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Variational formula for the free energy based on incomplete sampling in a molecular simulation
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Finite sampling in free-energy perturbation~FEP! calculations by molecular simulation leads to reproducible
systematic errors, with sign shown to depend~in a known way! only on which system governs sampling in the
simulation. Thus the result of a FEP calculation can be used as a bound on the true free energy. This inequality
is of a wholly different nature from established forms such as the Gibbs-Bogoliubov inequality or the second
law, in that its origins relate to the performance of a molecular simulation. If one can identify a suitable
reference system having a free energy known as a function of some defining parameter, variational schemes
based on the finite-sampling inequalities can be implemented. This idea is demonstrated through calculation of
the free energy of a hard-sphere solid by perturbing from harmonic references and of a hard-sphere fluid by
perturbing from infinitely polydisperse references. The tightness of the bounds increases with the amount of
sampling in the simulation and correlates with the entropy difference between the target and reference systems.
The bounds are tightest near the point where the entropy difference is least.
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I. INTRODUCTION

Variational methods are well established in statistical th
modynamics. They rely on rigorous expressions that es
lish bounds on the free energy in terms of quantities that
more tractable theoretically or computationally than the f
energy itself. In a variational scheme, one adjusts a par
eter ~or several! to minimize an upper bound and/or max
mize a lower one, and thereby obtain~one hopes! rather tight
limits on the possible value of the free energy. Free-ene
bounds can be useful in other ways. The relative thermo
namic stability of two systems is analyzed in terms of th
free energy, and if a lower bound for systemA can be estab-
lished above an upper bound for systemB, one can conclude
thatB is the more stable of the two, without measuring eith
free energy precisely.

Established approaches to the formulation of free-ene
bounds proceed in either of two ways. In one, ex
statistical-mechanical relations are analyzed to yield
equalities based on purely mathematical considerations.
Gibbs-Bogoliubov inequality, perhaps the best known va
tional formula, describes limits on the free energyA in terms
of simple averages of the energy@1#

A1<A01^U12U0&0 , ~1!

where the subscripts ‘‘0’’ and ‘‘1’’ represent the referen
~unperturbed! and target ~perturbed! states, the angula
brackets indicate an ensemble average in the reference
tem, andU12U0 is the perturbation in energy from system
to system 1. This result is a consequence of the concavit
the exponential function@2#. As another example, Frenkel@3#
recently presented this inequality:
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A1<A022kT lnK expF2
b

2
~U12U0!G L

0

, ~2!

which was derived through an application of the Schwa
inequality.

The other common way to develop free-energy inequ
ties begins with the second law of thermodynamics@4,5#. A
Hamiltonian system coupled to an external work source
thermal bath evolves from system 0 to system 1 via a fin
time ~nonequilibrium! switching process@4#. From the sec-
ond law, the free-energy change is bounded by the workW
associated with the process:

A1<A01^W&. ~3!

The Gibbs-Bogoliubov inequality arises as a special ca
when the change from 0 to 1 is instantaneous~i.e., very
irreversible, with no equilibration at all!, while the equality
holds only for an infinitely slow~reversible! process. Free-
energy bounds computed via molecular simulation using
inequality based on the second law will approach equality
additional sampling is performed, but only if this sampling
directed toward slowing down the rate of change. Then
added sampling better enables the system to remain in e
librium with its surroundings and thus makes the proc
more reversible.

In an interesting development, Jarzynski@6# reestablished
an equality between work and free energy for the gene
irreversible process:

exp@2b~A12A0!#5exp~2bW!, ~4!

where the overbar indicates an ensemble of indepen
measurements—each based on an initial condition sam
from the 0 ensemble—for the irreversible process. In
same way that Eq.~3! reduces to Eq.~1! for an instantaneous
change, in this situation the Jarzynski equality reduces to
well known free-energy perturbation~FEP! formula of
Zwanzig @7#:

e,
©2003 The American Physical Society22-1
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exp@2b~A12A0!#5^exp@2b~U12U0!#&0 . ~5!

This idea has been proposed as the basis for experim
measurements of free-energy changes@8#.

In the present work, an entirely different principle is em
ployed to formulate free-energy bounds suitable for va
tional calculations. Although statistical mechanics provid
exact formulas—such as Eqs.~4! and ~5!—that prescribe
how to calculate the free energy in a molecular simulation
practice the simulation tends to sample inadequately all
evant molecular configurations, and consequently the
energy so calculated will be systematically in error. This
ror is highly reproducible in repeated simulations of a giv
length. Moreover, the nature of the error is such that one
conclude with near certainty that the actual free energy
greater~or less, depending on how the calculation is co
ducted! than the measured value. In what follows, it is sho
in particular that these inaccurate data can provide fr
energy bounds according to the following inequality:

~A12A0!sim,1<~A12A0!exact<~A12A0!sim,0, ~6!

where the superscript ‘‘exact’’ indicates the exact value
free energy, and ‘‘sim,k’’ indicates the result of a simulation
that samples~or begins with! the k system and gives the
free-energy difference via Eq.~5! @or Eq.~4!#. Unlike for the
second-law inequalities, equality is reached by perform
additional sampling. However, this sampling is not direc
at making the process infinitely slow and reversible; rathe
is applied to repeating the~irreversible! process an infinite
number of times, sampling different initial configuration
each time.

It is very well known@9,10# that FEP calculations exhibi
a bias of the type described here, such that when perfor
in ‘‘one direction’’ they overestimate the free-energy diffe
ence, and in ‘‘the other direction’’ they underestimate
There is also realization that this situation applies in conn
tion with the nonequilibrium formula@6,8,11#. In recent work
Lu and Kofke@10# indicated that the FEP calculation adher
to an inequality with the form given in Eq.~6!. Zuckerman
and Woolf @12# also observed an inequality related to t
sampling size in their study of nonequilibrium free-ener
calculations. In the present work we wish to emphasize
general nature of these statements. The direction of the
equality does not depend on the nature of the systems b
compared, but instead depends only on which system g
erns sampling in the FEP calculation. A consequence of
observation is that the systematic error can be used as
basis for a variational method. Without the benefit of th
analysis, one might expect that a sequence of inaccurate
taken in a FEP calculation as a function of a variatio
parameter could somewhere cross the correct value of
free energy. But such an outcome would be nearly usel
because there would be no indication of where the cor
value lies. Instead, Eq.~6! shows that simulations of~or be-
ginning with! the 0 and 1 systems for different values of t
parameter can in fact be used to place bounds on the
energy.
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The inequalities proposed here can be tightened
brought toward equality in two ways. One is by increasi
the amount of sampling of the FEP average. Indications
that the entropy difference is relevant to the question of h
much sampling is needed to approach equality~see below!,
so the necessary amount depends on the nature of the
tems being studied. Thus for a fixed amount of sampling
might be possible to approach equality instead by vary
features of the 0 system for a given definition of the 1 s
tem, and this presents the second method to tighten
bounds. One can devise an effective variational scheme
suitable reference system can be identified that has kn
~or readily evaluated! free energy, and which permits exam
nation of a range of some variational parameter without
quiring a separate simulation for each 0 and 1 pair.

Other variational methods and free-energy equalit
when employed in molecular simulation must first overco
sampling limitations before they can yield a useful resu
The practical validity of the Jarzynski equality and the Fre
kel inequality, for example, is limited by the ability of th
simulation to sample configurations relevant to both the r
erence and perturbed systems. Without supporting sim
tions and analysis, it can be very difficult to know if the
limitations are overcome. The inequalities proposed here
immediately useful, because they are a statement of the
sequences of these self-same sampling limitations.
single-step FEP inequality is particularly appealing in t
variational context because, unlike most second-law meth
or the general Jarzynski equality, the FEP calculation ne
requires sampling of any systems other than the targe
reference.

In the next section we present a derivation of the inequ
ity given by Eq.~6!. Then in Sec. III we present examples
applications of the variational scheme, and in Sec. IV
discuss general features and a connection to the entropy
conclude in Sec. V.

II. SAMPLING-BASED INEQUALITIES

The ensemble average in Eq.~4!, or more specifically in
Eq. ~5!, can be expressed as a one-dimensional integral o
the work valuesW involved in transitioning from state 0 to
state 1, weighted by the~normalized! distribution p0(W) of
work encountered in simulations beginning from the 0 s
tem @13–15#,

exp@2b~A12A0!#5E
2`

`

dWexp~2bW!p0~W!. ~7!

An analogous distributionp1(W) is defined for the perturba
tion conducted in the reverse direction, beginning from st
1 and evolving back to state 0:

exp@1b~A12A0!#5E
2`

`

dWexp~1bW!p1~W!. ~8!
2-2
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VARIATIONAL FORMULA FOR THE FREE ENERGY . . . PHYSICAL REVIEW E68, 026122 ~2003!
We retain the sense that the work is from 0 to 1, so m
change the sign in this formula; so in the case of a FEP@Eq.
~5!#, W is always defined asU12U0 . The distributions are
related by@13–15#

p0~W!exp~2bW!5p1~W!exp@2b~A12A0!#. ~9!

When beginning from the 0 system, the exponential in
~7! greatly weights the contributions to small values ofW,
perhaps even into the region where the sampling densityp0
is almost negligible. Accordingly, systematic error in the fr
energy arises largely from failure to sampleW in this range.
An effective way to model this inaccuracy is to assume t
W is sampled perfectly above a minimum valueW0 , and that
it is not sampled at all below this value@10#. In this view, the
~inaccurate! free-energy difference that will be measured in
simulation is

exp@2b~A12A0!#sim,05
*W0

` dWexp~2bW!p0~W!

*W0

` dWp0~W!
,

~10!

where the superscript ‘‘sim,0’’ indicates the result of a sim
lation that samples the 0 system. The denominator on
right-hand side will be nearly unity and can safely be igno
~barring sampling problems of a different nature from tho
considered here, in which a class of configurations impor
to the sampled distribution is not represented in the sim
tion average!. If Eq. ~10! is subtracted from Eq.~7! and Eq.
~9! is applied, a simple expression for the systematic e
results@10#:

exp@2b~A12A0!#exact2exp@2b~A12A0!#sim,0

exp@2b~A12A0!#exact

5E
2`

W0
dW p1~W!. ~11!

That is, the fractional error in exp@2b(A12A0)# measured in
a simulation of the 0 system is given by the area under
complementary (p1) distribution that lies below the mini
mum sampled energy difference.

The right-hand side of Eq.~11! is non-negative, and i
follows that

A1
exact<A0

exact1~A12A0!sim,0. ~12!

Thus, measurement of the free-energy difference by a si
lation beginning from the 0 system using Eq.~4! or ~5!, when
added to the exact free energy of the 0 system, provide
value that will be greater than or equal to the exact f
energy of the 1 system. The simulation data provide an up
bound on the free energy of the 1 system. A complemen
result can be derived following a similar path from Eq.~8!
@or by simply switching the indices in Eq.~12!#:

A1
exact>A0

exact1~A12A0!sim,1. ~13!

Simulation beginning from the 1 system provides a low
bound on this free energy.
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For a given sample of (U12U0), the mathematical in-
equality @16#

exp@2b~A12A0!#sim5^exp@2b~U12U0!#&sim

>exp̂ 2b~U12U0!sim& ~14!

leads to the conclusion

~A12A0!sim<~U12U0!sim. ~15!

In other words, a given set of data taken for a FEP calcu
tion via Eq.~5! will always yield a tighter bound than if the
same data were used in the Gibbs-Bogoliubov inequality
similar analysis will show that the Frenkel inequality wil
for the same set of perturbation data, always yield a loo
bound on the free energy than that given by the sampli
based bound.

It must be emphasized that the inequalities conside
here are not inviolable, in the way that, e.g., the Gibb
Bogoliubov inequality is when fully ensemble averaged.
stead, they are a statement of the likely outcome of a m
surement. It is possible that in a given molecular simulat
events will conspire to yield a result that violates the inequ
ity. This outcome becomes increasingly probable as the F
calculation approaches the correct value, i.e., as the equ
limit is reached and the noise in the calculation becom
comparable to the free-energy difference. In this sense th
inequalities have features in common with the second l
which can be irreproducibly violated, particularly in sma
systems; they are both more statistical than purely ma
ematical in nature@17,18#. For example, consider a calcula
tion of the free energy of a system of 100 hard sphe
~HS’s! via Eq.~5! using an ideal-gas~IG! reference. In simu-
lating the ideal gas, zero is contributed to the FEP averag
the perturbation to the hard spheres finds no overlapp
spheres; otherwise the contribution is unity. At high dens
the free-energy difference is large,AHS

exact@AIG
exact, and it will

take very much sampling before a no-overlap perturbatio
encountered. Until then, the FEP calculation gives the
free energy as infinity@i.e., 2 ln(0)], in accord with Eq.~12!.
However, it is possible~but improbable! that a no-overlap
configuration is encountered early in the FEP calculation,
in the very first configuration sampled. At this point, befo
any further sampling is performed, the calculation indica
AHS5AIG , which meansAHS

sim,AHS
exact in violation of Eq.

~12!. The point of the inequality presented here is that,
though such an outcome may be possible, it is extrem
unlikely to be observed.

III. EXAMPLES

Two examples involving systems of hard spheres w
demonstrate. We consider only applications involving~in-
stantaneous! FEP measurements@Eq. ~5!#, rather than the
more general nonequilibrium method offered by Jarzyns
We think this variational approach is more useful in the co
text of simple FEP, as it then involves only two systems a
parameter variation is more easily implemented.
2-3
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A. HS solid and harmonic references

Hard spheres of diameters are known to form a stable
crystalline phase for densitiesrs3 greater than 1.04@19,20#.
The free energy of this phase has been measured very
cisely, so it presents a suitable system to test and demons
the variational formulas. An appropriate reference is found
a system of coupled harmonic oscillators arranged on a
lattice. For the HS crystal, one can perform simulations a
given density to measure the covariance matrixCi j 5^(r i

2r i ,0)(r j2r j ,0)&HS describing the correlation between th
excursions of the spheres from their lattice sitesr i ,0 . Then a
suitable ‘‘base’’ harmonic system is defined such that it h
the same covariance matrix@21#. A variational parameter can
be identified as a scaling factors that uniformly tightens or
loosens all harmonic interactions with respect to the b
system: Uharm5sUharm

base.
Variational calculations of this type were performed f

systems of 32 fcc hard spheres and a corresponding
monic reference. Three densitiesrs351.04 ~melting!, 1.2,
and 1.3, respectively, were examined. When sampling the
system, each configuration can be perturbed into a rang
harmonic reference systems, and because the HS ener
always zero, the appropriate ensemble average is sim
^exp(2bsUharm

base)&HS. Study of the reverse perturbation, sam
pling the harmonic system, requires a separate simulation
each value ofs, but the simulations do not require a Marko
chain for Monte Carlo~MC! sampling. Instead, each con
figuration of the harmonic system can be generatedde novo
by sampling the harmonic normal-mode coordinates from
Gaussian of width given by the corresponding normal-mo
eigenvalue scaled bys. Each configuration so generated
then examined for HS overlaps, and if no overlap is fou
the quantity exp(1bsUharm

base) is added to the ensemble ave
age ~otherwise zero is added!. The HS-based simulation
sampled 53106 MC cycles ~1 cycle532 MC trial sphere
displacements, with one contribution to the FEP average
each s performed at the end of the cycle!, while for the
harmonic-based simulations 63106 independent configura
tions were used~each contributing to the FEP average!. Scale
factorss were considered on a logarithmic scale from 1023

to 106.
The results are presented in Fig. 1. The data are prese

as the simulation-measured free energy minus the cor
value for each density@20,22#. The curves above the zer
line are data from FEP calculations sampling the harmo
reference~0! and thus are a test of Eq.~12!, while those
found below the zero line sample the target system~1! of
hard spheres and test Eq.~13!. Adherence to the variationa
formulas is clear: sampling the 0 system gives free-ene
estimates that bound the true free energy from above, w
sampling the 1 system gives a lower free-energy bound.
extrema in the measurements are prominent, showing
the tightness of the bounds is affected by the choice of
reference system. The accuracy of the measurements
not depend much on density, and all series give their m
accurate results at about the same value of the scale fa
approximatelys5100. In considering this fact it should b
remembered that the base harmonic reference system is
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ferent for each density. Nevertheless, it is interesting to fi
that the optimal accuracy is obtained not when the cov
ances of the reference and target match~the base system,s
51), but when a significantly tighter harmonic system
used.

B. HS fluid and infinitely polydisperse references

The second example considers the hard-spherefluid. A
suitable variational reference for this system can be foun
a system of infinitely polydisperse~IP! hard spheres@23#. An
IP mixture is formulated in a semigrand ensemble, where
distribution of species chemical potential differencesm(s)
2m(so) is an independent quantity~here, species are desig
nated by their hard-sphere diameter, andso is an arbitrarily
selected reference species!. In particular, in an IP mixture

m~s!2m~so!5c0 ln~s/so! ~16!

where c0.21 is a dimensionless parameter that can
treated as a state variable. This mixture is interesting beca
it has no intrinsic molecular length scale. Consequently,
properties have a trivial scaling dependence on the den
~akin to the way hard spheres depend on temperature!. The
pressureP obeys@23#

Z[bP/r5~41c0!/3, ~17!

and the semigrand free energyY is of the form

FIG. 1. Error in free energy~per particle! of pure fcc hard-
sphere crystal at several densities, given as a function of the s
factor of the harmonic reference system. Values plotted are
energy as measured by molecular simulation, minus the cor
value as given by the Hall equation of state@22# and the data of
Frenkel and Ladd@20#. Results above the zero line are data
which the FEP simulations sampled configurations of the harmo
reference and perturbed into the hard-sphere system, while re
falling below the zero line were taken from simulations sampli
the hard-sphere crystal and perturbing into the harmonic refere
The dotted line is the difference in the~constant! entropy of the
hard-sphere target system and the~s-dependent! entropy of the ref-
erence~extensive entropies, not per particle!, for the system of den-
sity 1.3.
2-4
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VARIATIONAL FORMULA FOR THE FREE ENERGY . . . PHYSICAL REVIEW E68, 026122 ~2003!
bY5 ln~rL3!1~c011!ln~r1/3so!1 ln K~c0!, ~18!

whereK(c0) is independent of density. It is worth emphas
ing that these results are not limited to hard-sphere syste
but are true for any spherically symmetric potential polyd
perse in the sphere size.

The density-scaling properties of this system make it
pealing as a reference for the fluid phase, including mixtu
A simulation performed at one density can be used to per
into a target system~a pure fluid or a conventional mixture!
at the same or any other density. The match between th
reference and the target can be adjusted with the param
c0 . Small values of this parameter cause the IP mixture to
populated by small particles, thus giving a low-density s
tem in the sense of the total volume occupied~low packing
fraction!. As c0 is increased~at fixed number density!, the
distribution of diameters moves to larger spheres, and
mixture becomes suitable for the description of high-volum
fraction phases.

Simulations were performed of systems of 32 IP ha
spheres with values ofc0 ranging from 0 to 40. The system
of interest, pure hard spheres, was represented by a syste
hard spheres polydisperse in ‘‘fictitious’’ diameters that a
completely decoupled from the interparticle potential. T
approach permits perturbing between two semigra
ensemble systems without dealing with the singularity t
arises in relating monodisperse and polydisperse fluids@24#.
Decoupled from the potential, the fictitious diameters ha
nothing constraining their size, so it is necessary to ado
different chemical potential distribution for them. It is hel
ful to select a distribution that leads to a diameter distrib
tion similar to the one adopted by the IP hard spheres.
following choice is suitable@25–27#:

@bm~s!2bm~so!#15c0 ln~s/so!2
5

4 F41c0

3
rG1/3

s

2
5

4 F41c0

3
rG2/3

s22
p

6

41c0

3
rs3.

~19!

The real quantity of interest, the Helmholtz free energyAHS
of the pure hard spheres, is simply related to the simulat
measured semigrand free energyY1 of the hard-sphere
fictitious-diameter system:

bAHS5bY11N lnF E
0

`

exp@bm~s!2bm~so!#1dsG .
~20!

The IP mixture is simulated at any convenient dens
Contributions to the FEP ensemble average, Eq.~5! ~written
with free energyY! are made as follows. The IP system
scaled to the density of interest, which entails rescaling
particle positions and diameters and thus causes no chan
the energy~no overlaps result!. Then for the FEP trial, all
diameters are converted to the size of the pure hard-sp
target, and if no overlap then results, the quan
exp$@bm(s)2bm(so)#12c0 ln(s/so)% is added to the FEP en
02612
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semble average~if overlap results, zero is added!. In this
manner averages are easily taken for multiple densities of
target system. Parallel tempering@28,29# was used to en-
hance sampling of IP systems at different values ofc0—40
systems were simulated at once, with values ofc0 selected
such that ‘‘adjacent’’ systems were in constant ratios of (c0
11) @30#. Results were tabulated for perturbation into fi
pure-fluid densitiesrs3: 0.1, 0.3, 0.5, 0.7, 0.9. Approxi
mately 107 elementary Monte Carlo trials were performe
for each IP system, and about 300 000 FEP samples w
taken in each.

Complementary simulations of 32 pure hard spheres w
performed to demonstrate the inequality Eq.~13!. Each pure-
fluid density was simulated independently. Perturbation i
the full range of IP references (c0 varying from 0 to 40! was
performed simultaneously by selecting the ‘‘fictitious’’ diam
eters from the distribution exp$@bm(s)2bm(so)#1% using a
rejection method@31# ~choosing a different realization of th
distribution for eachc0). With the diameters thus assigne
the system was examined for overlaps, reflecting the real
tion of the diameters in the IP system. If no overlap w
detected, the quantity exp$2@bm(s)2bm(so)#11c0 ln(s/so)%
was added to the ensemble average~zero added otherwise!.
About 108 elementary trials were performed at each dens
and about 33106 FEP measurements. The IP-referenc
system free energy as a function ofc0 can be evaluated from
a previously determined value by integrating the log-mom
of the distribution of diameters@23#.

The results are presented in Fig. 2. All free-energy m
surements taken by FEP from the IP reference~the 0 system!
lie above the correct value~here given by the Carnahan
Starling equation@32#! at each density@in accord with Eq.
~12!#, while those measured in simulations of the pure ha
sphere fluid~the 1 system! lie below @in agreement with Eq.
~13!#. The IP reference at low density~0.1! is best suited to
describe its pure-fluid counterpart: it gives the tightest bou
and provides a~noninfinite! result over the entire range o
c0 , with the best result~the minimum free energy! reached at
smallc0 . At high density nonoverlap perturbations are rare
encountered, and noninfinite results arise only at the larg
values ofc0 .

Opposing this, the FEP calculations from sampling t
pure fluid produce the broadest range of non-~negative!-
infinite results for the highest-density system. But the lo
density calculations again provide the tightest bounds.
fact, none of these FEP averages will converge to the e
result, regardless of the amount of sampling performed.
IP system always has some particles with diameters sm
than the pure fluid and thus separated by distances sm
than can be possible in the pure fluid of hard spheres.
inability to sample these configurations contributes to
systematic error in the FEP calculation. In accord with t
theme of this work, the inadequate sampling manifests it
as a free-energy estimate lying below the true value.

IV. DISCUSSION

In both examples~fluid and solid!, the upper and lower
bounds given by the inaccurate averages are asymmetr
2-5
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they do not mirror each other. In other words, for a giv
value of the variational parameter the errors from the t
calculations are not equal in magnitude, and thus it is no
good practice to average the two results to estimate the f
energy difference@33#. Recently, it has been suggested th
the magnitude of the error is related to the sign of the
tropy difference between the systems@10#. To examine this
point, the difference in entropy between the target and re
ence systems for one density is included in Figs. 1 and 2
is seen that the averages in both directions are most acc
in the range whereDS crosses zero. The FEP averages c
converge for finite sampling only when perturbation is p
formed as a ‘‘generalized insertion’’—from the high-entro
system to the low-entropy one@10,34#. Thus when the varia-
tional parameter is to the left of the zero ofDS, perturbation
must go from the reference to the hard-sphere target; whe
the right of zero, one should sample the hard-sphere sys
and perturb into the reference. However, the neces
amount of sampling for an accurate result scales
exp(2uDSu/k) @34#. The perturbation in both examples in
volves the whole system, so the entropy difference is ex
sive and quite large even for the small systems used here
for these FEP calculations it is difficult to generate sufficie
sampling to approach the equality in Eq.~6!.

V. CONCLUSION

This work derives and demonstrates a free-energy bo
that originates in the way inadequate sampling in FEP ca

FIG. 2. Error in free energy~per particle! of pure hard spheres a
several densities, given as a function of the reference-system p
dispersity parameterc0 . Values plotted are free energy as measu
by molecular simulation, minus the correct value as given by
Carnahan-Starling equation of state. Results above the zero lin
data in which the FEP simulations sampled configurations of a
mixture and perturbed into pure hard spheres, while results fal
below the zero line were taken from simulations sampling pure h
spheres and perturbing into IP references. Numbers on each
indicate the densityrs3 of the target system of pure hard sphere
Arrows indicate values going to6 infinity. The dotted line is
the ~extensive! entropy difference~as in Fig. 1! for systems of den-
sity 0.7.
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lations produces systematic error in the calculated free
ergy. The direction of the bound~i.e., upper or lower! is
determined only by the direction of perturbation~i.e., the
choice of which system governs sampling in the simulatio!,
and not by the nature of the systems. In addition, the bo
can be tightened by~1! increasing the sample size and/or~2!
adjusting the variational parameter. Relatively small syste
were used in the demonstration of variational schemes ba
on the principle, but one can expect that the proposed
equalities will applya fortiori for larger systems, where sam
pling inadequacies are exacerbated. The examples here f
on the hard-sphere potential, but there is nothing about
inequality that limits it to this system. Solid-phase free en
gies for other models can be bounded using direct appl
tion of the ideas presented in the example here, using
same type of harmonic reference as employed for h
spheres. Extension of the fluid-phase example to other m
els is less straightforward, because the IP reference woul
different and thus requires some effort to characterize it
fore applying it in a variational scheme. One might also co
sider other types of reference-target pairs. It would proba
be possible to obtain very tight bounds if this methodolo
were applied to describe an intensive~size-independent!
free-energy change, such as that associated with the inse
~or deletion! of a molecule in a system. For the particl
insertion free-energy change, the target and reference
fixed ~defined as systems differing only in the presence
one molecule!, and thus they provide no variational degr
of freedom. Instead, a staging scheme can be applied@35,36#,
with an intermediate~designatedW! that has the neede
variational flexibility. Then bounds on the free-energy diffe
ence between the 0 and 1 systems can be derived from
energy bounds applying to each stage, leading to

~A12AW!sim,12~A02AW!sim,W

<~A12A0!exact<~A12AW!sim,W2~A02AW!sim,0.

~21!

The W system might, for example, interact as a real parti
does, but with a diameter that is scaled as a variational
rameter. The inequalities in Eq.~21! apply for any particular
value of the parameter, which can be adjusted to tighten e
inequality separately. Moreover, it is valid for any stag
free-energy calculation, not just for this particle-insertion e
ample.

Another place where a result of this type could find a
plication is in the evaluation of free energies for syste
modeled with computationally expensive potentials, such
encountered in the Car-Parinello method@37# or other ab
initio techniques that are likely to come into wider use in t
future. Simulations of these systems usually work with sm
numbers of molecules, and the expense involved in mu
stage FEP calculations, thermodynamic integration, or n
equilibrium paths make it especially difficult to measure fr
energies in such systems. This application might be part
larly important for solid-phase systems, where partic
insertion methods cannot be applied.
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