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The physical origin of the backbendings in the equations of state of finite but not necessarily small systems
is studied in the Ising model with fixed magnetizatidhFM) by means of the topological properties of the
observable distributions and the analysis of the largest cluster with increasing lattice size. Looking at the
convexity anomalies of the IMFM thermodynamic potential, it is shown that the order of the transition at the
thermodynamic limit can be recognized in finite systems independently of the lattice size. General statistical
mechanics arguments and analytical calculations suggest that the backbending in the caloric curve is a transient
behavior which should not converge to a plateau in the thermodynamic limit, while the first-order trafsition
the Ehrenfest sengés still signaled by a discontinuity in the magnetization equation of state.
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[. INTRODUCTION microcanonical entropy as a function of energy. This seems
to be confirmed by recent analytic argumelrit§] which lead

The origin of singularities in thermodynamic functions to the conclusion that the transition is continuous, in the
which characterize infinite systems undergoing phase transsense that the caloric curve has no plateau in the thermody-
tions is a central issue in statistical mechanics. Howevemamic limit. However, according to R€f13], a backbending
physical systems are finite. It is therefore necessary to introappears in the caloric curve of very large lattices. The ther-
duce specific tools which allow to detect and characterizenodynamic limit of this behavior is not clear in view of the
these singularities in the corresponding finite systems. A pogresent status of Monte Carlo simulations. Moreover, the
sible approach deals with the distribution of zeroes of thecluster properties of small IMFM lattices show different
partition sum in the complex temperature plafig Alterna-  signs of critical behaviof15]. Together with the information
tively, it has been observed that nonanalyticities can origicoming from the caloric curve, this could suggest that the
nate from a backbending in an equation of state correspondpparent order of the transition in the IMFM model changes
ing to an anomalous curvature of the thermodynamiawith the size of the system.
potential surfacg2]. In particular, a convex intruder in the In the present paper, we shall try to clarify these issues by
microcanonical entropy leading to a backbending in theusing a definition of phase transitions based on the occur-
functional relationship between temperature and enérgy rence of bimodalities in the probability distribution of an
loric curve has been proposed as a general definition obbservablg16]. This definition is a generalization of the one
first-order phase transitions in finite systefi. Indeed, based on curvature anomalies and satisfies the Yang Lee unit
negative heat capacities have been observed and connectttle theorem in the thermodynamic linjit6,17]. Since, in
to first-order phase transitions in different models-6] and  Gibbs equilibria, a bimodal distribution of an observable is
even experimentally measurgd-9|. connected to the backbending of the associated equation of

In this context, the Ising model with fixed magnetization state in the ensemble where the observable is constrained by
(IMFM) presents some very peculiar features. For small sysa conservation law, this study will allow us to elucidate the
tems, the microcanonical caloric curve which relates energyelationship between backbendings, constraints, and the or-
to temperature does not show any backbending in the tender of the transition.
perature domain where a first-order phase transition exists in We shall first analyze the topology of the events in the
the Ising mode[10]. This finding shows that backbendings Ising model(Sec. 1) to show that many properties of IMFM
are deeply connected to the constraints which are imposed a@an be understood starting from the standard Ising model.
the system[10,11] and their presence may depend on theWe shall see that backbendings are not characteristic of the
physical quantities which are used in order to define the conealoric curve only but can appear in other equations of state
sidered statistical ensemble as it will be shown |4iX. It  also and closely depend on the constraints applied to the
is well known that IMFM is isomorphous to an isochore system, i.e., on the statistical ensemble in which the system
lattice gas model. If we consider that no divergence is exis studied. In Sec. Ill, we shall consider the behavior of the
pected for the heat capacity at constant volume in the madMFM and see that for all sizes, the transition can be unam-
roscopic liquid to gas phase transition, the absence of a backiguously recognized as a first order transition even if a
bending in the microcanonical caloric curve illustrates thebackbending appears in the microcanonical caloric curve
fact that there may be no one to one correspondence betweenly for large sizes and may disappear at the thermodynamic
first-order phase transitions and convexity anomalies of théimit. Concerning this limit, a first-order transition does not
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FIG. 1. Ising calculation of ah =6 cubic lattice with periodic 0.15 =
boundary conditions at a subcritical temperatlire T... Left side: 0.102? 3 E
magnetization distribution with a negative, zero, and positive exter- 0.075 E E
nal fields. Right sidetfull line) average magnetization as a function 0.05 E
of the external fieldisymbol3 field hy, in the IMFM model ob- 0'028 3 o

tained by derivation of the magnetization distribution at zero field _1‘ =
[see Eq(5)].

!mply the convergence of the backbending to a fmlt.e energy FIG. 2. (Color onling Magnetization versus energy distributions
jump. Some general arguments for a zero energy discontinu-. . e . :
. . - . with a zero external field for ah=6 Ising lattice at different tem-
ity will be given in Sec. IV and complemented by a study of peratures
cluster properties. In order to confirm the outcome of the '
numerical simulations, an analytical model of a finite systenpasses through a bimodality of the magnetization distribu-
with negative heat capacity converging to a caloric curvetion, shown in the left part of Fig. 1, which can be taken as a
which does not show a plateau in the thermodynamic limitdefinition of phase coexistence, the two peaks being associ-
even if the system is undergoing a first-order phase transated with the two phasg46,17,19. The transition field is
tion, will be given in Sec. V. the one for which the two peaks have the same height so that
the most probable magnetization jumps from negative to
positive values. For symmetry reasons, this, of course, oc-
curs ath=0. The intuitive understanding of phase coexist-

We shall first concentrate on the well known Ising modelence given by this topological definition is clearly seen in
to show that the topologic properties of observable distribufig. 2 which gives the magnetization distribution as a func-
tions [16] allow us to get some hint about the behavior of thetion of temperature, for the sante=6 lattice ath=0 field.
IMFM model. At supercritical temperatures the distributions are normal

The order parameter of the standard Ising model is thguhile the critical point can be seen as a bifurcation point
magnetizatiorM = Z;s;, wheres;=*1 and the sum extends from which the distribution splits into two separated compo-
to theN sites of a lattice. It is interesting to note that becausenents or phases.
of the mapping between the Ising model and the Lattice Gas |t is important to note that a bimodality in the distribution
models;=2n;—1, a spin ups;=1 can also interpreted as an of an observable implies a backbending for the associated
occupied siten;=1. Then, the magnetization is mapped into equation of state in the statistical ensemble where this ob-
the order parameter for the Lattice Gas model, which is nothservable is controlled on an event by event basis. Let us see
ing but the number of particles=X;n; . Since the volume is  this in the case of the Ising model with a magnetic field
fixed, A indeed corresponds to the densjpy=A/N, the (grand canonical ensempjavith partition function
known order parameter of the liquid-gas phase transition. We
shall also use the average magnetization permeiteM/N
which is then isomorphous to a particle density wia 2p
—1. In the Ising model, neighboring sites interact via a con- ) ] )
stant attractive coupling<<0. In our numerical implemen- WhergﬁzT’l andW(E,M) is the number of configurations
tations of the model we have considered three-dimensiondl’ Microstates with energl and magnetizatioM, and the
cubic lattices characterized by a linear dimensioaN¥®  Ising model with fixed magnetizatioM (canonical en-
with periodic boundary conditions. Details about the Me-Semblg, with partition function
tropolis simulations can be found in R¢L8].

Below the critical temperatur€;, the Ising model shows
a first-order phase transition at zero fiélet O which is char-
actgrizgd, in infinite s_ystems, by a d.iscontir)ui.ty of 'ghe Mad-rhe two partition functions are related by
netization when the field changes sign. This jump is clearly
visible in the standard average magnetization versus field
equation of state already for a lattice as smallLas6 as
shown in the right part of Fig. 1. The transition from the
dominantly negative to the dominantly positive solution The magnetization distribution of the Ising model reads

Il. TOPOLOGY OF EVENTS IN THE ISING MODEL

zﬁh=§A W(E,M)e AE-hM), (1)

zﬁ(M)zé W(E,M)e ™ FE, 2)

zﬂh=% Z5(M)ePW), (3)
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1 Z (M In particular, the bimodality of the magnetization distribu-

— —pe-nmy _ 26EM) anmy ; : :

Pgn(M)= 7 ; W(E,M)e =~ —¢€ : tion observed for the standard Ising model with no con-
Ah Ah 4) straints on the magnetizatiolm€0) at subcritical tempera-

tures (Fig. 2) implies that the magnetic susceptibility of
This equation shows that the magnetization distribution”v”:'vI IS negative for magnetization domam_s lying betW‘??”
pgn(M) in the standard Ising can be directly related to thethe TWO do:‘mnant peak§ of Ihsmg. This r_leg_atlve s.uscept|b|ll_ty,|
partition sum of the IMFM. The thermodynamic relations for analogously tq a negatl\_/e eat capacity in a microcanonica
the IMFM can thus at least, in principle, be calculated fromense_mbls, |nd|catis %_flrsg OIFdEf fpf;}ase transition. Thg,_ con-
pan(M) without a direct simulation of the IMFM29]. In  ection between the bimodality of the magnetization distri-
particular, the equation of state related to the magnetizatian’lJtlon and a negative susceptibiiity is valid for all finite sizes
in the IMEM reads up to the therr_nodypamm ]|m|t. Therefore, the. v.veII.-knovv_n
fact that the Ising bimodality converges to a finite jump in
the thermodynamic limit guarantees that the corresponding
hy=— l M: — E M+h_ (5) phase transition in IMFM is also first-order up to the ther-
B M B M modynamic limit. This situation is analogous to the relation-
ship between the grandcanonical and the canonical en-
Equation(5) shows that a bimodality ipgn(M) implies a  sembles discussed in the context of the Yang-Lee theorems
backbending of the intensive parametgy (which has the [20].
dimension of a magnetic fieldissociated with the magneti-  |n the recent literature of phase transitions in finite sys-
zation as shown on the right-hand side of Fig. 1. It is importems[3], backbendings have been often observed in the mi-
tant to stress thdty is not a mathematical artifact. Outside crocanonical caloric curve, leading to negative heat capacity.
the coexistence region, it represents the physical magneticollowing the general relationship between ensembles dis-
field which, applied to Ising, givedl as the most probable cussed above, a negative heat capacity univocally implies a
response. Indeed, in the presence of an external ffietdle  pimodal energy distribution in the corresponding canonical
most probable magnetization should fulfill ensemble. Figure 2 shows that because of the symmetry be-
tween spins up and down in the Ising Hamiltonian, the two
dInpgp(M)  dInZg(M) magnetization solutions correspond to the same energy. This
IM T oM +Bh=p(h—hy)=0, (6 means that the energy cannot be used as an order parameter
for this model. On the other hand, all variables correlated to

i.e., the(most probableresponse id if the applied field is the magnetization can present a bimodality, i.e_., can be con-
h=hy, . This is true as long as the system is not undergoingidered as order parameters. As an example, Fig. 3 shows the
a phase transition, i.e., as long as ). has only one solu- correlation between the magnenzauon anq the size of the
tion. Indeed, Eq(6) defines the extrema of the probability largest connected domaiAn,y, here defined with the
distribution. When the solution is unique this unique extre-Coniglio-Klein algorithm[21] in its simplified version pro-
mum can only be a maximum. In the transition regions, i.e.Posed by Campi and Kriving22].
in the backbending region, E¢6) has three solutions, two
maxima and a minimum in between. This corresponds to the
subcritical temperatures for whighg,(M) is bimodal in a
region arounch=0. In this regime, the intervakh,, asso- In the preceding section, we have recalled that an order
ciated with the backbending corresponds exactly to the intetparameter of a first-order phase transition can be defined as
val Ah for which pg,(M) is bimodal. The values ofH,M) any observableO which allows us to separate the two
inside the coexistence region are not equilibrium states in thphases, i.e., such that if events are sorted as a functi@p of
Ising model with magnetic field: the only physical ensemblethey split into two components separated by a minimum of
for experiments exploring coexistence is the IMFM and inthe distribution function. This definition is valid only if the
this casehy (and noth) is the real physical conjugate to the order parameter is free to fluctudiee., in the Ising model
magnetizatiorj 7-9]. If the order parameter is constrained by a conservation law
This discussion can be immediately extended to any gefi.e., in the IMFM), the first-order character of the transition
neric Gibbs equilibrium[16]. A phase coexistencéfirst-  can still be recognized from the backbending of the equation
order phase transitignis signaled by a bimodality in the of state relating the order parameter to its conjugate intensive
probability distribution of an extensive variable which canvariable. In the case of the IMFM, this would require to
then be identified as an order parameter. This topologicatalculate the derivatives of the partition sum for all values of
anomaly is equivalent to a convexity anomaly in the thermothe magnetization. However, because of the exact equiva-
dynamic potential of the ensemble in which the order paramlence between bimodalities in the intensive ensemble and
eter is constrained by a conservation ldextensive en- backbendings in the extensive ofeee Sec. )| the direct
semble, and reflects in a backbending of the associategimulation of the IMFM with different magnetizations is not
intensive variable in this extensive ensemble. A backbendingecessary. A single Ising calculation of the energy and mag-
in the order parameter equation of state is an alternative posetization distribution is sufficient to completely identify the
sible definition of a first-order phase transition in an exten-coexistence zone of IMFM and recognize the first-order
sive ensemble of a finite systel@]. character of the transition.

Ill. THE IMFM AND THE EFFECT OF CONSTRAINTS

026119-3



GULMINELLI et al. PHYSICAL REVIEW E 68, 026119 (2003

T~T

[

FIG. 3. (Color online Correla-
T m tion between magnetization and
01 02 03 04 05 06 07 08 09 1 the size of the largest connected
domain for anL=6 Ising lattice
with zero field at three different
temperature§ =4e, 4.8, 7.2.

qigll'l'H- \\I‘\I\‘IH'\H'III'III'HI

U,w

~;||||||1, ELCLLLT T[T T[T T[T I T

TT

1

° - - - -

)
SRR T [T TR

-06F T>T,

0.8
_7\\H\Hllllllllwm\Hl\\\:\\|||||||\H[|H|\|H|
10 0.1 0.2 0.3 0.4 05 06 0.7 08 09 1

Amax/ Aot

In the general case, bimodalities have not to be expected,, corresponds to the transition temperature, i.e., the tem-
in models such as IMFM where the order parameter is fixegberature at which the two maxima of the energy distribution
by a conservation lawsee, however, Ref§23,24 for an  have the same height. As shown in Fig.(I6ft), Apax iS
exception. However, in the case of finite systems, fluctua-correlated with the energl, so that the bimodality i\ 44
tions are not negligible and the relationship betwd&éand  reflects in a bimodality in the energy distribution. The bimo-
Anax IS NOt a one to one correspondence but rather a loosegality in the energy distribution implies that the microcanoni-
correlation. This implies that for finite systems, a bimodality cal IMFM caloric curve presents a backbending. We have
in the Aoy distribution can remain even in the constant mag-just interpreted this backbending as a finite-size effaot
netization ensemble. This is shown in Fig. 4, which displaysve shall come back to this point in the following secion
the A, ax distribution for the IMFM with a numbeA=60 of = However, for very small systems, this behavior is not visible.
positive spingor lattice gas particlesn a L=20 cubic lat-  This is shown in the right parts of Figs. 4 and 5 below, in
tice (corresponding to a magnetization=M/N=—0.985 agreement with the results of R¢fl3]. In the upper right
and a low densityy=0.0075) at a temperatuiie=T,, where  part of Fig. 5, the same system Af=60 positive spins now

occupies arL=5 lattice, corresponding to a magnetization
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Boss £ JE T Boge 0 02 0.4 0.60 0.20.40.60.8
Eggg% -5 %gigg g 1 e
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FIG. 4. IMFM largest connected domain distribution fopper eﬂel'g)//s
pard lattice sized =20 andL =5 with the sameA=60 number of
positive spinsflower parj lattice sized =50 andL =10 with the FIG. 5. (Color online A,.x vVersus energy correlations féup-
same density of positive spins=0.13 (same magnetizatiom,= per parj an A=60 system in arL. =20 andL =5 lattices;(lower
—-0.74). pard a p=0.13 system irL. =50 andL =10 lattices.
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m= —0.04 (or a densityp=0.48). The calculation has been  The situation can be clarified if we look at Fig. 7 which
done at a temperature such that the average erégis the  shows the correlation between energy and the mean cubic
same as in thé =20 case, to be sure that the expected re+adius of the system defined as

gion of the backbending is explored. TAg,., as well as the

E distributions are monomodal, and no bimodality is ever

seen for any value of in this small lattice. The fact that this V=
is correlated to a finite-size effect is demonstrated in the

lower part of Fig. 5, where the same trend is observed keep- i ) .
ing the reduced magnetization constant and varying only th@/_hereri is the distance from the _center of mass of the_ lattice.
size of the lattice. Figure 7 shows that the two different energy solutions or

This behavior can be understood because the correlatigh'ases which give the energy bimodality in the IMFM cor-
betweenA,, ., (and so the energyandM becomes looser the respond to very dlffere_nt gpatlal extensions. As a conse-
smaller the size of the system. For very small systems, th@ueénce, the two peaks in Figs. 5 and 7 can be related to the
width of the two peaks becomes comparable to their distanci/C 1Sing solutiong(see Fig. 2in a three-dimensional space
and the bimodality cannot be seen any more. that has volume as an extra dimension.

An intuitive understanding of this phenomenon can be ndeed, in the liquid-gas universality class, the order pa-
obtained looking at Fig. 6, which gives the total energy as dameter is particle .dens_|ty. A blmodaI. pa}rt|cle density d|sFr|—
function of the Metropolis steps for two systerss 10 and bution can be obtained if the \(olume is fixed and th.e particle
L=60, at the same densify=0.13. The width of the distri- number is free to fluctuat@s in the Ising modglor if the
bution is comparable for the two lattice siz&be energy partl_cle nu_mber is f|>§ed and the volume is f_ree to fluctuate
jump evolves slowly witi_ [13]), but in the small lattice the (&S in the isobar lattice gas mode)). In the isochore ca-

large fluctuations around each solution do not allow us td'onical case represented by the IMFM, the two configura-
resolve the two peaki@5). tions corresponding to the two different phases cannot, in

Recalling that the two Ising phases are exactly degenera@eneral, be explored because of the boundary condition con-

in energy (see Fig. 2 one can wonder whether the two

a N 3Si+1
A v

w| b

“phases” visible in Fig. 5 have some relationship with Ising <140 F F RN 402 <
phases at all. Indeed, Fig. 5 could rather suggest that we are > 120 ¢ 3 L=5 g 3g>
studying a differenttemperature driverphase transition be- 100 ¢ - 173
tween an ordered and a disordered phase which has nothing 50 & 3 1238

. : » . . 60 | - 12
to do with the Ising phase transition driven by the magnetic 40 | a2 Q 115
field. This is however not possible. Indeed, Ising and IMFM 20 | { : o,.l»
correspond to the same 'Ham|lton|an and only differ because 0 ‘c‘)‘ ‘612“6‘.4‘6,‘6‘6.56‘ “012“614‘6.‘6“6.8 0
of the constraints. Equatiori2)—(4) guarantee that for every energy /8 energy /5
finite system, whatever its size, the two models explore the
very same density of stat&¥(E,M) with different weights, FIG. 7. (Color online Volume (see text versus energy correla-
i.e., share the same phase diagram. tions for A=60 IMFM system in arL =20 andL=5 lattices.
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straint as it can be seen in the right part of Fig. 7. There is, 1 10 10210°10% 10 10%10°10*
however, an exception to this statement. If the number of 2 2
minority spins or particles grows slower than the available }g A }8
volume such thad/L3—0, the boundary conditions will not ~q 1
be felt by the system. Going towards this limit, a single .4‘210_; 10_;
calculation with a given lattice size, can give rise to both c10_3 10_3
compact eventstypical of the positive magnetization Ising S10_4 10_4
phase for a smallek <L, lattice at the same temperature 518—5 3 18—5
and rarified eventgtypical of the negative magnetization = 104% 102
Ising phase in a largelt>L, lattice). This is the situation ~"10 & 10
depicted in the left part of Figs. 5 and 7, and studied at length < 1, {1 1
in Ref. [13]. The energy bimodality in the IMFM for the S0, {10,
lattice sizel, is then a reflection of the high-density and }1 0_3 110_3
low-density phases of the Ising model corresponding to lat- o 18—4 18—4
tice sizes which are smaller and higher, respectively, than = 41672

410
In the “true” thermodynamic limitA/L3— const, we expect 23 4 2y
this bimodality to disappear as we will see in the following 110107107101 10 10710 1%
section.

FIG. 8. Distribution of cluster size in the IMFM at four different
IV. SIZE DISTRIBUTIONS AND THE temperatures and a fixed magnetization density— 0.5 for cubic
THERMODYNAMIC LIMIT lattices of linear dimensioh =50 (black), L=20 (dasheg, L=14

(gray), andL =8 (dotted.
We have just shown that fdnot tog small systems, the
energy distribution of the IMFM can be bimodal. A system-
atic study of this phenomenon can been found in RE]. If
this bimodality (or, equivalently, backbending of the micro-
canonical caloric curyewould survive up to the thermody-
namic limit, at the canonical temperatufg, at which the
two peaks have the same height, one would observe at t

thermodynamic limit a jump in the average energy from the i, serg energy jump it is however enough that the size of
d]s_ordered to the ordered pha§§r Wou.ld then be the tran- the largest cluster increases more slowly thahwith in-
sition temperature of a conventional first-order phase transiz

. ith a finite | h h ) h Creasing lattice size.
tion with a finite latent heat. In Sec. lll, we have noticed that From a conceptual point of view, we do not expect that

the bimodality in energy is correlated to a bimodality in the bimodality of theA,,,, distribution or equivalently the

Amax, thereforg an indjcation about the thermodyngmic Iin,mbackbending of the caloric curve converges to a discontinuity
of the energy distribution can be obtained from an inspection; e thermodynamic limit. Indeed the Van Hove theorem
of the size distribution.

Figure 8 shows the distributions of fragment sizes at the

the coexistence zong], which is a finite-size effect which
should not be confused with a continuous transition. The
sudden disappearance of the percolation cluster suggests a
finite jump, in the distribution oA, at the transition tem-
erature in the thermodynamic limit, and consequently a fi-

fixed magnetization densityn=—0.5. The corresponding ~7 SRR LR R AL AR T
phase diagram is reported in Fig.[2]. At a given lattice \‘_"/6.5 - =
size, a two-parameter power-law fit has been performed for — 6 :
each temperature; the temperature at whichythef the fit i
is minimum is then defined as the “critical” temperature and 55 F
reported in Fig. 9 as a dashed liffer L=8) and as a dotted 5 F

line (for L=50) [2]. A first-order transition is clearly indi-

cated in the bigger lattice calculation. At a temperature -
slightly lower thanT, (lower left panel of Fig. 8 and lower 4 B
horizontal line in Fig. 9, the “infinite” percolation cluster is 35 4
still present. At a temperature slightly higher thin(lower :

45 |

right panel of Fig. 8 and higher horizontal line in Fig, ¢he 3F E

infinite percolation cluster has disappeared. As it can be seen 25 B 5 E

from Fig. 8, the disappearance point of the percolation clus- T

ter does not correspond to a power lgand, in fact, finite- 20102 0.5 0.4 05 06 0.7 0.8 09

size scaling of the cluster size distributions is violated on the p/po

dotted line up to the critical poirf2]). Similar results have

also been presented in R¢L5]. In the case of very small ~ FIG. 9. Phase diagram of the IMFM with periodic boundary

lattices, the percolation cluster is so small that its size igonditions. Full line: coexistence line from Refg]; dashed(dot-
comparable to the size of the other fragments; this creates aad line: curve of the minimum chisquare two-parameter fit of the
apparent and transient power-law behavior in the middle oize distribution with a power law fdr=8 (L=>50).
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TABLE I. Transition temperatures and difference between the Olf~——— 7 71 17 171"

two (intensive energy values of the peaks present in the energy r i

histogram of several lattice sizes betwder 42 andL =60 atp H

=0.13. 008 ]
L T, (€) AE/e ol 1
42 3.8071) 0.02191) ot
46 3.8241) 0.02162) £l h
50 3.8381) 0.02121) r
54 3.8511) 0.021@1) [
60 3.8661) 0.020@2) 0.021~ 7

[20] guarantees, for short-range forces, the equivalence o 8& o6 e 06 066 R

the ensembles at the thermodynamic limit. Therefore, the Brerey/e

IMFM equations of state should converge to the Ising ones G, 10. (Color online Ferrenberg-Swendsen calculation of en-

even in the coexistence region of first-order phase transiergy histograms for ah =50 lattice atp=0.13. T,, is found to be
tions. Moreover, the Ising model belongs to the liquid-gas3.83s.

universality clasgthe IMFM is, in fact, isomorphous to the
canonical lattice-gas model at constant volyiraed this im-  tained by a Ferrenberg-Swendsen algorith@6], which
plies that the IMFM at the thermodynamic limit should be moves the energy histograms found at a cerfaiat which
equivalent to the macroscopic liquid-gas phase transition at the bimodality is present and finds tig, at which both
constant volume which exhibits a continuous caloric curvepeaks have the same height. Figure 10 illustrates this proce-
with no energy jump at a constant temperature. This agreegure.
with the findings of Ref[14] and remarks that a continuous  The results of Table | show a tendency of the distance
behavior of the energy is compatible with a first-order tran-between the peaks to decrease, although very slowly. Extend-
sition. ing this study to larger lattices is a very hard computational
On the other hand, if one constructs a lattice gas model aksk. Apart from the increase in computer time of Monte
a fixed pressurg4], the backbending in the energy is visible Carlo steps ¢L), whenL is very large, the Monte Carlo
even for very small lattice sizes and should converge to a&ime between jumps increases too, what makes very difficult
plateau in the thermodynamic limit. The constant volumeto perform the Ferrenberg-Swendsen analysis described
and constant pressure situations are the same in the particul@ove. For the moment, making this analysis for lattice sizes

case of zero pressure which corresponds to an infinite volt >60 lies beyond the possibilities of our present computers.
ume independent of the number of particles., of the mag-

netizationM). Since the infinite volume is a constant pres-
sure situation, a backbending is expected for the
microcanonical caloric curve of the finite system in an infi-  The fact that energy can play the role of an order param-
nite volume, i.e., for a density going to zero. This is indeedeter in the IMFM, as well as its transient character, has been
what is observed in Fig. 5 above. The left side of Fig. 5 carup to now discussed in the framework of numerical simula-
be interpreted in this context as a calculation at constartions. Whatever the numerical procedure, the quality of the
(low) pressure, such that the spatial extension of the systemxploration of the phase space becomes increasingly delicate
is not constrained by any boundary conditiofs—©). with increasing number of possible configurations, i.e., size
Within this interpretation, it is natural that the backbendingsof the lattice. In this section, we shall therefore make use of
observed in Ref[13] appear for large lattice sizes comparedthe fact that Ising belongs to the liquid-gas universality class
to the number of particles. Going towards the thermody+o show in a simple analytical liquid drop model ttiaj the
namic limit, however, the isobar and isochore paths corremicrocanonical caloric curve can backbend at constant vol-
spond to different physical situations and an energy jumpmme;(2) this backbending disappears at the thermodynamic
should be associated only with a transformation at a constatimit; (3) the convergence can be very slow and it is not
pressure. surprising that an apparent energy jump still survives for
The transient nature of the bimodality can be, in principle,lattice sizes as large ds=50.
directly demonstrated looking at the distance between the Let us consider a liquid-gas phase coexistence as a spheri-
two energy peaks at the transition temperatereergy jump  cal liquid drop in equilibrium with an ideal gas of monomers
[13] at a fixed magnetization as a function of the lattice size[27]. This picture will not apply to very small systenfor
Table | shows the magnitude of the energy jump between thevhich the liquid drop approximation as well as the monomer
two peaks for several lattices betweer42 andL=60 at  approximation will fai), while the thermodynamic limit will
p=0.13. This calculation is excessively delicate. Indeed, thde recovered by letting the droplet radiRs-oc. The equi-
transition region in large lattices is very narrow, and the bi-librium between the droplet and the vapor can be obtained by
modality is only seen in a very short range ®f (AT  equalizing the chemical potential of the two phases which
~10 3¢ for L=60). The transition temperature is then ob- leads to the Clapeyron equation

V. AN ANALYTICAL MODEL
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d 0'8 R A A A L LRI LBLILRRLLL 1
_p:E:—AeerAv, 8 = i T | 1 3
dT Av TAv _ ]
0.7 | —
which expresses the relation between the pregsarel tem- - s 1
peratureT in the coexistence zone of the first-order phase 0.6 | A7=5000/
transition. HereAs, Av, Ae represent the difference in en- - ]
tropy, volume and energy per particle between the two 05 | .
phases. In the low pressure regime, the liquid specific vol- C ] _
ume v, is much lower than the gas specific volums, 0.4 [ Y 10
<vg, and the vapor can be considered as an ideal gas of - ]
monomerspv =T leading to[28] 0.3 F .
dp (Ae+T)p 9 0.2 | ¥
aT T2 © i ]
0.1 | =
If, in addition we consider the subcritical regime where the - .
temperature is much lower than the typical latent hEat (o J) FUNH NS R NUEER N RN R W 10_2
<Ae, we can consider the latent heat as a constant, i.e., 0 0.20.40.60.8 1 40> 10° 10*
Ae(p,T)~const, and the Clapeyron equation is readily inte- X A1/3

grated giving
FIG. 11. Equation of state of a liquid droplet in equilibrium with
p=p exy{ _ E) (10) its vapor from Eq(12). Left side: reduced temperature as a function
0 T/ of the vapor fraction for different sizes of the system. Right side:
vapor fraction interval of the negative heat capacity region as a
If the liquid fraction is constituted by a finite drop, its bind- function of the size of the system. Full line: same total density as in
ing energy per particlde is reduced with respect to its bulk the calculation of the left panel; dash@tbtted line: higher(lower)
valueAegg [27], Ae=Aegy—3agw, /R whereay is the surface  density.
energy coefficient andR=r,A3 is the drop radius. The
equality between the liquid pressure Efj0) and the vapor erns the speed of convergence towards the thermodynamic

pressurgp=T/v4 gives limit, while the influence oft; is shown in the right part for
Fig. 11. The backbending progressively decreases with the
Aey  3agy T(Api— A) increasing size of the system but this phenomenon is not
Po€Xp ——+ rALST VAY I (1) specific of very small droplets only. In order to quantify the

evolution towards the thermodynamic limit, one may study
whereA is the mass number of the droplet aAd,, is the the variation of the extension_of t_he backbending region with
total mass of the systerfdroplet plus vapdrand a strict the size of _the system. To this aim, we have represented_ the
mass conservation has been implemented. If we introduc¥POr fraction interval corresponding to the slope inversion

the vapor fractionx=1— A/A,, and the reduced temperature ©f the equation of state in the right part of Fig. 11. The
7=T/Ae,, the relation between andx (which is monotoni- monotonous correlation between the energy and the vapor

cally correlated to the eneryat constant volume can be fraction assures that the backbendingxigorresponds to a
backbending in energy, i.e., the adimensional quaritityis

written as directly correlated to the energy jump in the backbending
1 c region. The clear power-law behavior as a fung:tion of the
Ci— —+———z=In7+In— — (12) total mass of the system shows that the energy jump goes to
T 1(1-X)Ajet 1-c5(1=x) zero only at the thermodynamic limit.

Here, c1=In(py/pAey), c,=3agw,/roAey, c3=pv, contain

the specific features of the physical system under study and
are linked to its bulk pressure, surface properties and the In this paper, we have analyzed the different effects due to
system volume, respectively. In the thermodynamic limitthe finite size of the systems on the determination of order
Aior—, the relation(12) between the temperature and the parameters and on the definition and classification of phase
vapor fraction(i.e., the caloric curveis monotonic in the transitions using the Ising model with the fixed magnetiza-
physical domain 8x<<1 for all physical values of the con- tion. A detailed comparison with the standard Ising model at
stants as expected. For finite systems, the equation of statero field has shown the general effect of constraints on the
can present a backbending with an amplitude depending oequations of state of finite systems. Indeed, ensembles are, in
the value of the parametets,c,,C3. An example is given in  general, not equivalent in finite systems and, in particular,
Fig. 11 forc,=1, andc,=0.25, c;=0.1. The quantityc,  first-order phase transitions manifest themselves in a very
represents a global shift and does not influence the monddifferent way in the ensemble in which a constraint is put on
tonic character of the equation of state. The quamtjtgov-  the order parameter or on an observable closely connected to

VI. CONCLUSIONS
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it [24]. If we consider an ensemble in which a constraint iscorrelation between the cluster sizes and the total energy, we
put on the order parameter, the bimodality in the order pahave suggested that the anomalous backbendings observed in
rameter distribution reflects as a backbending in the equatiothe caloric curve for very large latticd43] are due to the

of state which links the order parameter to its associatedame finite-size effects, and should disappear in the thermo-
intensive variable. Looking at the global topology of eventsdynamic limit as expected from the Van Hove theorem.
in the observables spa¢#6], we have shown that the first- These speculations are comforted by the analytical study of a
order character of the transition also manifests itself even imacroscopic liquid droplet in equilibrium with its vapor in a
lattice sizes as small ds=6 through bimodalities in vari- low density and low temperature approximation. The equa-
ables only loosely connected to the magnetization. The cortion of state at constant volume presents a backbending in
nection between the event topology and the cluster distributhe coexistence region with an energy jump which decreases
tion led to the conclusion that the apparent signs of aas a power law towards the thermodynamic limit.
continuous transition seen in this model for small lattice

sizes[2,10,13.can be interpreted as a finite-size effect. In- ACKNOWLEDGMENTS
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