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Transient backbending behavior in the Ising model with fixed magnetization
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The physical origin of the backbendings in the equations of state of finite but not necessarily small systems
is studied in the Ising model with fixed magnetization~IMFM ! by means of the topological properties of the
observable distributions and the analysis of the largest cluster with increasing lattice size. Looking at the
convexity anomalies of the IMFM thermodynamic potential, it is shown that the order of the transition at the
thermodynamic limit can be recognized in finite systems independently of the lattice size. General statistical
mechanics arguments and analytical calculations suggest that the backbending in the caloric curve is a transient
behavior which should not converge to a plateau in the thermodynamic limit, while the first-order transition~in
the Ehrenfest sense! is still signaled by a discontinuity in the magnetization equation of state.
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I. INTRODUCTION

The origin of singularities in thermodynamic function
which characterize infinite systems undergoing phase tra
tions is a central issue in statistical mechanics. Howe
physical systems are finite. It is therefore necessary to in
duce specific tools which allow to detect and characte
these singularities in the corresponding finite systems. A p
sible approach deals with the distribution of zeroes of
partition sum in the complex temperature plane@1#. Alterna-
tively, it has been observed that nonanalyticities can or
nate from a backbending in an equation of state correspo
ing to an anomalous curvature of the thermodynam
potential surface@2#. In particular, a convex intruder in th
microcanonical entropy leading to a backbending in
functional relationship between temperature and energy~ca-
loric curve! has been proposed as a general definition
first-order phase transitions in finite systems@3#. Indeed,
negative heat capacities have been observed and conn
to first-order phase transitions in different models@4–6# and
even experimentally measured@7–9#.

In this context, the Ising model with fixed magnetizatio
~IMFM ! presents some very peculiar features. For small s
tems, the microcanonical caloric curve which relates ene
to temperature does not show any backbending in the t
perature domain where a first-order phase transition exis
the Ising model@10#. This finding shows that backbending
are deeply connected to the constraints which are impose
the system@10,11# and their presence may depend on t
physical quantities which are used in order to define the c
sidered statistical ensemble as it will be shown later@12#. It
is well known that IMFM is isomorphous to an isocho
lattice gas model. If we consider that no divergence is
pected for the heat capacity at constant volume in the m
roscopic liquid to gas phase transition, the absence of a b
bending in the microcanonical caloric curve illustrates
fact that there may be no one to one correspondence betw
first-order phase transitions and convexity anomalies of
1063-651X/2003/68~2!/026119~9!/$20.00 68 0261
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microcanonical entropy as a function of energy. This see
to be confirmed by recent analytic arguments@14# which lead
to the conclusion that the transition is continuous, in t
sense that the caloric curve has no plateau in the therm
namic limit. However, according to Ref.@13#, a backbending
appears in the caloric curve of very large lattices. The th
modynamic limit of this behavior is not clear in view of th
present status of Monte Carlo simulations. Moreover,
cluster properties of small IMFM lattices show differe
signs of critical behavior@15#. Together with the information
coming from the caloric curve, this could suggest that
apparent order of the transition in the IMFM model chang
with the size of the system.

In the present paper, we shall try to clarify these issues
using a definition of phase transitions based on the oc
rence of bimodalities in the probability distribution of a
observable@16#. This definition is a generalization of the on
based on curvature anomalies and satisfies the Yang Lee
circle theorem in the thermodynamic limit@16,17#. Since, in
Gibbs equilibria, a bimodal distribution of an observable
connected to the backbending of the associated equatio
state in the ensemble where the observable is constraine
a conservation law, this study will allow us to elucidate t
relationship between backbendings, constraints, and the
der of the transition.

We shall first analyze the topology of the events in t
Ising model~Sec. II! to show that many properties of IMFM
can be understood starting from the standard Ising mo
We shall see that backbendings are not characteristic of
caloric curve only but can appear in other equations of s
also and closely depend on the constraints applied to
system, i.e., on the statistical ensemble in which the sys
is studied. In Sec. III, we shall consider the behavior of t
IMFM and see that for all sizes, the transition can be una
biguously recognized as a first order transition even i
backbending appears in the microcanonical caloric cu
only for large sizes and may disappear at the thermodyna
limit. Concerning this limit, a first-order transition does n
©2003 The American Physical Society19-1
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GULMINELLI et al. PHYSICAL REVIEW E 68, 026119 ~2003!
imply the convergence of the backbending to a finite ene
jump. Some general arguments for a zero energy discont
ity will be given in Sec. IV and complemented by a study
cluster properties. In order to confirm the outcome of
numerical simulations, an analytical model of a finite syst
with negative heat capacity converging to a caloric cur
which does not show a plateau in the thermodynamic li
even if the system is undergoing a first-order phase tra
tion, will be given in Sec. V.

II. TOPOLOGY OF EVENTS IN THE ISING MODEL

We shall first concentrate on the well known Ising mod
to show that the topologic properties of observable distri
tions @16# allow us to get some hint about the behavior of t
IMFM model.

The order parameter of the standard Ising model is
magnetizationM5( isi , wheresi561 and the sum extend
to theN sites of a lattice. It is interesting to note that becau
of the mapping between the Ising model and the Lattice G
modelsi52ni21, a spin upsi51 can also interpreted as a
occupied siteni51. Then, the magnetization is mapped in
the order parameter for the Lattice Gas model, which is no
ing but the number of particlesA5( ini . Since the volume is
fixed, A indeed corresponds to the densityr5A/N, the
known order parameter of the liquid-gas phase transition.
shall also use the average magnetization per sitem5M /N
which is then isomorphous to a particle density viam52r
21. In the Ising model, neighboring sites interact via a co
stant attractive couplinge,0. In our numerical implemen
tations of the model we have considered three-dimensio
cubic lattices characterized by a linear dimensionL5N1/3

with periodic boundary conditions. Details about the M
tropolis simulations can be found in Ref.@18#.

Below the critical temperatureTc , the Ising model shows
a first-order phase transition at zero fieldh50 which is char-
acterized, in infinite systems, by a discontinuity of the ma
netization when the field changes sign. This jump is clea
visible in the standard average magnetization versus fi
equation of state already for a lattice as small asL56 as
shown in the right part of Fig. 1. The transition from th
dominantly negative to the dominantly positive soluti

FIG. 1. Ising calculation of anL56 cubic lattice with periodic
boundary conditions at a subcritical temperatureT,Tc . Left side:
magnetization distribution with a negative, zero, and positive ex
nal fields. Right side:~full line! average magnetization as a functio
of the external field;~symbols! field hM in the IMFM model ob-
tained by derivation of the magnetization distribution at zero fi
@see Eq.~5!#.
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passes through a bimodality of the magnetization distri
tion, shown in the left part of Fig. 1, which can be taken a
definition of phase coexistence, the two peaks being ass
ated with the two phases@16,17,19#. The transition field is
the one for which the two peaks have the same height so
the most probable magnetization jumps from negative
positive values. For symmetry reasons, this, of course,
curs ath50. The intuitive understanding of phase coexi
ence given by this topological definition is clearly seen
Fig. 2 which gives the magnetization distribution as a fun
tion of temperature, for the sameL56 lattice ath50 field.
At supercritical temperatures the distributions are norm
while the critical point can be seen as a bifurcation po
from which the distribution splits into two separated comp
nents or phases.

It is important to note that a bimodality in the distributio
of an observable implies a backbending for the associa
equation of state in the statistical ensemble where this
servable is controlled on an event by event basis. Let us
this in the case of the Ising model with a magnetic fie
~grand canonical ensemble!, with partition function

Zbh5(
E,M

W~E,M !e2b(E2hM), ~1!

whereb5T21 andW(E,M ) is the number of configuration
or microstates with energyE and magnetizationM, and the
Ising model with fixed magnetizationM ~canonical en-
semble!, with partition function

Zb~M !5(
E

W~E,M !e2bE. ~2!

The two partition functions are related by

Zbh5(
M

Zb~M !e(bhM). ~3!

The magnetization distribution of the Ising model reads

r-

FIG. 2. ~Color online! Magnetization versus energy distribution
with a zero external field for anL56 Ising lattice at different tem-
peratures.
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TRANSIENT BACKBENDING BEHAVIOR IN THE ISING . . . PHYSICAL REVIEW E68, 026119 ~2003!
pbh~M !5
1

Zbh
(
E

W~E,M !e2b(E2hM)5
Zb~M !

Zbh
e(bhM).

~4!

This equation shows that the magnetization distribut
pbh(M ) in the standard Ising can be directly related to t
partition sum of the IMFM. The thermodynamic relations f
the IMFM can thus at least, in principle, be calculated fro
pbh(M ) without a direct simulation of the IMFM@29#. In
particular, the equation of state related to the magnetiza
in the IMFM reads

hM[2
1

b

] ln Zb~M !

]M
52

1

b

] ln pbh~M !

]M
1h. ~5!

Equation~5! shows that a bimodality inpbh(M ) implies a
backbending of the intensive parameterhM ~which has the
dimension of a magnetic field! associated with the magnet
zation as shown on the right-hand side of Fig. 1. It is imp
tant to stress thathM is not a mathematical artifact. Outsid
the coexistence region, it represents the physical magn
field which, applied to Ising, givesM as the most probable
response. Indeed, in the presence of an external fieldh, the
most probable magnetization should fulfill

] ln pbh~M !

]M
5

] ln Zb~M !

]M
1bh5b~h2hM !50, ~6!

i.e., the~most probable! response isM if the applied field is
h5hM . This is true as long as the system is not undergo
a phase transition, i.e., as long as Eq.~6! has only one solu-
tion. Indeed, Eq.~6! defines the extrema of the probabili
distribution. When the solution is unique this unique ext
mum can only be a maximum. In the transition regions, i
in the backbending region, Eq.~6! has three solutions, two
maxima and a minimum in between. This corresponds to
subcritical temperatures for whichpbh(M ) is bimodal in a
region aroundh50. In this regime, the intervalDhM asso-
ciated with the backbending corresponds exactly to the in
val Dh for which pbh(M ) is bimodal. The values of (E,M )
inside the coexistence region are not equilibrium states in
Ising model with magnetic field: the only physical ensem
for experiments exploring coexistence is the IMFM and
this casehM ~and noth) is the real physical conjugate to th
magnetization@7–9#.

This discussion can be immediately extended to any
neric Gibbs equilibrium@16#. A phase coexistence~first-
order phase transition! is signaled by a bimodality in the
probability distribution of an extensive variable which c
then be identified as an order parameter. This topolog
anomaly is equivalent to a convexity anomaly in the therm
dynamic potential of the ensemble in which the order para
eter is constrained by a conservation law~extensive en-
semble!, and reflects in a backbending of the associa
intensive variable in this extensive ensemble. A backbend
in the order parameter equation of state is an alternative
sible definition of a first-order phase transition in an exte
sive ensemble of a finite system@3#.
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In particular, the bimodality of the magnetization distrib
tion observed for the standard Ising model with no co
straints on the magnetization (h50) at subcritical tempera
tures ~Fig. 2! implies that the magnetic susceptibility o
IMFM is negative for magnetization domains lying betwe
the two dominant peaks of Ising. This negative susceptibil
analogously to a negative heat capacity in a microcanon
ensemble, indicates a first order phase transition. The c
nection between the bimodality of the magnetization dis
bution and a negative susceptibility is valid for all finite siz
up to the thermodynamic limit. Therefore, the well-know
fact that the Ising bimodality converges to a finite jump
the thermodynamic limit guarantees that the correspond
phase transition in IMFM is also first-order up to the the
modynamic limit. This situation is analogous to the relatio
ship between the grandcanonical and the canonical
sembles discussed in the context of the Yang-Lee theor
@20#.

In the recent literature of phase transitions in finite s
tems@3#, backbendings have been often observed in the
crocanonical caloric curve, leading to negative heat capa
Following the general relationship between ensembles
cussed above, a negative heat capacity univocally implie
bimodal energy distribution in the corresponding canoni
ensemble. Figure 2 shows that because of the symmetry
tween spins up and down in the Ising Hamiltonian, the t
magnetization solutions correspond to the same energy.
means that the energy cannot be used as an order para
for this model. On the other hand, all variables correlated
the magnetization can present a bimodality, i.e., can be c
sidered as order parameters. As an example, Fig. 3 show
correlation between the magnetization and the size of
largest connected domainAmax, here defined with the
Coniglio-Klein algorithm@21# in its simplified version pro-
posed by Campi and Krivine@22#.

III. THE IMFM AND THE EFFECT OF CONSTRAINTS

In the preceding section, we have recalled that an or
parameter of a first-order phase transition can be define
any observableO which allows us to separate the tw
phases, i.e., such that if events are sorted as a function oO,
they split into two components separated by a minimum
the distribution function. This definition is valid only if the
order parameter is free to fluctuate~i.e., in the Ising model!.
If the order parameter is constrained by a conservation
~i.e., in the IMFM!, the first-order character of the transitio
can still be recognized from the backbending of the equa
of state relating the order parameter to its conjugate inten
variable. In the case of the IMFM, this would require
calculate the derivatives of the partition sum for all values
the magnetization. However, because of the exact equ
lence between bimodalities in the intensive ensemble
backbendings in the extensive one~see Sec. II!, the direct
simulation of the IMFM with different magnetizations is no
necessary. A single Ising calculation of the energy and m
netization distribution is sufficient to completely identify th
coexistence zone of IMFM and recognize the first-ord
character of the transition.
9-3
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FIG. 3. ~Color online! Correla-
tion between magnetization an
the size of the largest connecte
domain for anL56 Ising lattice
with zero field at three different
temperaturesT54e, 4.8e, 7.2e.
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In the general case, bimodalities have not to be expe
in models such as IMFM where the order parameter is fi
by a conservation law~see, however, Refs.@23,24# for an
exception!. However, in the case of finite systems, fluctu
tions are not negligible and the relationship betweenM and
Amax is not a one to one correspondence but rather a lo
correlation. This implies that for finite systems, a bimodal
in theAmax distribution can remain even in the constant ma
netization ensemble. This is shown in Fig. 4, which displa
theAmax distribution for the IMFM with a numberA560 of
positive spins~or lattice gas particles! in a L520 cubic lat-
tice ~corresponding to a magnetizationm5M /N520.985
and a low densityr50.0075) at a temperatureT5Ttr where

FIG. 4. IMFM largest connected domain distribution for~upper
part! lattice sizesL520 andL55 with the sameA560 number of
positive spins;~lower part! lattice sizesL550 andL510 with the
same density of positive spinsr50.13 ~same magnetizationm05
20.74).
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Ttr corresponds to the transition temperature, i.e., the t
perature at which the two maxima of the energy distribut
have the same height. As shown in Fig. 5~left!, Amax is
correlated with the energyE, so that the bimodality inAmax
reflects in a bimodality in the energy distribution. The bim
dality in the energy distribution implies that the microcano
cal IMFM caloric curve presents a backbending. We ha
just interpreted this backbending as a finite-size effect~and
we shall come back to this point in the following section!.
However, for very small systems, this behavior is not visib
This is shown in the right parts of Figs. 4 and 5 below,
agreement with the results of Ref.@13#. In the upper right
part of Fig. 5, the same system ofA560 positive spins now
occupies anL55 lattice, corresponding to a magnetizatio

FIG. 5. ~Color online! Amax versus energy correlations for~up-
per part! an A560 system in anL520 andL55 lattices;~lower
part! a r50.13 system inL550 andL510 lattices.
9-4
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FIG. 6. Total energy as a func
tion of the Metropolis step form
50.75 and lattices of linear size
L510 andL560 at the transition
temperature.
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m520.04 ~or a densityr50.48). The calculation has bee
done at a temperature such that the average energy^E& is the
same as in theL520 case, to be sure that the expected
gion of the backbending is explored. TheAmax as well as the
E distributions are monomodal, and no bimodality is ev
seen for any value ofT in this small lattice. The fact that thi
is correlated to a finite-size effect is demonstrated in
lower part of Fig. 5, where the same trend is observed ke
ing the reduced magnetization constant and varying only
size of the lattice.

This behavior can be understood because the correla
betweenAmax ~and so the energy! andM becomes looser the
smaller the size of the system. For very small systems,
width of the two peaks becomes comparable to their dista
and the bimodality cannot be seen any more.

An intuitive understanding of this phenomenon can
obtained looking at Fig. 6, which gives the total energy a
function of the Metropolis steps for two systems,L510 and
L560, at the same densityr50.13. The width of the distri-
bution is comparable for the two lattice sizes~the energy
jump evolves slowly withL @13#!, but in the small lattice the
large fluctuations around each solution do not allow us
resolve the two peaks@25#.

Recalling that the two Ising phases are exactly degene
in energy ~see Fig. 2!, one can wonder whether the tw
‘‘phases’’ visible in Fig. 5 have some relationship with Isin
phases at all. Indeed, Fig. 5 could rather suggest that we
studying a different~temperature driven! phase transition be
tween an ordered and a disordered phase which has no
to do with the Ising phase transition driven by the magne
field. This is however not possible. Indeed, Ising and IMF
correspond to the same Hamiltonian and only differ beca
of the constraints. Equations~2!–~4! guarantee that for ever
finite system, whatever its size, the two models explore
very same density of statesW(E,M ) with different weights,
i.e., share the same phase diagram.
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The situation can be clarified if we look at Fig. 7 whic
shows the correlation between energy and the mean c
radius of the system defined as

V5
4

3

p

A (
i 51

N

r i
3 si11

2
, ~7!

wherer i is the distance from the center of mass of the latti
Figure 7 shows that the two different energy solutions
phases which give the energy bimodality in the IMFM co
respond to very different spatial extensions. As a con
quence, the two peaks in Figs. 5 and 7 can be related to
two Ising solutions~see Fig. 2! in a three-dimensional spac
that has volume as an extra dimension.

Indeed, in the liquid-gas universality class, the order
rameter is particle density. A bimodal particle density dist
bution can be obtained if the volume is fixed and the parti
number is free to fluctuate~as in the Ising model! or if the
particle number is fixed and the volume is free to fluctu
~as in the isobar lattice gas model@4#!. In the isochore ca-
nonical case represented by the IMFM, the two configu
tions corresponding to the two different phases cannot
general, be explored because of the boundary condition c

FIG. 7. ~Color online! Volume ~see text! versus energy correla
tions for A560 IMFM system in anL520 andL55 lattices.
9-5
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GULMINELLI et al. PHYSICAL REVIEW E 68, 026119 ~2003!
straint as it can be seen in the right part of Fig. 7. There
however, an exception to this statement. If the number
minority spins or particles grows slower than the availa
volume such thatA/L3→0, the boundary conditions will no
be felt by the system. Going towards this limit, a sing
calculation with a given lattice sizeL0 can give rise to both
compact events~typical of the positive magnetization Isin
phase for a smallerL,L0 lattice at the same temperatur!
and rarified events~typical of the negative magnetizatio
Ising phase in a largerL.L0 lattice!. This is the situation
depicted in the left part of Figs. 5 and 7, and studied at len
in Ref. @13#. The energy bimodality in the IMFM for the
lattice sizeL0 is then a reflection of the high-density an
low-density phases of the Ising model corresponding to
tice sizes which are smaller and higher, respectively, thanL0.
In the ‘‘true’’ thermodynamic limitA/L3→const, we expect
this bimodality to disappear as we will see in the followin
section.

IV. SIZE DISTRIBUTIONS AND THE
THERMODYNAMIC LIMIT

We have just shown that for~not too! small systems, the
energy distribution of the IMFM can be bimodal. A system
atic study of this phenomenon can been found in Ref.@13#. If
this bimodality~or, equivalently, backbending of the micro
canonical caloric curve! would survive up to the thermody
namic limit, at the canonical temperatureTtr at which the
two peaks have the same height, one would observe a
thermodynamic limit a jump in the average energy from
disordered to the ordered phase.Ttr would then be the tran
sition temperature of a conventional first-order phase tra
tion with a finite latent heat. In Sec. III, we have noticed th
the bimodality in energy is correlated to a bimodality
Amax, therefore an indication about the thermodynamic lim
of the energy distribution can be obtained from an inspec
of the size distribution.

Figure 8 shows the distributions of fragment sizes at
fixed magnetization densitym520.5. The corresponding
phase diagram is reported in Fig. 9@2#. At a given lattice
size, a two-parameter power-law fit has been performed
each temperature; the temperature at which thex2 of the fit
is minimum is then defined as the ‘‘critical’’ temperature a
reported in Fig. 9 as a dashed line~for L58) and as a dotted
line ~for L550) @2#. A first-order transition is clearly indi-
cated in the bigger lattice calculation. At a temperatu
slightly lower thanTc ~lower left panel of Fig. 8 and lowe
horizontal line in Fig. 9!, the ‘‘infinite’’ percolation cluster is
still present. At a temperature slightly higher thanTc ~lower
right panel of Fig. 8 and higher horizontal line in Fig. 9!, the
infinite percolation cluster has disappeared. As it can be s
from Fig. 8, the disappearance point of the percolation c
ter does not correspond to a power law~and, in fact, finite-
size scaling of the cluster size distributions is violated on
dotted line up to the critical point@2#!. Similar results have
also been presented in Ref.@15#. In the case of very smal
lattices, the percolation cluster is so small that its size
comparable to the size of the other fragments; this create
apparent and transient power-law behavior in the middle
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the coexistence zone@2#, which is a finite-size effect which
should not be confused with a continuous transition. T
sudden disappearance of the percolation cluster sugge
finite jump, in the distribution ofAmax at the transition tem-
perature in the thermodynamic limit, and consequently a
nite latent heat. For the results of Fig. 8 to be compati
with zero energy jump it is however enough that the size
the largest cluster increases more slowly thanL3 with in-
creasing lattice size.

From a conceptual point of view, we do not expect th
the bimodality of theAmax distribution or equivalently the
backbending of the caloric curve converges to a discontin
at the thermodynamic limit. Indeed the Van Hove theore

FIG. 8. Distribution of cluster size in the IMFM at four differen
temperatures and a fixed magnetization densitym520.5 for cubic
lattices of linear dimensionL550 ~black!, L520 ~dashed!, L514
~gray!, andL58 ~dotted!.

FIG. 9. Phase diagram of the IMFM with periodic bounda
conditions. Full line: coexistence line from Refs.@2#; dashed~dot-
ted! line: curve of the minimum chisquare two-parameter fit of t
size distribution with a power law forL58 (L550).
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TRANSIENT BACKBENDING BEHAVIOR IN THE ISING . . . PHYSICAL REVIEW E68, 026119 ~2003!
@20# guarantees, for short-range forces, the equivalenc
the ensembles at the thermodynamic limit. Therefore,
IMFM equations of state should converge to the Ising o
even in the coexistence region of first-order phase tra
tions. Moreover, the Ising model belongs to the liquid-g
universality class~the IMFM is, in fact, isomorphous to th
canonical lattice-gas model at constant volume! and this im-
plies that the IMFM at the thermodynamic limit should b
equivalent to the macroscopic liquid-gas phase transition
constant volume which exhibits a continuous caloric cu
with no energy jump at a constant temperature. This ag
with the findings of Ref.@14# and remarks that a continuou
behavior of the energy is compatible with a first-order tra
sition.

On the other hand, if one constructs a lattice gas mode
a fixed pressure@4#, the backbending in the energy is visib
even for very small lattice sizes and should converge t
plateau in the thermodynamic limit. The constant volum
and constant pressure situations are the same in the parti
case of zero pressure which corresponds to an infinite
ume independent of the number of particles~i.e., of the mag-
netizationM ). Since the infinite volume is a constant pre
sure situation, a backbending is expected for
microcanonical caloric curve of the finite system in an in
nite volume, i.e., for a density going to zero. This is inde
what is observed in Fig. 5 above. The left side of Fig. 5 c
be interpreted in this context as a calculation at cons
~low! pressure, such that the spatial extension of the sys
is not constrained by any boundary conditions (N→`).
Within this interpretation, it is natural that the backbendin
observed in Ref.@13# appear for large lattice sizes compar
to the number of particles. Going towards the thermo
namic limit, however, the isobar and isochore paths co
spond to different physical situations and an energy ju
should be associated only with a transformation at a cons
pressure.

The transient nature of the bimodality can be, in princip
directly demonstrated looking at the distance between
two energy peaks at the transition temperature~energy jump!
@13# at a fixed magnetization as a function of the lattice si
Table I shows the magnitude of the energy jump between
two peaks for several lattices betweenL542 andL560 at
r50.13. This calculation is excessively delicate. Indeed,
transition region in large lattices is very narrow, and the
modality is only seen in a very short range ofT (DT
;1023e for L560). The transition temperature is then o

TABLE I. Transition temperatures and difference between
two ~intensive! energy values of the peaks present in the ene
histogram of several lattice sizes betweenL542 andL560 at r
50.13.

L Ttr(e) DE/e

42 3.807~1! 0.0219~1!

46 3.824~1! 0.0216~2!

50 3.838~1! 0.0212~1!

54 3.851~1! 0.0210~1!

60 3.866~1! 0.0200~2!
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tained by a Ferrenberg-Swendsen algorithm@26#, which
moves the energy histograms found at a certainT at which
the bimodality is present and finds theTtr at which both
peaks have the same height. Figure 10 illustrates this pr
dure.

The results of Table I show a tendency of the distan
between the peaks to decrease, although very slowly. Ext
ing this study to larger lattices is a very hard computatio
task. Apart from the increase in computer time of Mon
Carlo steps (}L), when L is very large, the Monte Carlo
time between jumps increases too, what makes very diffi
to perform the Ferrenberg-Swendsen analysis descr
above. For the moment, making this analysis for lattice si
L.60 lies beyond the possibilities of our present compute

V. AN ANALYTICAL MODEL

The fact that energy can play the role of an order para
eter in the IMFM, as well as its transient character, has b
up to now discussed in the framework of numerical simu
tions. Whatever the numerical procedure, the quality of
exploration of the phase space becomes increasingly del
with increasing number of possible configurations, i.e., s
of the lattice. In this section, we shall therefore make use
the fact that Ising belongs to the liquid-gas universality cla
to show in a simple analytical liquid drop model that~1! the
microcanonical caloric curve can backbend at constant
ume; ~2! this backbending disappears at the thermodyna
limit; ~3! the convergence can be very slow and it is n
surprising that an apparent energy jump still survives
lattice sizes as large asL550.

Let us consider a liquid-gas phase coexistence as a sp
cal liquid drop in equilibrium with an ideal gas of monome
@27#. This picture will not apply to very small systems~for
which the liquid drop approximation as well as the monom
approximation will fail!, while the thermodynamic limit will
be recovered by letting the droplet radiusR→`. The equi-
librium between the droplet and the vapor can be obtained
equalizing the chemical potential of the two phases wh
leads to the Clapeyron equation

e
y

FIG. 10. ~Color online! Ferrenberg-Swendsen calculation of e
ergy histograms for anL550 lattice atr50.13. Ttr is found to be
3.838e.
9-7
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dp

dT
5

Ds

Dv
5

De1pDv
TDv

, ~8!

which expresses the relation between the pressurep and tem-
peratureT in the coexistence zone of the first-order pha
transition. Here,Ds, Dv, De represent the difference in en
tropy, volume and energy per particle between the t
phases. In the low pressure regime, the liquid specific v
ume v l is much lower than the gas specific volume,v l
!vg , and the vapor can be considered as an ideal ga
monomerspvg5T leading to@28#

dp

dT
5

~De1T!p

T2
. ~9!

If, in addition we consider the subcritical regime where t
temperature is much lower than the typical latent heaT
!De, we can consider the latent heat as a constant,
De(p,T)'const, and the Clapeyron equation is readily in
grated giving

p5p0 expS 2
De

T D . ~10!

If the liquid fraction is constituted by a finite drop, its bind
ing energy per particleDe is reduced with respect to its bul
valueDe0 @27#, De5De023asv l /R whereas is the surface
energy coefficient andR5r 0A1/3 is the drop radius. The
equality between the liquid pressure Eq.~10! and the vapor
pressurep5T/vg gives

p0 expS 2
De0

T
1

3asv l

r 0A1/3T
D 5

T~Atot2A!

V2Av l
, ~11!

whereA is the mass number of the droplet andAtot is the
total mass of the system~droplet plus vapor! and a strict
mass conservation has been implemented. If we introd
the vapor fractionx512A/Atot and the reduced temperatu
t5T/De0, the relation betweent andx ~which is monotoni-
cally correlated to the energy! at constant volume can b
written as

c12
1

t
1

c2

t~12x!Atot
1/3

5 ln t1 ln
x

12c3~12x!
. ~12!

Here, c15 ln(p0 /rDe0), c253asv l /r 0De0 , c35rv l contain
the specific features of the physical system under study
are linked to its bulk pressure, surface properties and
system volume, respectively. In the thermodynamic lim
Atot→`, the relation~12! between the temperature and t
vapor fraction~i.e., the caloric curve! is monotonic in the
physical domain 0,x,1 for all physical values of the con
stants as expected. For finite systems, the equation of
can present a backbending with an amplitude depending
the value of the parametersc1 ,c2 ,c3. An example is given in
Fig. 11 for c151, andc250.25, c350.1. The quantityc1
represents a global shift and does not influence the mo
tonic character of the equation of state. The quantityc2 gov-
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erns the speed of convergence towards the thermodyna
limit, while the influence ofc3 is shown in the right part for
Fig. 11. The backbending progressively decreases with
increasing size of the system but this phenomenon is
specific of very small droplets only. In order to quantify th
evolution towards the thermodynamic limit, one may stu
the variation of the extension of the backbending region w
the size of the system. To this aim, we have represented
vapor fraction interval corresponding to the slope invers
of the equation of state in the right part of Fig. 11. T
monotonous correlation between the energy and the va
fraction assures that the backbending inx corresponds to a
backbending in energy, i.e., the adimensional quantityDx is
directly correlated to the energy jump in the backbend
region. The clear power-law behavior as a function of t
total mass of the system shows that the energy jump goe
zero only at the thermodynamic limit.

VI. CONCLUSIONS

In this paper, we have analyzed the different effects du
the finite size of the systems on the determination of or
parameters and on the definition and classification of ph
transitions using the Ising model with the fixed magnetiz
tion. A detailed comparison with the standard Ising mode
zero field has shown the general effect of constraints on
equations of state of finite systems. Indeed, ensembles ar
general, not equivalent in finite systems and, in particu
first-order phase transitions manifest themselves in a v
different way in the ensemble in which a constraint is put
the order parameter or on an observable closely connecte

FIG. 11. Equation of state of a liquid droplet in equilibrium wit
its vapor from Eq.~12!. Left side: reduced temperature as a functi
of the vapor fraction for different sizes of the system. Right sid
vapor fraction interval of the negative heat capacity region a
function of the size of the system. Full line: same total density a
the calculation of the left panel; dashed~dotted! line: higher~lower!
density.
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it @24#. If we consider an ensemble in which a constraint
put on the order parameter, the bimodality in the order
rameter distribution reflects as a backbending in the equa
of state which links the order parameter to its associa
intensive variable. Looking at the global topology of even
in the observables space@16#, we have shown that the first
order character of the transition also manifests itself eve
lattice sizes as small asL56 through bimodalities in vari-
ables only loosely connected to the magnetization. The c
nection between the event topology and the cluster distr
tion led to the conclusion that the apparent signs o
continuous transition seen in this model for small latt
sizes@2,10,15# can be interpreted as a finite-size effect. I
deed, fluctuations around the transition temperature can
to an anomolously wide cluster distribution with an appar
power-law behavior and eventually a bimodality in the d
tribution of the largest connected domain. Because of
ys
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correlation between the cluster sizes and the total energy
have suggested that the anomalous backbendings observ
the caloric curve for very large lattices@13# are due to the
same finite-size effects, and should disappear in the ther
dynamic limit as expected from the Van Hove theore
These speculations are comforted by the analytical study
macroscopic liquid droplet in equilibrium with its vapor in
low density and low temperature approximation. The eq
tion of state at constant volume presents a backbendin
the coexistence region with an energy jump which decrea
as a power law towards the thermodynamic limit.

ACKNOWLEDGMENTS

We thank A. Taranco´n for many and very useful discus
sions. This work was partially supported by Spanish MC
research contract no. FPA2001-1813.
,

t

the

This
rre-

dy-
@1# S. Grossmann and W. Rosenhauer, Z. Phys.207, 138~1967!; P.
Borrmannet al., Phys. Rev. Lett.84, 3511~2000!; O. Mülken,
H. Stamerjohanns, and P. Borrmann, Phys. Rev. E64, 047105
~2001!.

@2# F. Gulminelli and Ph. Chomaz, Phys. Rev. Lett.82, 1402
~1999!; Int. J. Mod. Phys. E8, 527 ~1999!; R.M. Lynden-Bell
and D.J. Wales, J. Chem. Phys.101, 1460~1994!.

@3# D.H.E. Gross, Phys. Rep.279, 119 ~1997!; Microcanonical
Thermodynamics: Phase Transitions in Finite Systems, Lecture
Notes in Physics~World Scientific Singapore, 2001!.

@4# Ph. Chomaz, V. Duflot, and F. Gulminelli, Phys. Rev. Lett.85,
3587 ~2000!.
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