PHYSICAL REVIEW E 68, 026120 (2003
Ising model with periodic pinning of mobile defects
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A two-dimensional Ising model with short-range interactions and mobile defects describing the formation
and thermal destruction of defect stripes is studied. In particular, the effect of a local pinning of the defects at
the sites of straight equidistant lines is analyzed using Monte Carlo simulations and the transfer matrix method.
The pinning leads to a long-range ordered magnetic phase at low temperatures. The dependence of the phase
transition temperature, at which the defect stripes are destabilized, on the pinning strength is determined. The
transition seems to be of first order, with and without pinning.
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[. INTRODUCTION on the spin ordering are intriguing features of the present
model. In particular, at low temperatures spin correlations

Striped magnetic structures in high-temperature supercorare expected to become long ranged for nonvanishing pin-
ductors and related materials have attracted much interest faing, while they decay algebraically whdf,=0 [9]. The
more than a decade, both theoretically and experimentallgependence of the phase transition, at which the defect
[1-6]. In that context, motivated by recent experiments onstripes get destroyed, df, is an interesting aspect of the
(Sr,Ca,La),Cu,y0,; [7,8], a class of rather simple two- model as well. Without pinning, the transition temperature
dimensional Ising models has been introduced describing thead been estimated, but the type of the transition had not
formation and thermal destruction of defect strip@k been studied.

The model consists of spifi-Ising variables, mimicking The layout of the paper is as follows. In the following
CU* ions, and nonmagnetic defec&=0, corresponding to  section, we shall introduce the model and the methods,
holes. The spins are arranged in chains with antiferromagMonte Carlo simulations and transfer matrix calculations.
netic interactions),<0, between neighboring spins in adja- Results will then be presented and discussed in Sec. lll. Fi-
cent chains. Along the chains, neighboring spins are coupledally, a summary concludes the paper article.
ferromagnetically,J>0, while next-nearest neighbor spins
separated by a defect interact antiferromagneticdljy; 0. Il. MODEL AND METHODS
The defects are allowed to move along the chain through the . . . .
crystal. The mobility of the defects is determined by the We consider an Ising model on a square lattice, setting the

changes in the magnetic energy encountered during their mégttice constant equal to one. Each lattice sitg)(is occu-
tion (annealed Ising modgl pied either by a spi; ;= +1 or by a defect corresponding

In a “minimal variant” of the model, the couplings in the 0 SPin zeroS ;=0, see Fig. 1. The defects are mobile along
chains,J and|J,|, are assumed to be indefinitely strong. Theone_of the axes of the Iattlce,_ the chain direction. The sites in
minimal model has been shown to describe the formation of1€ Jth chain are denoted by {). We assume a ferromag-
defect stripes, oriented perpendicular to the chains, whosgetic coupling,J>0, between neighboring spir§ ; and
coherency gets destroyed at a phase transition. At the transpi=1; 8long the chain, augmented by an antiferromagnetic
tion, one observes a pairing effect for the defects in thdntéraction,Jo<0, between those next-nearest spins in the
chains, reflecting an effectively attractive interaction be-Same chain, which are separated by a defect. Spins in adja-
tween defects mediated by the magnetic interaction betweefnt chainsS; and S, ;..,, are coupled antiferromagneti-
the chains,J,. The thermal behavior of the full model, cally,Ja<<0. Usually a minimal distance of two lattice spac-
choosing experimentally realistic values of the couplings innds between neighboring defects in a chain is assumed, i.e.,
the chains, resembles closely that of the minimal m¢egl WO defects are separated by at least one spin due to strong

The aim of this paper is to study the impact of a |Oca|short.-range repuIS|on .between defec(ajternatlv'ely, one
defect pinning energy of strengkh, on thermal properties of may introduce an addltlonal ferromagnetllc coupllng between
the minimal model. In the experimentally studied SPINS separated by a pair of nearest-neighboring defetts
(Sr,Ca,La),Cu,,0,; compoundg7,8], holes are pinned by local pinning potential acts on the defects, lowering the en-
Ca or La ions, which, in turn, are rather immaobile. In the

following, we assume that the fixed pinning sites form ' Jo J
straight equidistant lines perpendicular to the chains, with the L P S S

. . . . l’ J
number of pinning sites being equal to the number of defects. -0++++0——— ] a
Beyond the specific experimental motivation, the model is +O———DO++++
hoped and believed to be of genuine theoretical interest. E,

Of course, the model still allows for thermal fluctuations
of the defect stripes at finite pinning strength. Indeed, the FIG. 1. Sketch of the interactions in the Ising model on a square
instability of the defect stripes and the effects of the pinningattice with pinning lines and mobile defects.
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ergy of the defects at fixed sites by an amoknpt In the _
following, we choose pinning sites along equidistant straight Ga(i,r)= ( > <3,j3i+r,j>) / L, 2
lines,i=i,, perpendicular to the chains with the number of !
pinning sites being equal to the number of defeblg, Ac- 54 perpendicular to the chains,
cordingly, the Hamiltonian of the model may be written as
Gz<i,r>=($ <s,ja,j+r>)/L, tc)

H=—; [JS,Sic1j+30SiS+2j(1-S% 1)) +3.S ;S 1

considering systems witM=L. Without pinning, the de-
fects are expected to be delocalized so that there is full trans-

lational invariance, and the spin correlations do not depend

see Fig. 1. We assume that the number of defects is the sargg ;. Note that in the thermodynamic limit for infinitely large
in each chain, determined by the defect concentran  istancer— oo, the perpendicular correlatioris,(r) deter-
denoting the total number of defects divided by the totalyine the profile of the squared magnetization

number of sitesN4/N. In this study, we se® =0.1, where

+Ep(1_s|2,j)5i,ip]! (1

the distance between the pinning lines is then ten lattice m2(i)= lim m2(i) = lim G(i,L/2). (4)
spacings. Lo Lo

In the following we consider the “minimal” variant of the
model by assuming the couplings in the chaimnd|Jy|, to We also calculated less common microscopic quantities

be indefinitely strond9]. Thence the spins form intact clus- which describe the stability of the defect stripes and the or-
ters in the chains between two consecutive defects, andering of the defects in the chains. In particular, we com-
neighboring spin clusters have opposite sign. Thermal quarputed the average minimal distandg between each defect
tities depend only on, saykgT/|J,| and the ratioq, in chainj, at position {y,j), and those in the next chain, at
=E,/|J4]. (ig,j+1), ie.,

To study the minimal model with pinning of mobile de-
fects, we used Monte Carlo techniqUé$®] and the transfer L,
matrix method 11]. as) dm:iZd (minfig—ig|)/Ng, (5

In the simulations, a new configuration of spins and de-
fects may be generated by exchanging a defect with a neigltividing the sum by the number of defect; . Furthermore,
boring spin in a chain, reversing the sign of the spin to keegve calculated the cluster distributiomy(1), denoting the
intact spin clusters. The energy change associated with thisrobability that consecutive defects in a chain are separated
elementary process is determined hyandE,, see Hamil- by | spins, in analogy to the distribution of cluster lengths in
tonian(1). As usual, the related Boltzmann factor determinespercolation theory12]. Our main emphasis will be on pairs
the probability of accepting the new configuratih0]. Of  of defects withl=1. Finally, it turned out to be quite useful

course, simulations are performed on finite lattices With  to visualize the microscopic spin and defect configurations as
=L XM sites,L being the number of sites in a chain. We encountered during the simulation.

shall present results foL=M. We employ full periodic
boundary conditions. To investigate finite size effects, the
linear dimension& andM were varied from 20 to 320. Typi-
cally, runs of at least a few #Monte Carlo steps per defect  In the ground stateT=0, of the minimal model, the de-
were performed, averaging then over such realizations to esects form straight stripes perpendicular to the chains, sepa-
timate errorbars. The pinning strengtii=E,/|J,| ranged rating antiferromagnetic domains of spins. Without pinning,
from 0 to 2.0. E,=0, the ground state is highly degenerate. Each arrange-
The transfer matrix calculations were done in the standardhent of defect stripes separated by at least two lattice spac-
way [11] with the matrices representing the interactions ofings has the same lowest possible energy, resulting in an
the entire chains. All eigenvalues and eigenvectors werexponential decay of the correlatiord,; parallel to the
computed numerically, enabling us to derive quantities forchains, while the spins are perfectly correlated perpendicular
arbitrary M, being finite or infinite. Studying the cad@ to the chaing9]. By introducing the pinning potentiak,,
=0.1, L was chosen to be 20, with two defects per chain.>0, the defect stripes coincide with the pinning linesj at
Larger systems, i.e., with being at least 40, are outside the =i,. Obviously,G, continues to oscillate, but now with a
current reach of computer facilities. Of course, one mayconstant amplitude. Of course, the spin correlations perpen-
study the case of more than two defect stripes in the case aficular to the chaingG,(r), are equal to 1 for even distances
L =20 by enlargening the defect concentration. We shall conr and —1 for odd distances, when staying away from the
sider here, however, only the case of a fixed valueBof pinning lines,ip,.
=0.1. g, ranged from 0 to 5.0. Increasing the temperatur€>0, the defects are allowed
Physical quantities of interest include the specific @at to move so that the stripes start to meander and finally break
and spin correlation functionglepending, in general, on the up, as exemplified in typical Monte Carlo configurations,
distance from the pinning lines, i.e., o), parallel to the depicted in Fig. 2. Due to the pinning the defects tend to
chains, stick to the pinning lines at low temperatures. The detach-

Ill. RESULTS
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FIG. 2. Typical Monte Carlo equilibrium configurations of the minimal moée+ 0.1 andg,=1.0, of sizeL =M =40 at temperatures
kgT/|Ja|=0.8(a), 2.3 (b), and 2.9(c). Only parts of the systems are shown.

ment or depinning of the defects from those lines is expectedetization especially near the center between the two pinning
to occur without phase transition, as had been shown in thiines is largely independent of system size. At high tempera-
framework of solid-on-solid(SOS models with pinning tures, the magnetization decreases appreciably with increas-
[13]. The mapping of the minimal model onto the standarding system size, tending to zero in the thermodynamic limit.
SOS model has been discussed beféteHowever, once the Indeed, finite-size analyses allow one to locate the phase
defects take positions far from the pinning sites, the magtransition temperature as a function of the pinning strength,
netic interactions may mediate effectively attractive cou-T.(q,=Ey/|Js|). Estimates agree with those obtained from
plings between the defects. As for vanishing pinn[i®j,  analyses of the specific he@t to be discussed next. Note
these couplings, absent in standard SOS models, may evetrat M| (k) (or an average over these absolute line magneti-
tually destroy the coherency of the defect stripes through aations may be considered as the order parameter of the
phase transition, as will be discussed below. We shall provideroblem.

numerical evidence that the transition is of first order. The Results for the specific he& are depicted in Figs.(4)
effect of the pinning on the meandering and breaking up otind 4b) for lattices with linear dimensioh =20 and 80 at

the stripes, for various physical quantities, is exemplified inpinning 0<q,=<1.0. At fixed pinning and varying tempera-
Figs. 3—7. Note that in most of the figures we did not include
errorbars since they were, typically, not larger than the size 1.0
of the symbols. Such a statement would not hold for appre- A
ciably shorter Monte Carlo runs because of the rather slow 09
fluctuations of the defect stripes.

At T>0, without pinning,E,=0, the model shows no
magnetic long-range order. The spin correlation function par-
allel to the chainsG,, has been shown, doing a free-fermion i
calculation, to decay algebraically at low temperaty@s 06k
Indeed, our new Monte Carlo results both @& andG, are . [
consistent with such an algebraic decay in the low-=, 05 [
temperature phase characterized by meandering defec
stripes whose positions can fluctuate rather freely. In particu- 04
lar, for finite systems of size XL, the profile of the absolute
value of the magnetizatiofm, (i)|=Vm?Z(i), reflects the
translational invariance, i.e., it does not dependi,oand it
decreases significantly with increasing system dizeln [
marked contrast, with pinnindz,>0, at low temperatures 01f
long-range magnetic order sets in, as seen easily from th [
profiles of the absolute magnetization between two pinning 0.0
lines. The profiles are denoted in the following b (k)
with k running from 1 to 11k=1 andk=11 denote the two
pinning lines, the center line in between them iskat6. FIG. 3. Profiles of the absolute magnetizatMn(k), at pinning
Obviously, one has! (12—k) =M, (k) for reasons of sym-  strengthq,=0.2 (full symbol9 and 2.0(open symbols with k
metry. Examples of pertinent profiles are displayed in Fig. 3=1 (squarek 2 (diamonds, 3 (triangles up, 4 (triangles leff, 5
at weak,q,=0.2, and strongq,= 2.0, pinning. Long-range (triangles dowi, and 6(triangles right. Results have been obtained
order at low temperatures follows from the fact that the magfrom simulations of systems of size=M =160.

08|

07|
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(b) FIG. 5. Size dependence of the location of the maximum in the
,,,,,,,,, e specific heat,T,{L), as obtained from simulations, &f,=0.2
i A ] (squarey 0.5 (diamonds, 1.0 (triangles up, and 2.0(triangles lefi
0.25 |- - for L=M ranging from 20 to 160.
i 1 excited large fluctuations of the defect positions. At strong
0.20 |- . pinning, these fluctuations are expected to set in once the
[ ] defects start to detach in significant numbers from the pin-
- 1 ning lines, giving then rise to a large specific heat, see Fig.
0145 ] 4(b). In any event, the height of the second maximum in-
© i 1 creases clearly with increasing system size, indicating a
s . phase transition in the thermodynamic linit—. To esti-
010 - N mate the transition temperature, we plotfgg,(L) versus
- oo 3.0 pr—r T
0.05 |- = g 0°]
i ] : JCAAE
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FIG. 4. Specific heaC at q,=0 (squareg 0.2 (circles, 0.5 . : 4 k4 3
(diamond$, and 1.0 (triangles, for systems of sizega) L=M £ is5E [ ¢ o™
=20, showing results from transfer matrix calculatideslid line) o E i 3
and simulations, and of siz&) L=M =80, obtained from simula- - E
tions. - ]
1.0 | —
ture, one observes two maxima @ The maximum at the
lower temperature is almost independent of the system size F 3
and it stems from the meandering of the defects stripes witr 95 E
few excitations, i.e., a small kink density, as we checked by of :
analyzing and simulating corresponding SOS or TSK - T | | | | | .
X . L. .. ;.M....................'
(terrace-step-kinkmodels[ 13—15 with pinning, similarly to 0-00.0 ot 08 12 16 20 24 28 32 36

the case without pinninfd]. The lower maximum is shifted ko T/, |

towards higher temperatures when increasing the pinning 8 a

strengthE,. It may eventually be masked by the upper FIG. 6. Average minimal distance between defects in adjacent
maximum. The upper maximum @&, occurring atT (L), rows dy(T), at g,=2.0, simulating systems of size=M =20
signals the instability of the defect stripes due to thermally(squarel 40 (diamonds$, 80 (triangles, and 160(circles.
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(AL S e B B L DR B L B (—rl&). Indeed, in the thermodynamic limit far>T,, the

- ] height of the plateau at largeobviously corresponds to the
016 - ©00000] standard correlation length Much care is needed close to

C °° ] the transition because very large system sizes may have to be
0.14 - o.«~°' AAAL] studied to get an extended plateau. From simulations of sys-

[ o"; AAA ] tems withL=M =160, we determined the correlation length
012 HE 7] versus temperature, at various fixgg. Using linear ex-

[ A..f‘ ] trapolation neaiT(q,), see above, we estimate the perpen-
= o1or ° 1 dicular correlation length at the transition. It is found to in-
=, [ Lo 0% crease from about 20 lattice spacings Egt/|J,|=2.0 to
c 008 o about 30 lattice spacings Bt,=0; i.e., it is finite. This find-

[ 4 # ] ing supports the suggestion that the destruction of the defect

006 I~ 5 b ] stripes occurs through a phase transition of first order, with
[ ¢ ] and also without pinning. A remark of caution may be added
0.04 - ; s v for the case of vanishing pinning. There, spin correlations in

B o ; 6 E.u-“u ] the low-temperature phase decay algebraically, and one
0.02 - i A g qa” E might expect a transition of Kosterlitz-Thouless type. As has
0.00 B : qﬁ“nl ] been noted before, however, algebraic order can be also de-

00 04 08 12 18 20 24 28 32 stroyed by a transition of first ord@t?,lSJ.
kg T/, The destruction of the defect stripes can be seen rather
directly in the average minimal distance between defects in
FIG. 7. Temperature dependence of the probability for pairs ofadjacent chaingj,,. In Fig. 6, simulational data for system
neighboring defectsny(1=1), atq,=2.0, simulating systems of sjzesL =M ranging from 20 to 160, af,=2.0, are dis-
size L=M=20 (squares 40 (diamonds, 80 (triangles, and 160  played. The temperature dependence gfesembles closely
(circles). the one found for the model without pinnifi§]. While at
low temperaturesd,(T) does not depend significantly on
1L, with L going up to 160, see Fig. 5. From a linear ex- the system size, it starts to rise rapidly at some characteristic
trapolation one may approximate the phase transition tememperature, corresponding T@,,,{L) in the case of the spe-
peratureT(gp) = TmadL=2). Tc(qp) is found to increase cific heat, with the height of the maximum in the temperature
monotonically withg, . More specifically, we obtain the fol- derivative ofd,, increasing strongly with larger system size.
lowing estimates from the data depicted in Fig. 5:The location of the maximum, signaling the breaking up of
kgTc(p)/[Jal =1.1+0.1 atq,=0.2 (being close to the esti- the stripes, moves to lower temperatures aets larger. The
mate atq,=0 [9]), 1.30+0.1 atq,=0.5, 1.55-0.1 atq, quantitative behavior is quite similar to the one of the spe-
=1.0, and 2.1&0.05 atq,=2.0, with errorbars reflecting cific heat and the magnetization profiles, for the various pin-
some of the uncertainty in the linear extrapolation. Finitening strengthsy,=0, 0.2, 0.5, 1.0, and 2.0.
size analyses for other quantities lead to similar estimates for The destabilization of the stripes seems to be driven by
the possible transition temperature, as already mentioned igffectively attractive couplings between consecutive defects
context of the magnetization profiles. in a chain, mediated by the spin interactiahs (possibly
With pinning, the magnetization changes more and morgeminiscent of the spin-bag mechanih®]). Indeed, effec-
drastically for larger systems close Tq,,{L), compare to tively attractive couplings may occur when two such defects,
Fig. 3. This behavior may suggest that in the thermodynamisay, in chainj, at sites {,j) and (+m,j), are displaced
limit the phase transition is of first order, with a jump in the strongly with respect to corresponding defects in adjacent
magnetization aff .. To clarify this aspect, we determined chains,j*1, so that the spins in those chains at sites in
the perpendicular correlation length, following frofa,, between {,j=1) and {+m,j*=1) have the same sign as the
when approaching, from high temperatures. The correla- spins between the two defects in chainSuch a situation
tion length may be estimated from analyzing the functionmay be realized, for instance, when three defects in chain

g
=

[16] are in a cage of four defects in total, at, say, sitgg+1)
1 and ( +k,j=*=1), in the neighboring chains with spin clusters
Eor(r) = _(d(ln G2(r))) of the same sign between the two pairs of defects in these
ef d(r) chainsj—1 andj+1. Then two of the three defects in the

cage will move towards each oth]. In any event, due to

the effectively attractive coupling, mediated by, two con-

secutive defects in chajrtend to form a pair of next-nearest

neighboring defects having the minimal separation distance
Typically, the “effective correlation length’é.«(r) in-  of two lattice spacings. The temperature and size dependence

creases rather quickly monotonically for smallintil it ac-  of the probability to find such pairs of defects, given by the

quires a plateaulike behavior, and finally it rises steeply dugair probabilityny(1=1), is depicted in Fig. 7, at fixed pin-

to the finite size effect and periodic boundary conditions.ning strengthg,=2.0 and various system sizes. In general,

Obviously, at a plateau of heighf,, one hasG,xexp the pronounced increase of the pair probability occurs close

with  Go(r)=2, |Gy(i,n]/L. (6)
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to the temperatur@ ,,.,(L), where other quantities signal the pinning, meandering, and, finally at higher temperatures, the
thermal instability of the defect stripes as well. For largerdestruction of defect stripes.
system sizes the increaserig(1) gets sharper and sharper  The pinning gives rise to a long-range ordered magnetic
in accordance with a transition of first order. At strong pin-phase at low temperatures while magnetic correlations decay
ning, the pair probability rises quite drastically already inalgebraically at low temperatures without pinning.
systems of moderate size, see Fig. 7, possibly reflecting the The thermal instability of the defect stripes, which had
moderate correlation length at the transition, as discusselgeen already identified for vanishing pinning, shifts towards
above. higher temperatures as the pinning strength increases. The
Note that the type of stripe instability we observe here isinstability is signaled by pronounced anomalies, among oth-
not included in standard descriptions of wall instabilities iners, in the specific heat, in the magnetization profile, in the
two dimensions[17,20—22, where either the number of probability of defect pairs with shortest separation distance,
walls is not fixed, giving rise to incommensurate structuresand in the average minimal distance between defects in
or dislocations play an important role in the context of melt-neighboring chains. The breaking up of the stripes is caused
ing of crystals. Also the bunching of steps in TSK modelsby an effectively attractive coupling between the defects me-
with attractive step-step interactiof@3] or instabilities in  diated by the interchain interactions between spins in adja-
polymer filaments due to attractive couplinf@4,25 are  cent chains. The attractive coupling leads to a pairing of
rather different from the destruction of defect stripes due talefects.
the pairing of defects induced by the inter-chain magnetic We provide evidence that the stripe instability results in a
interactions], . phase transition of first order, accompanied, in the thermo-
dynamic limit, by jumps in various quantities, including the
IV. SUMMARY magnetization profile and the correlation length. This char-
acter of the transition seems to persist for vanishing pinning.
In this paper a two-dimensional Ising model with periodic
local pinning of mobile defects has been studied. Albeit the

m_odel has_ been_motivated by recent e>_<periments on cuprates ACKNOWLEDGMENTS
with low-dimensional magnetic interactions, the model is be- )
lieved to be of genuine theoretical interest as well. It is a pleasure to thank B. Bainer, R. Klingeler, R.

In particular, based on Monte Carlo simulations and transteidl, V. L. Pokrovsky, and S. Scheidl for very helpful sug-
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