error in free energgper particlé of pure hard spheres at different and thus requires some effort to characterize it be-
several densities, given as a function of the reference-system poljore applying it in a variational scheme. One might also con-
dispersity parametar,. Values plotted are free energy as measuredsider other types of reference-target pairs. It would probably
by molecular simulation, minus the correct value as given by thée possible to obtain very tight bounds if this methodology
Carnahan-Starling equation of state. Results above the zero line aveere applied to describe an intensiysize-independept
data in which the FEP simulations sampled configurations of an IFree-energy change, such as that associated with the insertion
mixture and perturbed into pure hard spheres, while results fallingor deletion) of a molecule in a system. For the patrticle-
below the zero line were taken from simulations sampling pure hardnsertion free-energy change, the target and reference are
spheres and perturbing into IP references. Numbers on each lirfixed (defined as systems differing only in the presence of
indicate the densitpo™ of the target system of pure hard spheres. gne moleculg and thus they provide no variational degree
Arrows indicate values going to= infinity. The dotted line is  of freedom. Instead, a staging scheme can be ap8&a86,
the(extensivé entropy differencdas in Fig. 1 for systems of den-  \yith an intermediate(designatedW) that has the needed
sity 0.7. variational flexibility. Then bounds on the free-energy differ-
they do not mirror each other. In other words, for a given€Nce between the 0 and 1 systems can be derived from free-
value of the variational parameter the errors from the twd®n€rgy bounds applying to each stage, leading to
calculations are not equal in magnitude, and thus it is not a
good practice to average the two results to estimate the free- (Ay— Ag) 5™ (Ag— Ay)S™W
energy differencg33]. Recently, it has been suggested that oW o Tw
the magnitude of the error is related to the sign of the en- <(A;—Ag) P (A1 —Ap) ™V~ (Ag— Ay) S0
tropy difference between the systefdf)]. To examine this
point, the difference in entropy between the target and refer- (21)
ence systems for one density is included in Figs. 1 and 2. It

is seen that the averages in both directions are most accurafﬂeWsystem might, for example, interact as a real particle

in the range Whgras CrOSSES Z€r0. The FEP averages Catyges phut with a diameter that is scaled as a variational pa-
converge for finite sampling only when perturbation is Per-.ameter. The inequalities in ERL) apply for any particular

formed as ?1 “g?enerahzed mszr(t)l%n";];]rom tne h'%h'e”tfopy value of the parameter, which can be adjusted to tighten each
s_ystelm to the ovy-entr(;pyl ofr[ f’h4]. ufb‘é\’ ent ebvgrla- inequality separately. Moreover, it is valid for any staged
tional parameter is to the left of the zero 5, perturbation o energy calculation, not just for this particle-insertion ex-
must go from the reference to the hard-sphere target; when

the right of zero, one should sample the hard-sphere system Andther place where a result of this type could find ap-
and perturb into the reference. However, the necessafyjication s in the evaluation of free energies for systems

amount of sampling for an "?‘Ccu.rate result scale; 4hodeled with computationally expensive potentials, such as
exp(~|AS/k) [34]. The perturbation in bOt.h exampl_es IN* encountered in the Car-Parinello methi&¥] or other ab
volves the whole system, so the entropy difference is extenyjtis techniques that are likely to come into wider use in the

sive and quite large even fo.r_the.srnall systems used hgr_e. Qture. Simulations of these systems usually work with small
for these FEP calculations it is difficult to generate sufficient

. o numbers of molecules, and the expense involved in multi-

sampling to approach the equality in H@). stage FEP calculations, thermodynamic integration, or non-

V. CONCLUSION equiliprium paths make it espt_acially Qiffipult to measure fr_ee

energies in such systems. This application might be particu-

This work derives and demonstrates a free-energy bounkirly important for solid-phase systems, where particle-
that originates in the way inadequate sampling in FEP calcuihsertion methods cannot be applied.

o
WS ~ayneS) ‘0UBIBYIP Adonu3

- -100

Target free energy error, (A% ™-A%*)NKT
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