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Origin of degree correlations in the Internet and other networks
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It has been argued that the observed anticorrelation between the degrees of adjacent vertices in the network
representation of the Internet has its origin in the restriction that no two vertices have more than one edge
connecting them. Here, we propose a formalism for modeling ensembles of graphs with single edges only and
derive values for the exponents and correlation coefficients characterizing them. Our results confirm that the
conjectured mechanism does indeed give rise to correlations of the kind seen in the Internet, although only a
part of the measured correlation can be accounted for in this way.
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[. INTRODUCTION simulations, they show for a network of the size and degree
sequence of the Internet that the requirement that there is at
The statistical properties of networks have been the topicost one edge between any pair of vertices induces degree
of considerable attention in the physics literature in recenanticorrelations very similar to those observed. And indeed
years [1-4]. Motivated by the availability of large-scale there are no double edges in the Internet, a statistically un-
structural data for networks including the Internet, the Worldlikely occurrence were we given complete freedom about
Wide Web, and social and biological networks of varioushow vertices are connected.
kinds, researchers have created a wide selection of models of The physical intuition behind the suggestion of Maslov
networks and processes taking place on networks. One topf al.is that the restriction to single edges causes high-degree
of particular interest at present is the issue of degree corrécertices to have fewer connections between them than they
lations in networks. A network or graph is in general com-Would if edges were assigned purely at random, and hence
posed of some set of nodes or “vertices” joined together bythere must be more connections between high-degree/low-
lines or “edges,” and the degree of a vertex is defined to béjegre_e vertex pairs instead. A similar mechanism cou_ld be at
the number of edges connected to the vertex. It has beefOrk in other types of networks as well, such as directed
found that for many real-world networks the degrees of thd'€Works. The World Wide Web and foodwebs are two ex-

vertices at either end of an edge are not independent, but agér? dpll?:ugf”d';i?:ig%tgfgresgzaté?pear to be disassortative
correlated with one another, either positively or negatively ally j .
In this paper we study the mechanism proposed by

[5-7]. A netwark in which the degrees of adjacent VemceSMasIov et al. analytically, and demonstrate that it does in-

are positively correlated is said to show assortative mixing{jeed produce disassortative mixing by degree of precisely

by degree,.whe_reas a netwo_rk n Whi(?h they are negqtiyelyhe type observed by Pastor-Satoreasl. [5]. The particular
correlated is said to show disassortative mixing. A St”k'ngmodel chosen by Maslogt al. to test their idea turns out to

dis th il K b Be difficult to treat analytically. They studied the ensemble of
compared is that most social networks appear to be assortgy graphs with a particular degree sequence and at most one
tively mixed, Whereas_most technological and biological net'edge between any vertex pair, in which each allowed graph
works appear to be disassortatjs]. appears with equal probability. Calculating correlations in

h Of pa”";“'af !nterer]st tlo us in trfns paper is the ll(ntefrnebt. Alihis ensemble requires us to enumerate binary matrices with
the time of writing, the Internet forms a network of about o;yen row and column sums. No closed-form solution for

11000 vertices and 32 000 edges, and, as f|_rst pointed OUtRY\ch an enumeration is known at present, despite decades of
Pastor-Satorrast al. [5], the degrees of adjacent vertices g4y 1y mathematiciar®,10]. In this paper, therefore, we
have significant antlcorrelaﬂon. This can be demonstrated bVake a different approach, borrowing a trick from statistical
calculating the mean degré&g" of the neighbors of a vertex mechanics. We study an expanded “grand canonical” en-
v in the network as a function of the degregof that vertex.  semble of graphs in which the number of edges is allowed to
The resulting function is found to fall off with increasikg, vary under the action of a chemical potential. As network
roughly as a power lavk, ” with exponentr=0.5, so that size becomes large, the number of edges becomes narrowly
the higher the degrelk, of one vertex, the lower the mean peaked and the predictions of the model become similar to
degree of its neighbors. those of the model of Masloet al., while the calculations

In a recent paper, Maslost al. [6] have proposed a pos- are far easier(A grand canonical ensemble of graphs has
sible explanation for this result. Rather than supposing thalso been studied recently by Dorogovtseival. [11], al-
anticorrelation of vertex degrees to be the result of social othough using a different formalism and to a different pur-
engineering constraints on the construction of data networkgose)
they suggest a topological explanation. Using computer For networks with power-law degree distributions, we

1063-651X/2003/6@)/0261127)/$20.00 68 026112-1 ©2003 The American Physical Society



J. PARK AND M. E. J. NEWMAN PHYSICAL REVIEW E68, 026112 (2003

will show that indeed@“ falls off as a power ofk, and vent this problem by specifying an additional constraint on

derive the value of the exponemt We also calculate the the distribution of desired degreekvs\/ﬁ for all v.
value of the degree correlation coefficient for adjacent vertiWhile this condition ensures thét,, <1, it is strongly vio-
ces, which measures the amount of disassortative mixing itated by networks, such as the Internet, that have power-law
the network. We show that the mechanism of Masédal.  degree distributions.
can account for some, but not all, of the disassortativity seen Here, therefore, we adopt an alternative strategy, and
in the Internet, suggesting that there are also other mech&dapt the model of Chung and Lu to incorporate an explicit
nisms contributing to the observed degree correlations. ~ condition that there is only one edge between every vertex
pair. As we will see, this leads to some interesting physics
II. DEEINITIONS and, in particular, to an explanation of the origin of disassor-
tativity.
The classic model in the study of graphs with arbitrary y
degree sequences is the so-called configuration ni@dt— B. Ensemble of networks with single edges

16], in which one specifies the degr&g of each vertex ) . . .
=1,... ninanetwork, which also fixes the total number of _ We consider explicitly an ensemble of networks in which

edges to bem=13,k,. Subject to the given degree se- there is only a single edge between any pair of vertices.

quence, the vertices are randomly wired to one another. ThEnere will be an edge between the pair\) with probabil-
combinatorics of this model are however awkward and sd fow OF not with probability +-f,,,. Then, the probability
Chung and LU 17] recently proposed an alternative model ©f 0ccurrence of a particular gragh can be written

that is in many ways more convenieriModels similar to

that of Chung and Lu have also been introduced in(_jepen- rG)= H (1—1,4) H —f
dently by a number of other authdr¥1,18,19.) As we will (v,w) edges vw
show, by making use of an extension of their model we can

make tractable the problem of counting graphs with singleWhere the first product is over all unique vertex pavsw)

edges only. The model of Chung and Lu deals with undi_and the second is over only those pairs between which there
: js an edge. For convenience, we will wrie,,=f,,/(1

rected networks, and we consider that case first. A fairl . .
J fow), To=1Il(, wy(1—f,y), and defines,,, to be 1 if there

straightforward generalization to directed networks will be. .
dealt with briefly. is an edge betweem andw and zero otherwise. Then

fUW

()

A. The network model of Chung and Lu F(G)=F0(H) Pf;vw. (4)
v,W

In the model of Chung and LLL7] one specifies thde-
sireddegree, of verticesv and then places edges between ~ T0 progress, we need to choose a formPgy, or, equiva-

vertex pairs ¢,w) with probability lently, for f,,,. We will write
k EW Pow=P(\y Ay), 5
fow=—e\ (o
Y2m where thefugacity\,, is a real number assigned to vertex

that will control the expected degree of that vertex, in a
where m=13 k, is the desired number of edges in the manner similar to the desired degrees in the model of Chung
graph. The expected degree of verteis then and Lu[17] or the fitness variables introduced in Ref$8

—20]. For the undirected network, we expect that,,
K, - =Py, , S0 thatP(\, ,Ay)=P(\y,\,) IS symmetric in its
o % kw=Kk, . (2 arguments.
We would like all graphs with a given degree sequence to
appear in our ensemble with equal probability. This is the
riterion applied by Maslowt al. [6] in their simulations,

E)ZE fow=
w

Thus, the expected degree of each vertex is equal to its d
sired degree and the expected degree distribution is asym . .
totically equal to the distribution of the desired degree se@nd allows us to compare our results with theirs. As we now
quence, although any individual vertex may have a degreéhow' this condition is sufficient to specify the form of

that differs from its desired valu¢Throughout this paper, P(gﬂ;‘ggée that we have two grapBs andG,, whereG, is
. " . - 2 2
we denote desired values of quantities by a tmd_eg., k). obtained fromG, by changing the positions of two edges as

expected values or ensemble means by a(eay., k), and  shown in Fig. 1, all other edges remaining untouchui-

actual values in a particular graph by undecorated charactefg|ly there should be no edges betweandC or between

(e.9.k).] ) ) ) ) B andD.) Formally, this results in the replacement of a factor
However, this approach is not entirely satisfactory. Forp, .p_._ in I'(G;), Eq. (4), by PacPgp to give I'(G,).

some degree distributions the probabilfty, can exceed 1. since the degree sequence is invariant under this transforma-

Physically, this means that there can be more than one edggn, we must havd’ (G,)=T'(G,), and hence

between a pair of vertices, precisely the situation that we will

want to exclude in our calculations. Chung and Lu circum- P(Aa Ag)P(Ac,Ap)=P(Na,Ac)P(NAg, D). (6)
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I1l. PREDICTIONS AND RESULTS
o We now define a grand partition function
® + © H (©) grand p

N z=§ I'(G) FOZ H : (12)

e ' "— ’ ’ ) Interchanging the order of sum and product this gives

z=11 2 sz:v:(H) (1+P) =TT (148N,

FIG. 1. The edge interchange process employed in the argument (v,w) 9, (v,w)
of Sec. Il B. This process cannot affect the probabilitpf a graph (13

since the degree sequence is unchanged. . .
! g au U g where we have dropped the factorldf. (As is typically the

case with partition functions, leading factors of this type can-
cel out of all observable quantities in the thepry.

From Eq.(10) we can now see that the expected deg?ﬁe
P(Aa.As) _ P(Ap,Ag) @ of vertexv will be given by
P(AasAc) P(Ap,AQ)’

Rearranging, we then find that

. &Z JF
k,= b T (14)
where we have made use of the symmetryPof Z N, N,
Since\, and Ap each appear on only one side of this hereF is the free ener
equation, it follows that both sides must be independent of ay
both these quantities, and hence
—INZ=— 2, In(1+B\,\y). (15)
(v,w)
P(Aa.Ag) P(Ap.Ag)  9(Ng) ®) o
P(Aa,Ae) P(Ap,Ac) g(No)’ Combining Eqs(14) and (15), we then get
— BNy,
whereg(\) is some function, as yet unspecified. It then fol- kv=2 e (16)
w 1+ BN Ay

lows thatP(\, ,\,,) must be factorizable in the form

The expected number of edgesis the ensemble mean of

PN, M) =9(N)I(Ay). (9 the exponent of in the partition function, which is given by
We can confirm that the probabilitf(G) of a graphG m= _Bf: M (17)
generated according to such a choice does indeed depend B ow) L+ LN Ay

only on the degree sequence by observing that _ —
The mean degree of the entire systenis simply 2m/n,
wheren is the total number of vertices.
[(G)=Toll [g(x,)1%, (10) There are clear parallels between these results and the
v familiar Fermi ensemble of elementary statistical mechanics.
The quantityf ,,, introduced earlier, which we can now write
wherek, is the actual degree aof in the graphG. Sincel'y  in the form
is a constant for givefi\,}, this expression is indeed a func-
tion only of the degree sequengle,}. :M
f, , (18
We are still free to choose the functigif\) in any way Y14 BNy

we wish, but all nontrivial choices are equivalent, since theyIIes strictly in the range from 0 to 1, and represents the prob-
just correspond to different definitions of the fugacity It y 9 P P

makes sense to make the simplest possible choice and '.l'ty. that an edge lies between a pf”‘”'C“"?‘f pair of vgrt!ces
choose to writeg(\) = 82\, so that is is the equivalent of the Fermi function of statistical

mechanics.
The mean sum of the degrees of the neighbors of a vertex
Pow=BN,Aw, D, which we denotK™, is given by
whereg is a free parameter that will, as we will see, control K= f =3 BAoMw na (19)
the total number of edges in the grapNote that\, here is v vw W 1+HBN N, Y

not the same ds, of Chung and Lu as in Eq1), although in
the “classical limit” of graphs with few double edges it be- With K, given by Eq.(16), and the mean degree of a neigh-
comes the same. See belpw. bor of v is equal tok™=K™/k, . We will also want to cal-
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culate the correlation coefficient of the degree of vertices at o )\57+1
either end of an edgfr], whose value is given by Cc 1= f}\ N TdN= — (25
0
2
> ?U_Sn_(za)l[ Vf} (One should keep in mind that is not restricted, as the
v v degree is, to integer values.
r= — _ _.12 (20 Let us consider the case=3, for which the expressions
; kv_(zm)_:{g kf} for the quantities of interest take particularly simple forms.

For this choice, the expected degﬂ?(e\) of a vertex with
fugacity \ is
Although in this paper we are dealing primarily with un-
directed networks, generalization of the theory to directed ,
networks is straightforward. If,,, denotes the probability of T [7 BN / /
. . v ) . k(N)=n p(A") dX
existence of a directed edge framto w andP,,, is defined xo 1+ BAN'
as before, then the expected out-degraember of outgoing

edge$ of a vertexv will be =3n{BNoh — (BN ) ¥ 2arctah (BNoN) ~ 2},
(26)
=S =3 (21) -
v S S 1+Py] and the mean degreeof the system is
in- i i - — 2m o__
the expected in-degrd@umber of incoming edgesvill be 7= ?:zf KOV pOV)dA
Ao
=3 f= o @2 ongny 1 o - L 2
v Wv 1 = —_ — —_— j—
w w 1+PWU n,B)\O 4 B)\(z)! 12 ’ ( 7)

and the obvious generalizations of E¢E7) and(19) apply.  \yhere d(x,a,b) denotes the analytic continuation of the

Lerch transcendent.
The parametelB is to some extent redundant in these
expressions, since we are free to chobsaes we wish, but it

I;Proves convenient nonetheless. If we chogse(2m) 1,

wherem is the desired number of edges as before, then for
graphs in which there are few double edges we hfyge
Pk, (23) =\ AW/2m), giving  k,=Z,f,u=Zuw(A,\y)/(2M)
=\,, So that the fugacity is simply equal to the desired
. . degree of a vertex, as in the model of Chung and 11].

with 7~2.220.3 [21,22. The long tail of the power law T4 regime in which there are few double edges can be
means that the highest-degree vertex pairs in the networf,,ght of as the classical limit of our Fermi ensemble, and

would be quite likely to have more than one edge running.,resnonds to the case where the first terms in &.and
between them if the edges were assigned at random, and t dominate. As\ becomes large, however, encouraging

behavior of the network changes substantially when thesg, tices to have a high degree, we enter the quantum regime,

multiple edges are disallowed. This is the origin of the ef-here it hecomes harder and harder for vertices to find others

fects observed by Masloet al. [6] in their simu!atipns,l to connect to. This is reflected in ER6) also. Expanding
As we now show, the power-law degree distribution CaNia inverse tangent as arctanx— 3+ H°—O(x), we find
be reproduced in our model by choosing the fugakitlso ot the leading term cancels ané ° '

to have a power-law distribution with the same expongnt
so that the number of vertices with fugacity betweeand
N+d\ is p(\) d\, where

A. Example: Power-law degree distribution

We are here interested in the case of the Internet, whic
like a number of other networks, has a degree distributio
that approximately follows a power law

3n
58N\

k(\)=n— +nO[(BN\oN) 2] (28)

CN™7 for A=)

(V)= 0 for A<\g.

(24 Thus, as\—x the degree tends to, as we would expect,
since this is the largest degree a vertex can have on a net-

work with no double edges.

The lower cutoff makes the distribution normalizable, &d The mean sunf””()\) of the degrees of the neighbors of
is a normalizing constant given by a vertex with fugacityn is
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_ = BN — . il _
e =n [ oy o I
Nol+ BAN'
2 aig Mo ~-1 3
=9n*(BNo)) ¥4 S=arctarf(SAoh) 2] 10
312 g
N &
_Z(TO) {211+ (M Ag) Y2 —In(1+ BAo\) 2 102
“E’ o 1=2.1 (simulation)
— 1=2.1 (analytical)
1/2 =2.3 (simulation)
+O(hof )}} (29 10" — g (esmall;:itc:l)
i A 1=2.5 (simulation)
. _ Il —— 1=2.5 (analytical)
and from this we can calculaté™ [24]. iH
These results can be extended to other values also, 10° E i
although the formulas are not as elegant as for the ease ””ﬂo i . . = “”6 i
=3. For example, for generat>1 the equivalent of Eq. 10 10 10 10
(26) is fugacity A

FIG. 2. The ensemble meanof the degree of a vertex in our
model as a function of the fugacity of the vertex. The numerical
results are averaged over 1000 repetitions of the simulation. The
where,F is a hypergeometric function. This form is used in dotted line indicates the fortk= X\, which the curve is expected to
some of the calculations in the following section. approximate for smalk.

K(N)=n,Fy|1,—1+77— (30)

BNoN)’

B. Comparison with the Internet The fundamental result of this paper is shown in Fig. 4,

where we have plotted the mean degk8®of the neighbors

of a vertex, calculated from E@29), against the degree of

~ that vertex. This is the comparison used by Pastor-Satorras
and the number of edges the same as the real Internet, ¢ 4] [5] to demonstrate degree anticorrelation in the Inter-

since our predictions, Eqs26) and (29), are dependent on et As the figure shows, there is a clear decline in the value
these quantities. For the purposes of comparison, we use th

_nn . . . _
data of Chenet al. [22] from 2001 on the structure of the Of K™ as degree increases, just as in the real Internet, con
Internet at the autonomous system level, for which

=10697 andm=231992, which gives a mean degree%f

=2m/n=5.981. For the choice Eq24) of fugacity distri-
bution used here, we can arrange for the network to have thig EE
correct mean degree by an appropriate choice of the lowe 8

limit A, of the distribution, and we do this for three values g’ 102 &
r=2.1, 2.3, and 2.5 of the exponent of the power law. Weﬁ

also perform extensive simulations of the model for the sameg,
parameter values to confirm our calculations, and analytic3 EE
and numerical results are shown in Figs. 2—4 and in Table 12

We now compare our model quantitatively with the Inter-
net graph. To do this, it is important that we make the size

100 ET

#

X ) L S
As we can see, analytical and numerical predictions agre¢g 0% K
closely. £ N\
Consider first Fig. 2, which is a plot of the mean degree off \
a vertex as a function of its fugacity. As the figure shows, the £ E =
degree is closely linear in the fugacity for smalland flat- % —ug=21
tens off as degree approachgsas expected. £ 109 B — ifﬁﬁ

The same behavior is evident in Fig. 3 also, which shows - i
the cumulative distribution function of degrees in simula-
tions of the model for power-law distributed fugacity, Eq.
(24). The distribution of degrees also follows a power l@w 1 10 100 1000 10000
straight line on the logarithmic axes ugedntil the degree
approaches, where the distribution is cut off. This is an
eminently sensible behavior: given the constraint of single F|G. 3. The cumulative distribution function for vertex degree
edges only, presumably the real Internet must deviate frormh simulations of our model. The general form of the distribution is
the power-law behavior for large degree, and our modeh power law for low degree with a cutoff as degree approaches the
should and does reflect this behavior. system sizen.

degree k
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work, and its value has been measured to #e-0.189(7].
In the model we also see negative values,oivhose mag-
1000 T=2.1 (simulation) nitude depends quite strongly on the value of the exponent
o e A detailed comparison of model and real-world data may
=23 (analytical) therefore have to wait on more precise measurements of the
| T3 ool degree distribution(about which there is at present some
TRkl P dispute[22]). However, it is interesting to note that none of
Pog s, N the cases in Table | is as strongly anticorrelated as the real
1 aly 11 i Internet. Thus, oqr_ca_lculations appear to indicate that some
S ’f@; of the disassortativity in the Internet can be accounted for by
the mechanism proposed by Masletval., but probably not
B all of it. The remainder of the disassortativity is presumably
RN due to engineering or social constraints on the structure of
R the network. One possibility, which has been discussed else-
k ! where[6,8], is that the Internet is divided into connectivity
10 St providers such as phone companies and Internet service pro-
viders, who tend to have high degree, since they have lots of
}“ customers, and end users of connectivity, who typically have
1 10 100 1000 10000 a degree of only one or two. Most connections in the net-
work run from the providers to the end users and are there-
degree fore from high to low degree, giving a social reason for

_ disassortativity in addition to the purely topological one con-
FIG. 4. The mean degre€" of the neighbors of a vertex as a gjdered here.

function of the degredx_of that vertex. The dotted lines show the
asymptotic slopes of the curves. IV. DISCUSSION AND CONCLUSIONS

B

| > o]

mean degree of neighbors

o

firming that the single-edge constraint does indeed give rise In this paper we ha_ve studied analytically ensembles Of.
to anticorrelations, as conjectured by Maskival. Further- networks where there is at most one edge between any pair

more, the decline appears to be approximately power-law i f vertices. By makmg use of an enlarge_d ensemble in W.h'.Ch

—=n Ty the number of edges is allowed to vary in a manner reminis-
form k™~k™", as found by Pastor-Satorr@$ al. We can  cent of the Fermi ensemble of traditional statistical mechan-
deduce approximate values for the exponeritom our re- o5 \ve have been able to find closed-form expressions for
sults. We find forr=2.1, »=0.65, for7=2.3, v=0.55, and  gngemble averages of a number of quantities of interest. In
for 7=2.5,=0.42. The slopes are shown as the dotted line$,5ticylar, we have confirmed the previous numerical finding
in Fig. (3). The values forv are all close to the value  [g] that graph ensembles with single edges have negative
=0.5 observed for the real Interngf]. The power law is  correlations between the degrees of adjacent vertices. This
only approximate however—the functional form of E89)  has been proposed as a possible explanation for the anticor-
is not just a simple power law, and we can see from th§e|ation or disassortativity observed in the topology of the
figure that the slope d€"" is smaller for smallek. The same Internet[5]. We find that the restriction to single edges can
behavior is visible in both the real Internet data and the simuaccount for some but not all of the correlations observed in
lation results of Maslowet al. [6]. real Internet data.

Finally, in Table |, we show values for the mean deg?ee The same mechanism could be responsible for disassorta-
and degree correlation coefficianfor our model. As we see, tivity in other networks also. Many networks, including cita-
the theoretical calculations and numerical results again agrdion networks, the World Wide Web, social networks, col-
well. Since the Internet is disassortative, we expect the ddaboration networks, metabolic and genetic regulatory
gree correlation coefficient to be negative in the real nethetworks, and food webs have, at least in their most common

representations, only single edges between vertex pairs.

TABLE |. Mean degree and degree correlation coefficient forThus.’ Itis reasonable to suppose th"?‘t these networks would
the networks generated by our model from both the analytic theor;@)e disassortative also, and indeed this appears to _be the case
and from computer simulations. The simulation results are average I most network§ that he}ve been stud(@&}. There is one .
over 1000 networks each. Figures in parentheses show statisticinPortant exception to this rule however: almost all social

errors on the least significant figures. networks, appear to be significantigsortativein their mix-
ing patterns. We conjecture, therefore, that disassortativity by
Mean degre@. Degree correlation degree is the normal state of affairs for a network, as a result
, Theory Simulation Theory Simulation of the mgchanlsms (_jescnbed in this paper, W|th_ .somal net-
works being assortative probably because of additional social
2.1 5.981 5.982(15) —0.0950 —0.0932(17) effects that are absent from other network types; for one
2.3 5.981 5.972(9) —0.0541  —0.0551(18) reason or another, it appears that gregarious people prefer to
2.5 5.981 5.986(7) —0.0304 —0.0321(14) associate with other gregarious people. Furthermore, when

assessing the level of assortativity in a social network, one
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should take into account the natural tendency for networks tgemble often makes the analytic treatment of a problem

be disassortative, since this tendency implies that to reach @asier, and the results presented here offer hope that this
level even of neutral assortativity would take a moderatelyapproach may prove useful in other settings.

strong bias in favor of positive degree correlation, and reach-
ing a substantially assortative state would take a very strong
such bias.

Finally, we point out that the general analytical technique The authors thank Supriya Krishnamurthy for useful dis-
employed in this paper, of enlarging an ensemble, of graphsussions and comments. This work was supported in part by
to create a grand canonical ensemble, may have applicatiothe National Science Foundation under Grant No. DMS-
to other problems in the study of networks also. It is well0234188 and by the Michigan Center for Theoretical Physics
known among statistical physicists that using such an enat the University of Michigan.
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