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Full reduction of large finite random Ising systems by real space renormalization group
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We describe how to evaluate approximately various physical interesting quantities in random Ising systems
by direct renormalization of a finite system. The renormalization procedure is used to reduce the number of
degrees of freedom to a number that is small enough, enabling direct summing over the surviving spins. This
procedure can be used to obtain averages of functions of the surviving spins. We show how to evaluate
averages that involve spins that do not survive the renormalization procedure. We show, for the random field

Ising model, how to obtainG(rW)5^s(0)s(rW)&2^s(0)&^s(rW)&, the ‘‘connected’’ correlation function, and

S(rW)5^s(0)s(rW)&, the ‘‘disconnected’’ correlation function. Consequently, we show how to obtain the aver-
age susceptibility and the average energy. For an Ising system with random bonds and random fields, we show
how to obtain the average specific heat. We conclude by presenting our numerical results for the average
susceptibility and the functionG(r ) along one of the principal axes.~In this work, the full three-dimensional
~3D! correlation is calculated and not just parameters suchn or h!. The results for the average susceptibility
are used to extract the critical temperature and critical exponents of the 3D random field Ising system.

DOI: 10.1103/PhysRevE.68.026114 PACS number~s!: 05.50.1q, 64.60.Cn, 75.10.Nr, 75.10.Hk
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I. INTRODUCTION AND OUTLINE

Real space renormalization group~RSRG! served as a
major tool, over the past 30 years, in the field of critic
phenomena. By simplifying calculations near a critical poi
the various RSRG techniques, such as using the majority
@1#, the well known Migdal-Kadanoff~MK ! @2,3#, the
Casher-Schwartz@4#, and others@5#, allow one to penetrate
the critical regime to a point at which critical exponents c
be extracted. For translational invariant~pure! systems, only
a single renormalization step is required to obtain the rec
sion relations for the parameters of the Hamiltonian, fro
which critical fixed points may be derived along with critic
exponents. For random systems, the recursion relations
position dependent. Therefore, a natural approach is to
sider the recursion for the distribution of disorder. Equiv
lently, recursion relations may be obtained for all the para
eters defining the distribution, moments, correlations,
Practically, in this approach, the recursion relations are tr
cated to obtain relations involving only the mean and va
ance, keeping the random couplings independent@6–9#. An
alternative approach, suggested first by Berker and Ost
@10#, is to consider a given realization of disorder on a fin
system. Renormalization is then used to reduce the syste
a size where brute force calculation is possible. Thermal
erages of certain quantities can thus be obtained for tha
alization and ensemble average is obtained by repeating
procedure for many realizations and averaging the res
The advantage of the method is that all the moments
correlations generated by renormalization are kept. The
advantage is that the renormalization leaves in the en
small number of spins and, therefore, only thermal avera
of functions of those spins can be evaluated directly. Thi
good enough to obtain directly the ensemble average of
magnetization@11#, because the average magnetization
tained from the surviving spins is exactly the true avera
1063-651X/2003/68~2!/026114~10!/$20.00 68 0261
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magnetization. If, on the other hand, we are interested
averages involving spins that do not survive the renormal
tion process, things become much more complicated. Ta
for example, the ensemble averaged correlation,G(r i j )
5^s is j&2^s i&^s j&, where ^•••& denotes thermal averag

and ••• denotes ensemble average. It can be calculated
rectly from the remaining spins provided that the vectorr i j
connecting the sitesi andj equals a vector connecting two o
the surviving spins or obtained from it by a symmetry ope
tion on the initial lattice. In any other case, a direct calcu
tion is impossible. It is true that quantities, such as the s
ceptibility that involvesG i j ’s for all pairs of sites, can be
calculated indirectly@11–14#. The zero-field susceptibility is
the derivative of the magnetization with respect to a unifo
field H at H50. This was used, by Dayanet al. @11#, to
calculate the zero-field susceptibility by RSRG. They add
a uniform fieldH to each realization of the random field an
obtained the average magnetization~as described above! as a
function of H. Numerical differentiation was then employe
to obtain the average susceptibility. In fact, many ensem
averages of interesting quantities may be obtained by ap
ing this method. The trouble with this approach is that ev
in the relatively simple case of evaluating the susceptibil
the numerical differentiation is quite problematic. Berker a
co-workers @12–14# used the chain rule to approximate
recover thermodynamic densities of the original system fr
the renormalized couplings of the reduced system. The m
problem here is that the method is limited only to the obta
ment of thermal averages of products of spins showing in
Hamiltonian. The purpose of the present paper is to sh
how to calculate various interesting quantities that invo
spins that do not survive the renormalization by a direct a
effective method.

The paper is organized as follows. In Sec. II, we descr
briefly the Casher-Schwartz~CS! renormalization procedure
which is the RSRG that we use here for the numerical de
©2003 The American Physical Society14-1
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A. EFRAT AND M. SCHWARTZ PHYSICAL REVIEW E68, 026114 ~2003!
onstration of our method in Sec. IV. Note, however, that
method we present is more general and can be used with
other renormalization procedure that involves a decima
scheme.~This includes the extensively used MK techniq
@2,3# but excludes schemes of the nature of the ‘‘major
rule’’ @1#.! In Sec. III, the elements of our method are main
considered for the random field Ising system. It is sho
how to calculate the average ‘‘connected’’ spin-spin corre
tion function G i j and the average ‘‘disconnected’’ spin-sp
correlationsSi j 5^s is j&, from which the average suscept
bility x and the average total energyĒ can be easily ob-
tained. It is further shown how to calculate the average s
cific heat C̄ for an Ising system with random bonds an
random fields. Note that the method presented here enab
full evaluation ~though approximate! of quantities such as
G i j andSi j that depend on distance. As we shall show la
this follows from two facts:~a! The finite and small numbe
of spins we are left with at the end of the renormalizati
procedure;~b! the fact that the system is random.~It will be
shown how, in principle, this method can be used to cal
late, by a similar method of a finite system renormalizati
such quantities in the pure system. The practicality of
method for the pure system will prove, however, to be qu
tionable.! In the last section, we demonstrate the usefuln
of our method by calculating the average susceptibilityx̄ and
G(r ) for r ’s lying on a main axis of the lattice, for the ran
dom field Ising system. The evaluation ofx̄ is used to derive
critical exponents that may be compared with the expone
derived by other methods. Note that the approximate va
of the exponents, obtained in such a calculation, depend
only on the numerical application of the method presen
here, but also on the specific scheme of renormalization
ployed.

II. RENORMALIZATION

Although our method is general, we will use the C
scheme@4# for the numerical demonstration of our metho
and present the results in Sec. IV. Like in any other ren
malization procedure~such as MK @2,3# and others@5#!,
when performed on a regular lattice, recovering the origi
form of the Hamiltonian is not an exact procedure. Nev
theless, for the translational invariant~pure! Ising system, it
produces good results@4#. In most RSRG calculations fo
random systems, correlations generated by the renorma
tion are simply ignored. It was suggested, however, m
years ago by Harris and Lubensky@15# that those correla-
tions are important. The CS scheme generates, indeed,
correlations. Schwartz and Fishman@6# used the CS schem
to renormalize the mean and variance of the distribution
random bonds. They took into account the generated co
lations and found that inclusion of the effect of genera
correlations in renormalized variance is essential.

The CS renormalization method for the pure Ising syst
is described in detail in Ref.@4#, while a detailed demonstra
tion of how it can be used, locally, for a random bond syst
can be found in Ref.@6#. Moreover, our numerical renorma
ization procedure here, as conducted for the random fi
02611
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Ising model, follows almost exactly the numerical procedu
used by Dayanet al. @11#. Here, therefore, we only describ
it in brief. According to the CS scheme, an integration
every other site is performed exactly, but then, all no
nearest-neighbor bonds, generated by the RG transforma
are symmetrically bent onto available nearest-neigh
bonds; many-spin odd interactions may be grouped to fo
the renormalized field, while many-spin even interactions
simply omitted. Here, though, as in Ref.@11#, in order to
simplify computer programming, we only keep the renorm
ized fields and ignore the many-spin odd interactions as w
The integration of every other site is, relatively, an easy ta
even in three-dimensions, since every spin situated on
even site interacts only with neighboring spins situated
odd sites.

We start then with a set ofN5L3 Ising spins,s i561,
with L52n, situated on a three-dimensional~3D! simple cu-
bic ~sc! lattice. Suppose, now, that the Ising system is n
translational invariant and represented by the Hamiltonia

H52(
^ i , j &

Ji j s is j2(
i

his i , ~1!

where^ i , j & refers to nearest neighbors only. Performing t
trace over every other site, each of the erased spins, con
utes separately to each of the terms in the new Hamilton
generating all possible interactions among its six nea
neighbors (nn’s). We arrive, then, at a new Hamiltonian
containing fields,nn’s, next nearest neighbors (nnn’s), and
multispin interaction terms, from three-spin to six-spin inte
actions. All the couplings are again local. The result is ev
further complicated by the fact that the resulting lattice is n
a sc but a face-centered cubic~fcc! lattice. As was mentioned
above, the multispin interactions are simply ignored, wh
the values of the three generatednnn interactions are sym-
metrically distributed over the 12nn interactions. To bring
the lattice back to its sc form, we still need to integrate ov
each of the face centered spins. To do that, we first bend
nn bonds connecting between face centers, ontonn bonds
that lie on the face of the cube and connecting between fa
centers and vertices. The extra decimation step can now
easily executed following the CS 2D renormalizatio
scheme. This is a much simpler procedure, which we s
not describe here, but can also be found in Refs.@4,6#.

In our study, the above two-step procedure is perform
locally and repeated iteratively until the system is broug
down to a size of 23232, for which a trace can be per
formed exactly. The details of the calculation, to be p
sented in the following sections, depend on the spec
scheme we use. However, the general structure of
method, presented in the following section, depends only
one feature of the CS scheme that is common to many RS
techniques. This is the fact that the renormalized Ham
tonian depends on a small finite number of original spi
Therefore, our method is not limited to a specific scheme
will work with any decimation procedure.
4-2
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III. THE METHOD

In this section, we describe, mainly, how to calculate
connected and disconnected correlation functions for
three-dimensional random field system. We consider the
dom field Hamiltonian

H52J(
^ i , j &

s is j2(
i

his i . ~2!

The hi ’s are random uncorrelated fields, distributed arou
zero,

hi50, hihj5h2d i j . ~3!

We assume that the random fields are distributed accor
to a Gaussian distribution,

P$h%5)
i

Pi~hi ![
1

L
expS 2

1

2h2 (
i

hi
2D , ~4!

where L[(hA2p)N. We are interested in calculating th
average spin-spin correlations and susceptibility of a la
but finite, system, over a large number of realizations of
random field. Consider first

G i j [^s is j&2^s i&^s j&. ~5!

The susceptibility is related to the spin-spin correlations

x5
b

N (
i , j

G i j . ~6!

The average susceptibility

x̄5b(
j

G i j ~7!

is obtained by averaging over a large enough number of
alizations. The true average ofG i j depends, of course, onl
on the radius separatingi andj. Namely, translational invari-
ance is restored by averaging. Obviously, since we consid
large system, calculating the above quantities directly
volves the impossible task of performing a trace over a la
number of spins numerically. We, thus, turn to real spa
renormalization. By choosing first a specific renormalizat
scheme~CS, MK, etc.!, the rescaling factorb is set. We then
choose the linear size of our system,L, to be b to some
integer power,n>2. The renormalization transformation
then used locally, by performingn21 repeated iterations, to
fully reduce the size of the system tob3b3b. The thermal
average of each of theb3 remaining spins can now be ca
culated exactly by performing the trace using the Ham
tonian of the reduced system.~It is hard to see how brute
force summation can be done forb.3.! In fact, the averag-
ing over large enough number of realizations, we may exp
^s i& to be translational invariant and, therefore, to be eq
to the average magnetization per spin. In practice, in orde
improve our averaging, we will calculate it as follows:
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M̄[
1

N (
i 51

N

^s i&HN
5

1

8 (
i 51

8

^s i&H8
. ~8!

Although, in principle, calculating thermal averages for t
renormalized eight-spin system is a reasonable task, we
now faced with a different problem. The problem is that t
reduced system only carries information about the ei
spins that survived the renormalization procedure. While t
makes no difference when calculating quantities contain
thermal averages of a single spin~such as the average mag
netization above!, it makes it impossible to calculate directl
quantities that contain thermal averages of more than
spin. Such are the average spin-spin correlations,G i j at dis-
tances other thanL/2, L/A2, andA3L/2, and such is the
average susceptibility, which, according to Eq.~7!, requires
the sum ofG i j over all distances available in the origin
system. This is simply because spins that areNN’s in the
reduced system are, in fact,L/2 lattice constants apart in th
original system~see Fig. 1!. Indeed, as was done by Daya
et al. @11#, one may calculate the susceptibility by applying
small external fieldH to the original system and then use th
derivative ofM̄ with respect toH. This method, though, is
quite problematic, because it concerns a numerical deriva
at H50. As was discussed by Dayanet al., H must be small
enough, so thatM (H) is linear in H. This is difficult to
achieve, since, below the transition, the size of the reg

FIG. 1. Starting with a large system of linear sizeL52n ~here
demonstrated withn53), the system is fully reduced, using som
RSRG transformation, to its minimal linear size ofL52. The black
numbered dots and the thickened lines connecting them, indic
respectively, the eight remaining sites~only six of them are shown!
and the remaining bonds connecting them, of the renormalized
tem. The circles and the dotted lines reflect the boundary condit
imposed on the system. Sites that arenn’s in the reduced system
~such as 1 and 2! are, in fact,L/2 lattice constants apart in th
original system. From all distances available in the original syst
~such as 3↔a and 3↔b), only L/2 for nn’s, L/A2 for nnn’s ~such
as 1↔4), andA3L/2 on the main diagonals~such as 3↔6) are
available in the reduced system.
4-3
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A. EFRAT AND M. SCHWARTZ PHYSICAL REVIEW E68, 026114 ~2003!
where that linearity exists shrinks to zero as the size of
system tends to infinity. If, on the other hand, the field is t
small, one may encounter numerical problems from round
errors.

Our solution to the problem is obtained by using the ide
tity

G i j 5
1

bh2
^s i&hj . ~9!

This identity was used in the past@16–19# but since its proof
is very short and simple, we will derive it here again for t
sake of completeness of the presentation. We start with
right hand side of Eq.~9!:

1

bh2
^s i&hj52

1

bE ^s i&
]

]hj
P$h%Dh

5
1

bE ]^s i&
]hj

P$h%Dh. ~10!

This completes the proof since it is easy to see, using
random field Hamiltonian~2!, that

1

b

]^s i&
]hj

5^s is j&2^s i&^s j&. ~11!

Note that identity~9! implies that in order to calculateG i j we
need, in principle, only one thermal average^s i&. Any deci-
mation scheme will produce one such thermal average
least. Therefore,G i j can be obtained, for any such decim
tion scheme, MK for example, by using the same iden
~9!.

Connected spin-spin correlations and susceptibility. To

obtain G(rW), the following procedure is used. The therm
average ofs i is calculated in a given realization fori that is
one of the surviving spins. It is, then, multiplied by the val
of hj in that realization, wherej is a site separated by
vectorrW from i on the original lattice. The product^s i&hj is
then averaged over many realizations. Since the true ave
should depend only on the vector connecting the sites
that up to a symmetry of the lattice, the statistics can

considerably improved by averagingG(rW) as follows:

G~rW !x5
1

bh2

1

8(i 51

8
1

nr
^s i&(

k51

nr

hi k
, ~12!

wherei k runs over all equivalent sites aroundi that are at a
distancer from it. The number of these sites isnr . In our
numerical study, presented in Sec. IV, we have limited o
selves to correlations in the directions of the principal a
of the lattice, so thatnr56 ~except, of course, for self
correlations, wherer 50 andnr51). For the average sus
ceptibility, the statistics are improved by writing

x̄5
1

8h2(i 51

8

^s i&(
j

hj . ~13!
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In the following, we will show how to evaluate discon
nected correlation functions. Since, in practice, this involv
much heavier computations, we just describe how it sho
be done, and postpone actual numerical application to fu
publications.

The ‘‘sites translation’’ method for the disconnected sp
spin correlations and the total average energy. The main
point in the evaluation of disconnected correlations is th
actually, the method of integrating out many degrees of fr
dom and remaining with a small number of spins can yi
not only s i , wherei is a surviving spin, but indeed all th
local magnetizations. Namely, the method enables one to
culates i for all i in the original lattice. For a given realiza
tion, this can be done by translating the eight surviving sp
or, equivalently, by translating the field configuration. Th
is, we choose a realization, evaluate the eight^s i& ’s corre-
sponding to the surviving spins, then translate the field c
figuration by one lattice spacing, thus obtaining the lo
magnetization of the eight sites translated from the origi
set by one lattice spacing in the opposite direction. This
repeated until all the local magnetizations are obtained. A
easily seen, this involves order ofN repetitions of the origi-
nal procedure. It is clear now how, by obtaining all th
^s i& ’s, we can obtain

Si j 5G i j 1^s i&^s j&5
1

bh2
^s i&hj1^s i&^s j&. ~14!

This is generally time consuming but not so bad if we a
interested, say, in the energy given by

Ē52J(
^ i , j &

^s is j&2(
i

hi^s i&, ~15!

for which our method yields the following expression:

Ē52J(
^ i , j &

S hj

bh2
1^s j& D ^s i&2(

i
hi^s i&. ~16!

The calculation involves taking the ensemble average of
magnetization multiplied by the field at the same po
~which is justG i i ) and the product̂s i&^s j&, wherei and j
arenn’s. To obtain the same degree of accuracy inSi j as in
G i j , for i j nn ’s, we need to perform for each field configu
ration, seven renormalization procedures instead of the
needed for calculatingG i j . The reason is that we need th
original set of surviving spins and the sets obtained from
by the six unit translations in all directions. For other disco
nected correlation, the time factor needed to attain the ac
racy of the connected correlation isnr11.

Specific heat for systems of random bonds and fie.
Next, we show how to obtain the average specific heat for
Ising Hamiltonian with both, random fields and rando
bonds. The evaluation of the average specific heat,C̄
5kT2(^H 2&2^H&2), is also made possible by our metho
It is given by
4-4
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FULL REDUCTION OF LARGE FINITE RANDOM ISING . . . PHYSICAL REVIEW E68, 026114 ~2003!
C̄5
N

kb2 S N

2 (
^k,l &

Ji j JklG ( i j )(kl)12(
^k,l &

hiJklG ( i )(kl)

1(
j

hihjG i j D , ~17!

where for A and B, two sets of indices, we defineGAB
[^sAsB&2^sA&^sB& andsA[) i PAs i . The parentheses in
the subscripts ofG are used to describe the sets of spi
Operating on the three terms of Eq.~17! ~from the less com-
plicated on the right to the more complicated on the le!,
basically using integration by parts, we obtain first

hihjG i j 5hi S hjG i j 1
1

b
^s i& D2

1

b
hi^s i&

5
1

b
hiF ]

]hj
~hj^s i&!2^s i&G5

1

bS hj
2

h2
21D hi^s i&.

~18a!

The next two terms are obtained similarly by following th
same steps. The only difference is that, since we assume
the random bonds are distributed around some mean va
mJ , and uncorrelated with a standard deviationDJ , as a
preliminary step,Ji j andJkl are replaced withmJ1dJi j and
mJ1dJkl , respectively. These are collected back by the e
of the calculation. The results are similar to Eq.~18a! only
with the appropriate indices,

hiJklG ( i )(kl)5
1

bS JkldJkl

DJ
2

21D hi^s i& ~18b!

and

Ji j JklG ( i j )(kl)5
1

bS JkldJkl

DJ
2

212d i j ,klD Ji j ^s is j&.

~18c!

Now, Eq. ~18c! is not yet in its final form, since it still con-
tains the term̂ s is j&. We thus first need to use Eq.~14! in
order to fix that, and then substitute Eqs.~18! back into Eq.
~17!.

It may seem plausible that techniques of the nature
scribed above can be used also for correlations of quant
coupled by position independent coupling constants~that
may be even zero!. In principle, this is true because we ca
always add random couplings with a Gaussian distributi
do the calculation and, in the end, take the variance of th
couplings to zero. Practically, it is unclear whether such
procedure is more effective than taking a numerical deri
tive, since both imply taking the limit where certain co
plings tend to zero.~In the random field problem, with no
random bonds, we can either add random bonds with v
ance that will eventually tend to zero, or take a numeri
derivative with respect toT.!
02611
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IV. NUMERICAL RESULTS

To demonstrate the usefulness of our method, we pre
in this section results for the less time consuming quantit
We present calculation of the average susceptibility and
rive from it the critical exponents, comparing the results w
those of Ref.@11#, which uses the same renormalizatio
scheme. We also present a calculation of anrW dependent
correlation. We evaluateG(rW) as a function of temperatur
and distance, forrW ’s on the principal axes of the lattice. Al
figures are presented with error bars, although, in some
them, the error bars are too small to be noticed. The er
are the standard deviation calculated from the data. All qu
tities presented in the figures are dimensionless accordin
the following. Length is measured in units of lattice consta
and, therefore,r andL are dimensionless. Taking thes i vari-
ables to be dimensionless,G(rW) is also dimensionless an
that is according to Eq.~5!. It also means that the paramete
h and J of the Hamiltonian~2! are assumed to have th
dimensions of energy.h andT are, thus, made dimensionles
by rescalingh/J→h andkT/J→T. A dimensionless inverse
temperature is then obtained bybJ→b. Finally, according
to Eq. ~6!, a dimensionless susceptibility is obtained wi
xJ→x.

Using the CS approximation, we choose our input para
eters, for calculating the average susceptibility, equal to th
used by Dayanet al. @11#, who also used the CS scheme. W
also partially follow their line of analysis for extracting th
critical exponentsh, g, and n. This serves as a baselin
with which part of our results may be compered. We, th
set J51 and h51 in the Hamiltonian~2! and use 1/b as
temperature. We have calculated the susceptibility as a fu
tion of temperature for systems of linear sizesL
52, 4, 8, 16, 32, 64, and 128, averaging, each, o
10 000 realizations of the random field, except for the larg
system for which we had to be satisfied with only 1000
alizations. This is shown in Fig. 2~a! in a log- plot. Like
Dayanet al., we have also included the mirror image of ea
random field realization, and that is in order to preserve
our finite systems, the basic reflection symmetry of the in
nite system. As seen in the figure, there is an upward
placement of the average susceptibility for the largestL
5128, system. This is probably because the relatively sm
number ofN51000 realizations, for that system, is too litt
to statistically rely on. It may also be that, since the ren
malization procedure is used in an approximation, the la
number of renormalization steps generates an error whic
too large. It is, therefore, excluded in the following analys
concerning the susceptibility. From Fig. 2~b!, we extract the
value ofh, using the finite size scaling@20# behavior of the
susceptibility,

x„Tc~L !…;Lg/n, ~19!

together with the scaling relation

g5~22h!n. ~20!
4-5
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We thus obtainh50.5360.003, where the error is the sta
tistical one and errors generated by the renormalization
proximate procedure are, therefore, not taken into accou

To estimate the critical temperatureTc of the infinite sys-
tem together with the critical exponentg, the logarithm of
the average susceptibility of the largest system (L564) is
plotted verses the logarithm ofT2Tc , for temperatures
aboveTc and for different values ofTc . Acceptable values
of Tc are such that, by lowering the temperature towardsTc ,
the graph enters a linear region until finite size effects
come important. We find that 3.71<Tc<3.95. The two ex-
tremes are presented in Figs. 3~a! and 3~c!. For critical tem-
peratures aboveTc53.95, the linear region disappears, wh
for critical temperatures around 3.71, an opposite curva
begins to appear, as demonstrated in Fig. 3~c! for Tc
53.71. We considerTc53.8 @Fig. 3~b!#, for which the larg-
est linear region is obtained, to be the more probable va

FIG. 2. In ~a!, the average susceptibilityx is shown as a func-
tion of temperatureT. It is presented in alog plot. The external field
H is zero while the standard deviation of the random field ish
51. As indicated in the figure, the different levels of gray scali
correspond to systems of different linear sizeL. While for L ’s up to
64, the system is averaged over 10 000 realizations, the largeL
5128, system is averaged only over 1000 realizations. This ma
the cause for the upward displacement of the average suscepti
for the largest,L5128, system. In~b!, excluding the largest system
the logarithm of the maximum of the susceptibility is plotted vers
the logarithm ofL. The value ofh is obtained from a linear fit, as
by Eq. ~19!, the slopea is g/n522h.
02611
p-
.

-

re

e

FIG. 3. The logarithm of the average susceptibility of a lar
system (L564) is shown as a function of the logarithm ofT
2Tc , for temperatures aboveTc and for three different values o
Tc . The two extreme, but yet acceptable, values ofTc , as discussed
in the text, are presented in~a! and ~c!. It appears that the larges
linear region is obtained forTc53.8, as shown in~b!. In ~c!, one
may already notice that linearity breaks by the appearance o
opposite curvature. The value ofg for a givenTc is determined by
taking the logarithm of both sides of Eq.~21!.
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FIG. 4. In~a!, the average of the absolute value of the derivat
of the susceptibility is shown as a function of temperature. T
external fieldH is zero while the standard deviation of the rando
field is h51. As indicated in the figure, the different levels of gra
scaling correspond to systems of different linear sizeL. In ~b!, the
logarithm of the maximum of2]x/]T is plotted versus the loga
rithm of L. The value of (g11)/n obtained from the slope of the
linear fit here together withg/n obtained from the linear fit pre
sented in Fig. 2~b! determine the values forg andn.

FIG. 5. The logarithm ofTc(L)2Tc , for systems of linear size
L58,16,32,64, is plotted versus the logarithm ofL. The slopea is
21/n andTc is tuned to 3.77 to make the slope of the linear fit
fit the negative inverse value ofn51.64.
02611
for the critical temperature. Next, the value ofg for a given
Tc is estimated using the critical behavior of the suscepti
ity,

x~T!'AuT2Tcu2g, ~21!

whereA is some constant. Taking the logarithm of both sid
of Eq. ~21!, for a givenTc , the resulting straight line is, then
fitted to the linear region by varyingg and the constantA. As
indicated by Fig. 3, the range of acceptableTc’s corresponds
to a range of possible values forg: 1.9<g<2.4, which is
quite similar to that obtained by Dayanet al. @11#. Using the
scaling relation~20!, the resulting values for the critical ex
ponentn are roughly 1.3<n<1.65. ForTc53.8, the corre-
sponding values forg andn areg52.2 andn51.5.

In a search for a more refined estimation ofg, we turn to
the absolute value of the derivative ofx with respect toT.
Here we use the numerical derivative of our data for

e

FIG. 6. The logarithm of the susceptibility, scaled by a factor
1/L22h, is plotted versus the logarithm ofT2Tc , scaled by a factor
of L21/n. The data collapse is shown here forh50.53 andn
51.5, which, by Eq.~20!, corresponds tog52.2. The critical tem-
perature is taken to beTc53.8.

FIG. 7. The average susceptibilityx̄ is shown as a function of
temperatureT. The external fieldH is zero, while, as indicated in
the figure, the different levels of gray scaling correspond to diff
ent values of the standard deviation of the random field. The sys
is of linear sizeL564.
4-7
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FIG. 8. The average spin-spin correlation functionḠ is shown as a function of distancer taken along the main axes of the lattice a
measured in units of lattice constant. The external fieldH is zero while the standard deviation of the random field ish51 in ~a! and~b! and
h52 in ~c! and ~d!. As indicated in each figure, the two different levels of gray scaling correspond to systems of different linear sL,

indicating the size independence ofḠ for these temperatures. The points of the larger system, withL5128, appear to be more scattered sin
it is averaged only over 3500 realizations, while the smaller,L564, system is averaged over 10 000 realizations. The different fig

correspond to different temperatures. Note the broadening ofḠ as the temperature is reduced towards entering the ordered phase at
T53.8 for h51 and atT*0 for h52. Also note that forh52, even at a temperature as low asT51, the correlations are kept relativel
short ranged, indicating the persistence of the disorder phase to lower temperatures.
i

e

e-
f
,

of

e

r

us-
average susceptibility, although one should note that it
probably, better calculated directly from

]x

]T
5

kb2

h2
@^Hs i&2^H&^s i&#(

j
hj , ~22!

following our method and using the ideas presented in S
III. Similar to the finite size scaling behavior ofx, as given
by Eq. ~19!, its derivative with respect toT is expected to
behave as

]x

]T
„Tc~L !…;L (g11)/n. ~23!

Here Tc(L) is the temperature of the maximum of the d
rivative for a givenL and is, therefore, different from that o
the maximum ofx, used in Eq.~19!. We have calculated
02611
s,

c.

then, 2]x/]T as a function of temperature for systems
linear sizesL52,4,8,16,32,64, as presented in Fig. 4~a!. In
Fig. 4~b!, we have used a linear fit for the logarithm of th
maximum of 2]x/]T plotted versus the logarithm ofL,
from which we obtain the value of (g11)/n. That together
with g/n obtained earlier from the finite size scaling ofx
@Fig. 2~b!# determine the values ofg and n. We obtaing
52.4160.07 andn51.6460.07. Note that together with ou
previously obtained value ofh50.5360.003, the scaling re-
lation ~20! is satisfied.

As a consistency check, we use the set ofTc(L)’s of the
derivative~as they are better defined than those of the s
ceptibility itself!, together with our estimation ofn51.64, to
extract the critical temperatureTc , directly from the finite
size scaling behavior,

uTc~L !2Tcu;L21/n. ~24!
4-8
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In Fig. 5, we use a linear fit for the logarithm ofTc(L)
2Tc plotted versus the logarithm ofL. We obtainTc53.77
and that is by tuningTc to reach a slope that fits the negati
inverse value ofn51.64.

Taking all the results above into account, we arrive at
final estimation of h50.5360.003, g52.260.3, n51.5
60.15, andTc53.860.1. Note that our result forh satisfies
the inequality 22h,d/2, by Schwartz and Soffer@16#, and

FIG. 9. The average spin-spin correlation functionḠ is again
shown as a function of distancer, as in Fig. 8, only for a point on
the phase diagram, (T,h)5(3.0,1.0), located below the transition
Note the noisiness and loss of trend compared with points in
phase diagram located above the transition~Fig. 8!.

FIG. 10. Schematic phase diagram for the random field Is
system is shown ford53 ~the thick lines!. The zero-temperature
fixed point (0,hc) controls the whole of the critical linehc(T) @or
Tc(h)], while the zero-field thermal fixed point (Tc,0), that of the
pure Ising system, is unstable~It is Tc54.57 for the Casher-
Schwartz renormalization scheme@4#.! The lower horizontal dashed
line represents the lowering of temperature from the high temp
ture and disordered phase, ath51,hc . The critical line is, thus,
crossed and the ordered phase is penetrated. In our simulations~Fig.

9!, this is expressed by the flattening ofḠ. The higher horizontal
dashed line represents the same, only ath52;hc . As indicated by

Fig. 8, the level of flattening ofḠ at a given point (T,h) on the
phase diagram depends on the distance of that point from the
cal line. The crosses in the figure represent the points used in
simulations.
02611
r

is in good agreement with the results cited in Refs.@11,21–
26#. Also, our result forg is in good agreement with the
results of Refs.@11,19,23,27,28#, while our result forn is in
good agreement with the results of Refs.@24,26,28–30#. In
Fig. 6, we use these values to obtain a data collapse for
susceptibility, scaled by a factor of 1/L22h, when plotted
versusT2Tc , scaled by a factor ofL21/n. It is presented in
a log-log plot. It should be noted, though, that, within th
range of values we have obtained for the parameters ab
this data collapse picture, is almost insensitive so that i
impossible to prefer one set of parameters over the othe

We conclude our study of the average susceptibility
presenting it for different values of the strength of the ra
dom field ~Fig. 7!.

We now turn to our evaluation of the average spin-s

correlation functionḠ, calculated according to Eq.~12! as
discussed in Sec. III. In Fig. 8, we presentG(r ) for two
values of the strength of the random field and for two te
peratures. Forh51, we know thatT54.2 is above the tran-
sition @Fig. 8~a!#. We present our full results although it i
clear that forr .10, the values ofG(r ) are dominated by
noise and therefore meaningless. Forh52 at T53.85 @Fig.
8~c!#, we see a similar picture. Again the function deca
quickly and already belowr 510, its significance is ques
tionable. It may be expected that increasing the numbe
realizations considerably may improve the evaluation of
correlation where it is small. As the temperature is lower
for h51 to T53.85, that is, at the transition region@Fig.
8~b!#, the behavior becomes very noisy and statistica
meaningless, but still a trend can be discerned. A sim
behavior is observed in Fig. 8~d!, for h52 andT51. We
have chosen to present Figs. 8~b! and 8~d! although, as far as
G(r ) is concerned, they are not very informative. The reas
for doing so is that it is known@11,31–34# that self-
averaging is destroyed below the transition and thus we
pect the enhanced noisiness of those figures to indicate
proach to the transition. The existence of a trend sugge
though, that we may be still above the transition. Figure
presentsG(r ) for h51 andT53 ~below the transition!. The
noisiness is larger than in that Figs. 8~b! and 8~d! and no
trend as a function ofr can be observed. The above obs
vations, in addition to information about the zer
temperature transition (hc51.956 according to Ref.@25#,
while it is hc52.28 andhc52.27 according to Ref.@26# and
Ref. @30#, respectively!, are consistent with the qualitativ
phase diagram presented in Fig. 10. The above may sug
an alternative method of identifying the critical temperatu
by the amount of noise in the data and by losing the trend
a function ofr. This line of investigation is postponed, how
ever, to future work.

V. SUMMARY

We have presented a method for calculating thermo
namic quantities, directly from a fully reduced renormaliz
random system. Our method works with any decimat
renormalization scheme, though it is essential that
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random variables are distributed according to a Gaussian
tribution. It relies on an exact mathematical transformati
so that the quality of the results obtained by using it depe
solely on the quality of the renormalization approximati
and the number of realizations considered. As examples
have developed explicit expressions for the average c
nected spin-spin correlations, the average susceptibility,
average spin-spin correlations~disconnected!, the total aver-
age energy, and the average specific heat. We have de
strated our method by calculating the susceptibility and
connected correlation function for the 3D random field Isi
n

A

02611
is-
,
s

e
n-
e

on-
e

system. From the results for the susceptibility, we have c
culated the following critical exponents:h50.5360.003,g
52.260.3, andn51.560.15, while the critical temperatur
obtained isTc53.860.1 for the case where the variance
the field is h51. As for the average connected spin-sp
correlation function, we have presented it as a function of
distance between spins. Starting at the high temperature
disordered phase, it shows a sharp decay. By lowering
temperature towards the critical line, it decays over lon
and longer distances until the behavior becomes very n
and no trend can be detected.
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