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We describe how to evaluate approximately various physical interesting quantities in random Ising systems
by direct renormalization of a finite system. The renormalization procedure is used to reduce the number of
degrees of freedom to a number that is small enough, enabling direct summing over the surviving spins. This
procedure can be used to obtain averages of functions of the surviving spins. We show how to evaluate
averages that involve spins that do not survive the renormalization procedure. We show, for the random field
Ising model, how to obtaif(r)=(c(0)o(r))—(a(0))(c(r)), the “connected” correlation function, and
S(F)z(a(O)a(F)), the “disconnected” correlation function. Consequently, we show how to obtain the aver-
age susceptibility and the average energy. For an Ising system with random bonds and random fields, we show
how to obtain the average specific heat. We conclude by presenting our numerical results for the average
susceptibility and the functiom along one of the principal axefin this work, the full three-dimensional
(3D) correlation is calculated and not just parameters suoh 7). The results for the average susceptibility
are used to extract the critical temperature and critical exponents of the 3D random field Ising system.
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I. INTRODUCTION AND OUTLINE magnetization. If, on the other hand, we are interested in

averages involving spins that do not survive the renormaliza-

Real space renormalization groyRSRQ served as a tion process, things become much more complicated. Take,
major tool, over the past 30 years, in the field of criticalfor example, the ensemble averaged correlatibir ;)

phenomena. By simplifying calculations near a critical point,:<0igj>_<0i><gj>, where(- - -) denotes thermal average

the various RSRG techniques, such as using the majority rulg_ . — -
[1], the well known Migdal-Kadanoff(MK) [2.3], the and denotes ensemble average. It can be calculated di

rectly from the remaining spins provided that the vecter
Cashe'\r'-Schwa}rtE4], and qthers{S], 'allow' one to penetrate connecting the siteisandj equals a vector connecting two of
the critical regime to a point at which critical exponents can

: _ _ the surviving spins or obtained from it by a symmetry opera-
be extracted. For translational invaridptre systems, only  yjon on the initial lattice. In any other case, a direct calcula-

a single renormalization step is required to obtain the recurgon, is impossible. It is true that quantities, such as the sus-
sion relations for the parameters of the Hamiltonian, fromeeptipility that involvesl;;’s for all pairs of sites, can be
which critical fixed points may be derived along with critical cajculated indirectly11—-14. The zero-field susceptibility is
exponents. For random systems, the recursion relations afge derivative of the magnetization with respect to a uniform
position dependent. Therefore, a natural approach is to cofield H at H=0. This was used, by Dayaet al. [11], to
sider the recursion for the distribution of disorder. Equiva-calculate the zero-field susceptibility by RSRG. They added
lently, recursion relations may be obtained for all the parama uniform fieldH to each realization of the random field and
eters defining the distribution, moments, correlations, etcobtained the average magnetizaties described aboyes a
Practically, in this approach, the recursion relations are trunfunction of H. Numerical differentiation was then employed
cated to obtain relations involving only the mean and vari-to obtain the average susceptibility. In fact, many ensemble
ance, keeping the random couplings independlér®]. An  averages of interesting quantities may be obtained by apply-
alternative approach, suggested first by Berker and Ostlunithg this method. The trouble with this approach is that even
[10], is to consider a given realization of disorder on a finitein the relatively simple case of evaluating the susceptibility,
system. Renormalization is then used to reduce the system the numerical differentiation is quite problematic. Berker and
a size where brute force calculation is possible. Thermal aveo-workers[12—-14 used the chain rule to approximately
erages of certain quantities can thus be obtained for that reecover thermodynamic densities of the original system from
alization and ensemble average is obtained by repeating thtee renormalized couplings of the reduced system. The main
procedure for many realizations and averaging the resultgroblem here is that the method is limited only to the obtain-
The advantage of the method is that all the moments anchent of thermal averages of products of spins showing in the
correlations generated by renormalization are kept. The digHamiltonian. The purpose of the present paper is to show
advantage is that the renormalization leaves in the end how to calculate various interesting quantities that involve
small number of spins and, therefore, only thermal averagespins that do not survive the renormalization by a direct and
of functions of those spins can be evaluated directly. This i®ffective method.

good enough to obtain directly the ensemble average of the The paper is organized as follows. In Sec. Il, we describe
magnetization11], because the average magnetization obbriefly the Casher-Schwart€S) renormalization procedure,
tained from the surviving spins is exactly the true averagavhich is the RSRG that we use here for the numerical dem-
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onstration of our method in Sec. IV. Note, however, that thelsing model, follows almost exactly the numerical procedure
method we present is more general and can be used with amged by Dayaret al.[11]. Here, therefore, we only describe
other renormalization procedure that involves a decimatiorit in brief. According to the CS scheme, an integration of
scheme (This includes the extensively used MK techniqueevery other site is performed exactly, but then, all non-
[2,3] but excludes schemes of the nature of the “majoritynearest-neighbor bonds, generated by the RG transformation,
rule” [1].) In Sec. I1l, the elements of our method are mainly gre symmetrically bent onto available nearest-neighbor
considered for the random field Ising system. It_is ShOW”oonds; many-spin odd interactions may be grouped to form
how to calculate the average “connected” spin-spin correlayhe renormalized field, while many-spin even interactions are
tion functionI';; and the average “disconnected” spin-spin simply omitted. Here, though, as in Réfl1], in order to
correlationsS;; =(ojo;), from which the average suscepti- simplify computer programming, we only keep the renormal-
bility xy and the average total ener@y can be easily ob- ized fields and ignore the many-spin odd interactions as well.
tained. It is further shown how to calculate the average speThe integration of every other site is, relatively, an easy task,
cific heatC for an Ising system with random bonds and even in three-dimensions, since every spin situated on an
random fields. Note that the method presented here enablesgen site interacts only with neighboring spins situated on
full evaluation (though approximateof quantities such as odd sites.

I';j andS; that depend on distance. As we shall show later, We start then with a set dfl= L3 Ising spins,o=*1,

this follows from two facts{a) The finite and small number with L=2", situated on a three-dimensio&D) simple cu-

of spins we are left with at the end of the renormalizationbic (sc) lattice. Suppose, now, that the Ising system is not
procedure|b) the fact that the system is randofit.will be  translational invariant and represented by the Hamiltonian
shown how, in principle, this method can be used to calcu-

late, by a similar method of a finite system renormalization,

such quantities in the pure system. The practicality of the

method for the pure system will prove, however, to be ques- H= _02> JijUi‘Tj_Ei hioi, @)
tionable) In the last section, we demonstrate the usefulness )

of our method by calculating the average susceptibitignd

I'(r) for r’s lying on a main axis of the lattice, for the ran- where(i,j) refers to nearest neighbors only. Performing the
dom field Ising system. The evaluation pfis used to derive trace over every other site, each of the erased spins, contrib-
critical exponents that may be compared with the exponentstes separately to each of the terms in the new Hamiltonian,
derived by other methods. Note that the approximate valuegenerating all possible interactions among its six nearest
of the exponents, obtained in such a calculation, depend nateighbors (n’s). We arrive, then, at a new Hamiltonian,
only on the numerical application of the method presentedontaining fieldsnn’s, next nearest neighborsin's), and
here, but also on the specific scheme of renormalization emmultispin interaction terms, from three-spin to six-spin inter-
ployed. actions. All the couplings are again local. The result is even
further complicated by the fact that the resulting lattice is not
a sc but a face-centered culffcc) lattice. As was mentioned
above, the multispin interactions are simply ignored, while
Although our method is general, we will use the CSthe values of the three generatedn interactions are sym-
schemg/4] for the numerical demonstration of our method metrically distributed over the 18n interactions. To bring
and present the results in Sec. IV. Like in any other renorthe lattice back to its sc form, we still need to integrate over
malization procedurgsuch as MK[2,3] and others[5]), each of the face centered spins. To do that, we first bend all
when performed on a regular lattice, recovering the originahn bonds connecting between face centers, antobonds
form of the Hamiltonian is not an exact procedure. Never-that lie on the face of the cube and connecting between face-
theless, for the translational invariafpure Ising system, it  centers and vertices. The extra decimation step can now be
produces good resulfgl]. In most RSRG calculations for easily executed following the CS 2D renormalization
random systems, correlations generated by the renormalizaeheme. This is a much simpler procedure, which we shall
tion are simply ignored. It was suggested, however, manyot describe here, but can also be found in Ref$].
years ago by Harris and Lubensk¥5] that those correla- In our study, the above two-step procedure is performed
tions are important. The CS scheme generates, indeed, suldtally and repeated iteratively until the system is brought
correlations. Schwartz and Fishmgg] used the CS scheme down to a size of X2Xx 2, for which a trace can be per-
to renormalize the mean and variance of the distribution oformed exactly. The details of the calculation, to be pre-
random bonds. They took into account the generated corresented in the following sections, depend on the specific
lations and found that inclusion of the effect of generatedscheme we use. However, the general structure of our
correlations in renormalized variance is essential. method, presented in the following section, depends only on
The CS renormalization method for the pure Ising systenone feature of the CS scheme that is common to many RSRG
is described in detail in Ref4], while a detailed demonstra- techniques. This is the fact that the renormalized Hamil-
tion of how it can be used, locally, for a random bond systentonian depends on a small finite number of original spins.
can be found in Ref.6]. Moreover, our numerical renormal- Therefore, our method is not limited to a specific scheme and
ization procedure here, as conducted for the random fielavill work with any decimation procedure.

1. RENORMALIZATION
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Ill. THE METHOD

In this section, we describe, mainly, how to calculate the
connected and disconnected correlation functions for the
three-dimensional random field system. We consider the ran- -~

dom field Hamiltonian 1./
H:_JQED O'iO'j_Ei: hio-i- (2)
The h;’s are random uncorrelated fields, distributed around |
zero, 3"
h_i: 0, Thj: hzéij . (3)

We assume that the random fields are distributed according
to a Gaussian distribution, o

2h2 5 FIG. 1. Starting with a large system of linear size-2" (here

demonstrated wittn=3), the system is fully reduced, using some
where A=(h \/ﬂ)N_ We are interested in calculating the RSRG transformation, to its minimal linear sizelof 2. The black
average spin-spin correlations and susceptibility of a largehumbered dots and the thickened lines connecting them, indicate,
but finite, system, over a large number of realizations of théespectively, the eight remaining sitemly six of them are shown

P{hy=11 Pi(hi)E%exf{_LE h|2> 4

random field. Consider first and the remaining bonds connecting them, of the renormalized sys-
tem. The circles and the dotted lines reflect the boundary conditions
Lii=(oioy)—(oi)(0;}). (5) imposed on the system. Sites that ams in the reduced system

(such as 1 and)2are, in fact,L/2 lattice constants apart in the

The susceptibility is related to the spin-spin correlations byoriginal system. From all distances available in the original system
(such as 3-a and 3-b), only L/2 for nn’s, L/\/2 for nnn's (such

B as 1-4), and J3L/2 on the main diagonalésuch as 3-6) are
X=N > I (6)  available in the reduced system.
i
N 8
The average susceptibilit — 1 Yy 1 TN
? PRI M=g 2 (00n,= g 2 (g ®
N i=1 N 8 i=1 8
X:B; I (7) Although, in principle, calculating thermal averages for the

renormalized eight-spin system is a reasonable task, we are

is obtained by averaging over a large enough number of re?0W faced with a different problem. The problem is that the
alizations. The true average bf; depends, of course, only reduced system only carries information about the eight
on the radius separatirigandj. Namely, translational invari- SPIns that survived the renormalization procedure. While this
ance is restored by averaging. Obviously, since we consider®akes no difference when calculating quantities containing
large system, calculating the above quantities directly inthérmal averages of a single sgsuch as the average mag-
volves the impossible task of performing a trace over a larg&etization abovg it makes it impossible to calculate directly
number of spins numerically. We, thus, turn to real spacéluantities that contain thermal averages of more than one
renormalization. By choosing first a specific renormalizationspin. Such are the average spin-spin correlatibijsat dis-
scheme(CS, MK, etc), the rescaling factob is set. We then tances other thah/2, L/\2, and y3L/2, and such is the
choose the linear size of our systein, to beb to some average susceptibility, which, according to K@), requires
integer powern=2. The renormalization transformation is the sum ofl';; over all distances available in the original
then used locally, by performing— 1 repeated iterations, to system. This is simply because spins that bifé’s in the
fully reduce the size of the system o< bxb. The thermal reduced system are, in fatt/2 lattice constants apart in the
average of each of the® remaining spins can now be cal- original system(see Fig. 1 Indeed, as was done by Dayan
culated exactly by performing the trace using the Hamil-et al.[11], one may calculate the susceptibility by applying a
tonian of the reduced systerfit is hard to see how brute small external fieldH to the original system and then use the
force summation can be done for-3.) In fact, the averag- derivative of M with respect toH. This method, though, is
ing over large enough number of realizations, we may expedjuite problematic, because it concerns a numerical derivative
(o) to be translational invariant and, therefore, to be equahtH=0. As was discussed by Dayahal, H must be small

to the average magnetization per spin. In practice, in order tenough, so thaM(H) is linear in H. This is difficult to
improve our averaging, we will calculate it as follows: achieve, since, below the transition, the size of the region
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where that linearity exists shrinks to zero as the size of the In the following, we will show how to evaluate discon-
system tends to infinity. If, on the other hand, the field is toonected correlation functions. Since, in practice, this involves
small, one may encounter numerical problems from roundoffnuch heavier computations, we just describe how it should

errors. be done, and postpone actual numerical application to future
Our solution to the problem is obtained by using the iden-publications.
tity The “sites translation” method for the disconnected spin-

spin correlations and the total average energyhe main
point in the evaluation of disconnected correlations is that,
actually, the method of integrating out many degrees of free-
dom and remaining with a small number of spins can yield
This identity was used in the pdst6—19 but since its proof ~Not only i, wherei is a surviving spin, but indeed all the

is very short and simple, we will derive it here again for thelocal magnetizations. Namely, the method enables one to cal-

sake of completeness of the presentation. We start with theulateo; for all i in the original lattice. For a given realiza-
right hand side of Eq(9): tion, this can be done by translating the eight surviving spins

or, equivalently, by translating the field configuration. That
1 — 1 9 is, we choose a realization, evaluate the eighf's corre-
(oi)hj=— Ef (m)mp{h}Dh sponding to the surviving spins, then translate the field con-
i

N
Fijzﬁﬁfﬁhj- )

ah2
ph figuration by one lattice spacing, thus obtaining the local
1 Aoy magnetization of the eight sites translated from the original
= Ef WP{h}Dh. (100  set by one lattice spacing in the opposite direction. This is
j

repeated until all the local magnetizations are obtained. As is
gasily seen, this involves order Bfrepetitions of the origi-

nal procedure. It is clear now how, by obtaining all the
(oj)’s, we can obtain

This completes the proof since it is easy to see, using th
random field Hamiltoniar{2), that

1 (o)
LA (e a

N — 1
Sj=Tij (oo = ZHohi+ (o)) (19
Note that identity(9) implies that in order to calculate;; we P
need, in principle, only one thermal average). Any deci- o : . .
mation scheme will produce one such thermal average, %Tlesrelztggnse;a”)i/ntltrf?g :r?grsum'ir\'/genblét not so bad if we are
least. Thereforel';; can be obtained, for any such decima- » S8, 9 Y
tion scheme, MK for example, by using the same identity
). . . - E=-32 (aio)—> h(a), (15
Connected spin-spin correlations and susceptibilitp () [

obtain F(F), the following procedure is used. The thermal
average ofr; is calculated in a given realization fothat is
one of the surviving spins. It is, then, multiplied by the value
of h; in that realization, wherg is a site separated by a — h;

I . o . . =—3> | =L +(o)
vectorr from i on the original lattice. The produ¢tr;)h; is h \ gn2 j
then averaged over many realizations. Since the true average

should depend only on the vector connecting the sites amijhe calculation involves taking the ensemble average of the

that up to a symmetry of the lattice, the statistics can bemagnetization_muItiplied by the field at the same point

for which our method yields the following expression:

<0'i>_2i hi(oi). (16

considerably improved by averagii(r) as follows: (which is justI';) and the producto;)(o;), wherei andj]
1 1% 1 n arenn’s. To obtain the same degree of accuracﬁ_ijnas in
F(Nx=—=> —(o}> h;, (12)  Lij, forij nn’s, we need to perform for each field configu-
Bh? 8i=1 n; k=1 K ration, seven renormalization procedures instead of the one

_ _ _ _ needed for calculating;;. The reason is that we need the
wherei runs over all equivalent sites arounthat are at a  original set of surviving spins and the sets obtained from it
distancer from it. The number of these sites 5. In our  py the six unit translations in all directions. For other discon-

numerical study, presented in Sec. IV, we have limited ournected correlation, the time factor needed to attain the accu-
selves to correlations in the directions of the principal axegacy of the connected correlationris+ 1.

of the lattice, so than,=6 (except, of course, for self-  gpecific heat for systems of random bonds and fields
correlations, where=0 andn,=1). For the average sus- Next, we show how to obtain the average specific heat for an
ceptibility, the statistics are improved by writing Ising Hamiltonian with both, random fields and random
8 bonds. The evaluation of the average specific hé&at,
= iz (o) h. 13  =KT*((H*)—(H)?%), is also made possible by our method.
8h2<1 T It is given by
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IV. NUMERICAL RESULTS

N — -
2 %‘) Jii‘Jk'F(ii)(k')+2<%> hidial iy To demonstrate the usefulness of our method, we present

in this section results for the less time consuming quantities.

We present calculation of the average susceptibility and de-
+ ; hih;T'; ) d (17 rive from it the critical exponents, comparing the results with
those of Ref.[11], which uses the same renormalization

where for A and B, two sets of indices, we definE,z  Scheme. We also present a calculation of radependent
=(op0og)—{oa){og) andoa=II;_a0;. The parentheses in correlation. We evaluat€(r) as a function of temperature
the subscripts of” are used to describe the sets of spins.and distance, for’s on the principal axes of the lattice. All
Operating on the three terms of H4.7) (from the less com-  figures are presented with error bars, although, in some of
plicated on the right to the more complicated on the)Jeft them, the error bars are too small to be noticed. The errors
basically using integration by parts, we obtain first are the standard deviation calculated from the data. All quan-
tities presented in the figures are dimensionless according to
the following. Length is measured in units of lattice constant
and, thereforer, andL are dimensionless. Taking tle vari-

B ables to be dimensionlesE,(F) is also dimensionless and
1( h? ) (o) that is according to E(5). It also means that the parameters
i\oi)-

1 1
hih;L'j; :hi(hjrij + E<Ui>> - Ehi<0'i>

B

h—Jz_l h and J of the Hamiltonian(2) are assumed to have the
dimensions of energy andT are, thus, made dimensionless
(188 by rescalingh/J—h andkT/J—T. A dimensionless inverse
temperature is then obtained I8J— B. Finally, according
The next two terms are obtained similarly by following the to Eg. (6), a dimensionless susceptibility is obtained with
same steps. The only difference is that, since we assume thag— y.
the random bonds are distributed around some mean value, Using the CS approximation, we choose our input param-
wm3, and uncorrelated with a standard deviatitp, as a  eters, for calculating the average susceptibility, equal to those
preliminary stepJ;; andJy, are replaced withs;+ 6J;; and  used by Dayart al.[11], who also used the CS scheme. We
my+ 8Jy ., respectively. These are collected back by the endhlso partially follow their line of analysis for extracting the
of the calculation. The results are similar to E&8g only  critical exponentsy, y, and v. This serves as a baseline,
with the appropriate indices, with which part of our results may be compered. We, thus,
setJ=1 andh=1 in the Hamiltonian(2) and use 18 as
1( 3463y temperature. We have calculated the susceptibility as a func-
hidaliywn= 5| —=— —1|hi(op) (18p  tion of temperature for systems of linear sizds
B\ Aj =2, 4, 8, 16, 32, 64, and 128, averaging, each, over
10000 realizations of the random field, except for the largest

1 d
= Eh{&_hj(hj<a-i>)_<a-i>

and system for which we had to be satisfied with only 1000 re-
alizations. This is shown in Fig.(d in a log- plot. Like

1( 3483y Dayanet gl., we hfave_ also included. th.e mirror image of eac_h

Jijdal djyany= 3 5 — 1= 8 |dij{oi0)). random field realization, and that is in order to preserve, in

B\ Aj our finite systems, the basic reflection symmetry of the infi-

(180  nite system. As seen in the figure, there is an upward dis-
placement of the average susceptibility for the largést,
Now, Eq.(189 is not yet in its final form, since it still con- =128, system. This is probably because the relatively small
tains the term(o;o7;). We thus first need to use E(L4) in  number ofN= 1000 realizations, for that system, is too little
order to fix that, and then substitute E¢$8) back into Eq.  to statistically rely on. It may also be that, since the renor-
(7). malization procedure is used in an approximation, the large
It may seem plausible that techniques of the nature denumber of renormalization steps generates an error which is
scribed above can be used also for correlations of quantitiego large. It is, therefore, excluded in the following analysis
coupled by position independent coupling constaftt&t  concerning the susceptibility. From Fig(h?, we extract the

may be even zejoln princi_ple, this is true be_cause_z We can value of 5, using the finite size scalin@0] behavior of the
always add random couplings with a Gaussian distributiongysceptibility,

do the calculation and, in the end, take the variance of those

couplings to zero. Practically, it is unclear whether such a

procedure is more effective than taking a numerical deriva- x(T(L)~L", (19
tive, since both imply taking the limit where certain cou-

plings tend to zero(In the random field problem, with no ; ; ;

random bonds, we can either add random bonds with Varit_ogether with the scaling relation

ance that will eventually tend to zero, or take a numerical

derivative with respect td.) vy=(2—7y)v. (20)

026114-5



A. EFRAT AND M. SCHWARTZ

PHYSICAL REVIEW E68, 026114 (2003

In[X(@)1 In ()]
[ R A R N = 10000
1000 | \q,. 2 - é 100
%, L=2 Te =3.95
............... —_\% Lo
............... = i Yy =1.9
100 L=1
L=3
............... 5, Toroe Lo N = 10000
Lot 65 (6 @ S8 @) 1 @ J8 & w8 78 | e 1L-=128
i
— NI
' ' ** Hf*”r ' ¢ L=64
0.1 . ' T E
2 4 6 8
(a) 0.1 @' In(T-T,)
In[x(T. @) Iniz)
6
100 E
5 T. = 3.8
4 ¥ =2.2
3 a=1470 10 N = 10000
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FIG. 2. In(a), the average susceptibility is shown as a func- )
tion of temperaturd. It is presented in &g plot. The external field
H is zero while the standard deviation of the random fieldhis ey
=1. As indicated in the figure, the different levels of gray scaling
correspond to systems of different linear sizéVhile forL’s up to 1o L o
64, the system is averaged over 10 000 realizations, the laigest, E Te = 3.71
=128, system is averaged only over 1000 realizations. This may be | Y2

the cause for the upward displacement of the average susceptibility |
for the largestl. = 128, system. Iitb), excluding the largest system, | N = 10000
the logarithm of the maximum of the susceptibility is plotted versus

the logarithm ofL. The value ofy is obtained from a linear fit, as, i net
by Eq.(19), the slopeais y/v=2— 7. L H=0
1 =
We thus obtainy=0.53+0.003, where the error is the sta- P
tistical one and errors generated by the renormalization ap S
proximate procedure are, therefore, not taken into account. -1

To estimate the critical temperatufg of the infinite sys- t
tem together with the critical exponent the logarithm of
the average susceptibility of the largest systdm+64) is
plotted verses the logarithm of —T., for temperatures
aboveT,. and for different values of .. Acceptable values
?r:eT((i:]raa{ShSlé%TeTsag tl?rl]é(;v;/igg%rt}hiéﬁm?rﬁtrgtg{zeetc;ﬁiﬂg be FIG. 3. The logarithm of the average susceptibility of a large

; : syst =64) is sh function of the logarithm ®f
come important. We find that 3.&T.<3.95. The two ex- system € ) Is shown as a function of the logarithm

din Fi d itical —T,, for temperatures abovE. and for three different values of
tremes are presented in FiggaBand 3c). For critical tem- T.. The two extreme, but yet acceptable, value¥ of as discussed

peratures abové.= 3.95, the linear region disappears, while i, the text, are presented {a) and (c). It appears that the largest
for critical temperatures around 3.71, an opposite curvaturgnear region is obtained fof.=3.8, as shown irb). In (c), one
begins to appear, as demonstrated in Fi¢c) For T may already notice that linearity breaks by the appearance of an
=3.71. We considel ;= 3.8 [Fig. 3b)], for which the larg-  opposite curvature. The value gffor a givenT, is determined by

est linear region is obtained, to be the more probable valueaking the logarithm of both sides of E€21).

©)
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o In[x(T)]
patey -

400 [

100

.
¥ 0.001

5 6 7 L"™1n (T-T.)

in1 2wy FIG. 6. The logarithm of the susceptibility, scaled by a factor of

o 1/L?" 7, is plotted versus the logarithm @ T, , scaled by a factor
of L™, The data collapse is shown here fg=0.53 andv
=1.5, which, by Eq(20), corresponds tgz=2.2. The critical tem-
perature is taken to b&.=3.8.

for the critical temperature. Next, the value pffor a given
T. is estimated using the critical behavior of the susceptibil-
Aa=*0.05 ity,

a=2.08

X(M~AT-T7, (21)

In(L)

. whereA is some constant. Taking the logarithm of both sides

Lt of Eq. (21, for a givenT,., the resulting straight line is, then,
(b) fitted to the linear region by varying and the constar. As

FIG. 4. In(a), the average of the absolute value of the derivative![ndlcawd by :,:lg' 3’.g|]e rarl'lge 0; acgegitalﬁizorre;p%nds
of the susceptibility is shown as a function of temperature. The© & range O possibie values fgt. 1.9=y=z.4, WhICh IS
external fieldH is zero while the standard deviation of the random qu't(,a S'm"ar.to that obtained by Daya al. [11]. USI.n.g the
field ish=1. As indicated in the figure, the different levels of gray scaling relation(20), the resulting values for the critical ex-
scaling correspond to systems of different linear dizén (b), the ~ Ponenty are roughly 1.8<»<1.65. ForT.=3.8, the corre-
logarithm of the maximum of- 7y/dT is plotted versus the loga- SPONding values foy and v are y=2.2 andv=1.5.

rithm of L. The value of ¢+ 1)/v obtained from the slope of the In a search for a more refined estimatiomofwe turn to
linear fit here together withy/v obtained from the linear fit pre- the absolute value of the derivative gfwith respect toT.
sented in Fig. (b) determine the values foy and v. Here we use the numerical derivative of our data for the
X(T)
SRR RARARRARARAL. . ™
In(7,@)-T,] 500 | ]
+ L = 64
~N t
_o.25 400 + H=0
\'. h=0.7
-0.5 a=-0.61 300 | . [}
Aa=%0.03 t 5 el
-0.75 200 °
. . h =2
o ¢
Ll -
100.000...‘. .'.’
-1.25 88, o’
S —— AP
2 4 6 8 T

In@)
’ e ’ > ) FIG. 7. The average susceptibilify is shown as a function of

FIG. 5. The logarithm off (L) —T,, for systems of linear size temperaturel. The external fieldH is zero, while, as indicated in
L=8,16,32,64, is plotted versus the logarithmLofThe slopea is the figure, the different levels of gray scaling correspond to differ-
—1/v andT, is tuned to 3.77 to make the slope of the linear fit to ent values of the standard deviation of the random field. The system
fit the negative inverse value of=1.64. is of linear sizel. = 64.
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FIG. 8. The average spin-spin correlation functioris shown as a function of distancetaken along the main axes of the lattice and
measured in units of lattice constant. The external fitid zero while the standard deviation of the random field=sl in (a) and(b) and
h=2 in (c) and(d). As indicated in each figure, the two different levels of gray scaling correspond to systems of different linely size,
indicating the size independencelofor these temperatures. The points of the larger system lwith28, appear to be more scattered since
it is averaged only over 3500 realizations, while the smallet,64, system is averaged over 10 000 realizations. The different figures
correspond to different temperatures. Note the broadenidg @ the temperature is reduced towards entering the ordered phase at about
T=3.8 forh=1 and atT=0 for h=2. Also note that foh=2, even at a temperature as lowT®s 1, the correlations are kept relatively
short ranged, indicating the persistence of the disorder phase to lower temperatures.

average susceptibility, althoggh one should note that it isthen, —9y/JdT as a function of temperature for systems of
probably, better calculated directly from linear sizes. =2,4,8,16,32,64, as presented in Figa)4In
o Fig. 4(b), we have used a linear fit for the logarithm of the
ﬁ)( maximum of —dx/dT plotted versus the logarithm df,
aT h2 <H0'> <H><G'>]E hy, (22) from which we obtain the value ofy(+1)/v. That together
with y/v obtained earlier from the finite size scaling jpf

following our method and using the ideas presented in SedFig. 2b)] determine the values of and ». We obtainy
IIl. Similar to the finite size scaling behavior gf as given —=2.41+0.07 andv=1.64+0.07. Note that together with our

by Eq.(19), its derivative with respect t@ is expected to Previously obtained value aj=0.53+0.003, the scaling re-
behave as lation (20) is satisfied.
As a consistency check, we use the sefgfL)’s of the
derivative (as they are better defined than those of the sus-
ﬁ—T(Tc(L))NL(yH)/V- (23)  ceptibility itself), together with our estimation of=1.64, to
extract the critical temperaturg;, directly from the finite
size scaling behavior,

Here T.(L) is the temperature of the maximum of the de-
rivative for a givenL and is, therefore, different from that of
the maximum ofy, used in Eg.(19). We have calculated, |Te(L)=Tg|~L ™. (24
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T is in good agreement with the results cited in R¢1d,21—
26]. Also, our result fory is in good agreement with the
results of Refs[11,19,23,27,2B while our result forv is in
good agreement with the results of Ref24,26,28—-30 In
Fig. 6, we use these values to obtain a data collapse for the
susceptibility, scaled by a factor of L%~ 7, when plotted
versusT—T,, scaled by a factor of ~*”. It is presented in
a log-log plot. It should be noted, though, that, within the
range of values we have obtained for the parameters above,
this data collapse picture, is almost insensitive so that it is
impossible to prefer one set of parameters over the other.
-0.04 We conclude our study of the average susceptibility by
presenting it for different values of the strength of the ran-
FIG. 9. The average spin-spin correlation functibris again ~ dom field (Fig. 7).
shown as a function of distanegas in Fig. 8, only for a point on We now turn to our evaluation of the average spin-spin
the phase diagram;T(h) =(3.0,1.0), located below the transition. correlation functionl’, calculated according to Eq12) as
Note the_ noisiness and loss of trend c_om_pared with points in th‘:c’jiscussed in Sec. lll. In Fig. 8, we presdm for two
phase diagram located above the transitiéig. 8). values of the strength of the random field and for two tem-
peratures. Foh=1, we know thafl =4.2 is above the tran-
sition [Fig. 8@]. We present our full results although it is
clear that forr>10, the values of’(r) are dominated by

o
o
N

In Fig. 5, we use a linear fit for the logarithm @f.(L)
—T. plotted versus the logarithm &f. We obtainT.=3.77

and that is by tuning to reach a slope that fits the negative noise and therefore meaningless. For2 atT=3.85[Fig.

inverse value ofv=1.64. . . . )
; . : 8(c)], we see a similar picture. Again the function decays
Taking all the results above into account, we arrive at our_ - A . _
final estimation of 7=0.53+0.003, y=2.2+0.3, v=15 quickly and already below =10, its significance is ques

+0.15, andT,=3.8+0.1. Note that our result fop satisfies tionable. It may be expected that increasing the number of

; . realizations considerably may improve the evaluation of the
the inequality 2- »<<d/2, by Schwartz and Soffd¢d 6], and correlation where it is small. As the temperature is lowered

for h=1 to T=3.85, that is, at the transition regidfig.
8(b)], the behavior becomes very noisy and statistically
meaningless, but still a trend can be discerned. A similar
behavior is observed in Fig.(®, for h=2 andT=1. We
have chosen to present FiggbBand &d) although, as far as
I'(r) is concerned, they are not very informative. The reason
for doing so is that it is known[11,31-34 that self-
averaging is destroyed below the transition and thus we ex-
pect the enhanced noisiness of those figures to indicate ap-
proach to the transition. The existence of a trend suggests,
: L though, that we may be still above the transition. Figure 9
Ordered phase : DON presentd’(r) for h=1 andT=3 (below the transition The
: i noisiness is larger than in that Figsbg and 8d) and no
. LG T trend as a function of can be observed. The above obser-
1 3 3.85 42 457 vations, in addition to information about the zero-
temperature transitionh(=1.956 according to Ref[25],

FIG. 10. Schematic phase diagram for the random field Isingwhile it is h,=2.28 andh,=2.27 according to Ref26] and
system is shown fod=3 (the thick lines. The zero-temperature Ref. [30], respectively, are consistent with the qualitative
fixed point (Oh.) controls the whole of the critical linb,(T) [or phase diagram presented in Fig. 10. The above may suggest
Tc(h)], while the zero-field thermal fixed poinfl(,0), that of the  an alternative method of identifying the critical temperature
pure Ising system, is unstablét is T.=4.57 for the Casher- by the amount of noise in the data and by losing the trend as

Schwartz renormalization scherp.) The lower horizontal dashed g function ofr. This line of investigation is postponed, how-
line represents the lowering of temperature from the high temperagyer, to future work.

ture and disordered phase,fat 1<h.. The critical line is, thus,
crossed and the ordered phase is penetrated. In our simuléfigns

o
=X

9), this i§ expressed by the flattening 6f The highgr horizontal V. SUMMARY
dashed line represents the same, onlg=a2~h,. As indicated by
Fig. 8, the level of flattening of at a given point T,h) on the We have presented a method for calculating thermody-

phase diagram depends on the distance of that point from the crithamic quantities, directly from a fully reduced renormalized
cal line. The crosses in the figure represent the points used in th@ndom system. Our method works with any decimation
simulations. renormalization scheme, though it is essential that the
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random variables are distributed according to a Gaussian disystem. From the results for the susceptibility, we have cal-
tribution. It relies on an exact mathematical transformationculated the following critical exponentsi=0.53+0.003, y

so that the quality of the results obtained by using it depends- 2.2+ 0.3, andv= 1.5+ 0.15, while the critical temperature
solely on the quality of the renormalization approximationobtained isT.=3.8+0.1 for the case where the variance of
and the number of realizations considered. As examples, wihne field ish=1. As for the average connected spin-spin
have developed explicit expressions for the average corcorrelation function, we have presented it as a function of the
nected spin-spin correlations, the average susceptibility, thdistance between spins. Starting at the high temperature and
average spin-spin correlatiofdisconnectey the total aver- disordered phase, it shows a sharp decay. By lowering the
age energy, and the average specific heat. We have demaemperature towards the critical line, it decays over longer
strated our method by calculating the susceptibility and thend longer distances until the behavior becomes very noisy
connected correlation function for the 3D random field Isingand no trend can be detected.
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