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Thermodynamic instabilities in one-dimensional particle lattices: A finite-size scaling approach
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One-dimensional thermodynamic instabilities are phase transitions, not prohibited by Landau’s argument
because the energy of the domain wall which separates the two phases is infinite. Whether they actually occur
in a given system of particles must be demonstrated on a case-by-case basis by examining the properties of the
corresponding singular transfer integf@l) equation. The present work deals with the generic Peyrard-Bishop
model of DNA denaturation. In the absence of exact statements about the spectrum of the singular Tl equation,
| use Gauss-Hermite quadratures to achieve a single-parameter-controlled approach to rounding effects; this
allows me to employ finite-size scaling concepts in order to demonstrate that a phase transition occurs and to
derive the critical exponents.

DOI: 10.1103/PhysReVvE.68.026109 PACS nuni)er05.70.Jk

The absence of phase transitions in one-dimensional sysstence of the partition function; at the same time, it enforces
tems is generally understood in terms of Landau’s argumerthe analyticity of the free energy as a function of tempera-
[1], according to which, macroscopic phase coexistence—ture, and therefore, the absence of phase trangigied Q). In
and, by implication, a phase transition—cannot occur befact, the crucial step in formulating the TI thermodynamics
cause the system splits into a macroscopic number of dosf Eq. (1) demands the weaker condition for the existence of
mains; the spontaneous splitting is favored by entropy, whicla complete, orthonormal set of eigenstates of the—possibly
more than compensates for the energy needed to create thimgular—integral equation
domain walls(DWs).

Landau’s argument provides us with a guide to exceptions © o 12 , ,
from the general rule. For example, in lattice systems with j_wdy e  WEDLTYG(y,y ) du(y ) = Avduly). ()
long-range harmonic interactions of the Kac-Baker-type po-
tential and a¢* on-site potential, where a phase transitionwhere, in general,
does occur at a finite temperatur], the DW energy di-

verges, and therefore Landau’s “no go” argument is not ap- G(y,y')=e VO+VIIE@T), 3)
plicable. A similar situation arises in the generic instability
model described by the Hamiltonian andT is the temperature. The limiting case=0 (harmonic

chain, with its continuum, doubly degenerate spectrum of

1, 1 ) plane waves illustrates the above argument. In the more gen-
H=2> 5Pt SR (Yn=Yn-1) "+ V(¥n) |, (1) eral case of the Morse-like potential{y), Eq. (2) can be
" shown to be singular because the corresponding kernel is,
similarly, non-Hilbert-Schmidf11]. | am not aware of a gen-
: ; Sy o eral proof that a complete orthonormal set of eigenstates ex-
mentum, respectively, of theth particle,V(y)=(e "—1)" g5 for this class of Hamiltonians; assuming, however, for a
is an on-site Morse potential, arilis a parameter which o ment that this is the case, a phase transitiostability)
describes the relative strength of on-site and elastic interaGscenario is possible if the spectrum contains a discrete and a

tions; all quantities are dimensionless. The model has bee&)ntinuum part and the gap between them continuously ap-
proposed in a variety of physical contexts, such as the wels 5aches zero at a certain finite temperature, i.e., the longi-

ting of interfaceq 3] and the thermal denaturation of DNA ; qinal correlation length¢ diverges[12]. This is exactly

[4]. In the case of Hamiltoniaftl), the DW is a static Solu- \yhat happens if we use the gradient-expansion approxima-

tion of infinite energy which interpolates between the stabl ion (valid for R<1 in the temperature range<IT<1/R
minimum and the metastable flat top of the Morse potenti:klcﬂ) to map Eq.(3) to a Schidinger-like equation. The

[5]. Therefore, Landau’s argument cannot be invoked t0 exy5jigity of such a mapping is certainly questionable at large
clude a phase transition. Whether a phase transition occurs g5 ,es of R. Therefore. it is legitimate to enquire about
not can only be definitively decided by an exact Calcu'ationindependent—and mo’re general—methods of deciding
of the thermodynamic free energy. o whether a phase transition occurs. In the absence of exact

In general, thermodynamic properties of Hamiltonian sys—;otements about the spectrum of E2), previous studies
tems belonging6] to class(1) can be calculated exactly by paye taken a pragmatic approach in the verification of the
the transfer integralTl) method. Standard texts in statistical scenario described above: for example, in R&fl], the in-

mechanics_impose re§trictions on ths type of admissible Ofegral on the left-hand side of E¢B) was cut off at a large
site potentials, e.g., lim , _V(y)=|y|”, >0 [7]; such @ sitive value ofy=y,,., and evaluated on a grid of a given
restriction—which explicitly excludes Eql)—is useful in  size. This procedure effectively approximates E3). by a
the sense that it represents a sufficient condition for the exeal, symmetric, matrix eigenvalue problem. The numerical

wherey, and p, are the transverse displacement and mo
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procedure is considered satisfactory if the results do not de- T T R
pend on two large parameters; the cutoff and the grid size. C 1
Other authord11] have applied a Gauss-Legendre quadra- 0.0
tures procedure to approximate the integral in E); al-

though this is somewhat more efficient from the numerical

point of view, it still leaves two large parameters to be dealt

with. Therefore, the nature of the approach of the matrix 0.03
eigenvalue problem to the limiting singular equati@ re- I
mains somewhat obscure; as a result, the skeptic may ask Ag
[15]: does a phase transition really occur in the system de-

fined by Hamiltonian(1)? 0.02
In the present paper, | exploit the presence of the Gauss- I
ian factors in the kernel, and approximate the integral in the
left-hand side of Eq(3) by using a Gauss-Hermite grid of L
sizeN, i.e., 0.01

N
00 _ _—2 — —
| dve Pt~ 3wty @ _
- n=1 0.00 L . . L ——
. . . . 1.0 1.1 1.2 1.3
where positions and weights are given by the appropriate T

Gauss-Hermite quadratures routine. Besides the obvious ad-

vantage of eliminating the cutoff from the numerical integra-  FIG. 1. The gap between the two lowest eigenvalues of the

tion, this allows me to identify the largest of the Gauss-matrix eigenvalue problents), for a variety of N values. For a

Hermite rootsyy~ (2N+ 1)Y?=L with the “transverse size givenN, the gap has a minimum at a certain temperafyye

of the system” and employ finite-size scaling concepts. In

this fashion, the singular integral equation is approximated agveen two transverse length scales; the size of the syktem

the N— e limit of the sequence o XN matrix equations.  (hereL=(2N+1)¥?) and the transverse correlation length
| use “rescaled” variables, i.ey=py, p=(2RT)¥2 and & =[{(8y))]1Y’=[(y®)—(y)?]¥2 If Eq. (2) has the same

divide both sides of Eq(2) by p+/7. This transforms Eq2)  critical properties as the Schiimger-like equation derived

to the matrix form from it within the gradient-expansion approximatide.g.,

Ref. [5]), we expect, in the limit of infinite_, a transverse

N correlation lengthé, «|t| ="+ and an order parametéOP)

21 D;jA/=e </TA!, (5)

: 18— 0015
where

172 Lo ® T
ij%@ Ve 0N G(pyT pyl)  (6) . ’ IR .
12— e, /T [ ® o -0.010
andA,/(27RT)"*=e™ ¢''. The advantage of the latter res- Y
caling is that the “harmonic background” of the free energy 122 S ]
has now been absorbed in the prefactor; the lowest of the T L[ il 12 (L)
€, 's expresses the nontrivial part of the free energy. I e 1"
| have solved numericallyf16] the matrix eigenvalue e . 1

problem (5) for R=10.1 [5], N=256,384,512,2048, and I 10.005
temperatures in the range 0:8%<1.30. Results for the dif- : 0 L
ference between the two lowest eigenvalues are shown in 101k *
Fig. 1. At any given sizé, the gap has a minimudye,(L) & e (L) :
at a certain temperatufg(L). Figure 2 illustrates thati) e limit:-00064(1)
the value of the gap approaches zero quadratically. as
—oo to within 10°° and (i) the sequence of (L)’s also omen  opm | gom
approaches a limiting valu€.=1.2276 quadratically. L2

| identify the limiting temperaturd ., where the spectral
gap of the limiting, infinite-dimensional matrix eigenvalue  FiG. 2. The magnitude of the gap minimuircles, righty-axis
equation(5) vanishes, as the transition temperature of thescalg approaches zero as the system size goes to infinity. The se-
original Tl equation(2). quence of the temperatures corresponding to the gap minima,

Near the critical temperatur@,, the various thermal T, (L) (diamonds, lefty-axis scalg can be used to provide an
properties of a finite-size system exhibit the competition beestimate of the critical poin,.

026109-2



THERMODYNAMIC INSTABILITIES IN ONE- . .. PHYSICAL REVIEW E 68, 026109 (2003

T T T
100 - N -
1L i v 2048 ]
r 700 i
[ | « 512 ]
| > 256 |
<y>/L | AL sl. 2 |
. ]
0.1 A e =R naan I : |
0.1 1 10 ul ol | te vl
it 0.01 0.1 1 10

ItiL

FIG. 3. Finite-size scaling of the order parameter. The scaling
variable reflects the choice, =1. Data from the neighborhood of
T, i.e., |t|<0.1 for different values oN tend to fall on the same
curve; this confirms the choice ef, ; the asymptotic slopé&otted
line) reflects the property, = — =1 (cf. text.

FIG. 5. Finite-size scaling of the gap.

wheref,(0)=const, andf{(x)«1/x if x>1; the first prop-
erty follows from the requirement of bounded, nonzero OP at
t=0" and finiteL, and the second from the requirement of
(y)ec|t|® with B=—v, =—1 andt=T/T,—1. Then the or- an L-independent limit at valuds> ¢, ; the second property

der parameter in the finite system scales as guarantees thg8=—v, , as expected. Figure 3 shows that
numerical results obtained for three different valuesNof

L scale properly ifv, is chosen to be equal to unity.
(y)L=Lf; £ (7)
1
2_ 12 O b snse g
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FIG. 6. The three lowest eigenvalues of E§) at T=1.5 (full

FIG. 4. “Reduced” fluctuations of the order parameter for three symbolg for variousN. For comparison, the three lowest eigenval-
different values ofN. The common intersection provides a further ues of Eq.(5) with V=0 (harmonic chaipare shown(open sym-
method to estimat&, from finite-N runs. Detail of the intersection bols). The onset shows the same data plotte@@$n/L)? vs 1L;
is shown in the inset, along with the estimdtg=1.2276(dashed it demonstrates numerically that both sets of eigenvalues behave as
line) obtained abovécf. Fig. 2. (n/L)? at largeL.
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For comparison, | have also plotted the corresponding results
obtained in the absence of the Morse potenti@rmonic
crysta); note that the system size in this case is twice as
large, since there is no repulsive barrier at negayivéhe
figure illustrates that in the limit of largk, the spectra of
both systems behave age(n/L)2. In other words, a de-
tailed analysis of the spectra of E&) can be used to dem-
onstrate that the thermodynamic properties of the high-
((sy)H)? temperature phase coincide exactly with those of the
————=¢C0 harmonic chain. This completes the thermodynamic descrip-

(o tion of the instability of the particle lattice system as the

att=0 andany L This provides a convenient graphical rule transition from a confined to a deconfined state. _
for locating the critical pointcf. Fig. 4 and Ref[17]). The In summary, | have demonstrated that it is possible to
rule is valid as long a@=—rv, , i.e., for both second and View the singular TI thermodynamics of one-dimensional lat-
first-order instabilities—in the latter case, of course, onlytice systems with a nearest-neighbor harmonic coupling and
those with a continuously divergent OP. a Morse on-site potential as the limit of a sequence of finite
The finite-size scaling of the gap is described according tanatrix eigenvalue problems. The finite-size scaling proper-
the ansatz ties of the sequence are consistent with the universality hy-
3
&)

pothesis; in other words, the critical exponents of the limit-
ing system withR=10.1 are all identical with those obtained

where nowf (0)=const,fg(x)<x? if x>1 (cf. above, and

as a resultA e, (t) «|t|” with v=2.

via the gradient expansion and the resulting Sdimger-like
equation (under the conditionR<1). The procedure

Numerical results shown in Fig. 5 demonstrate the valid
ity of the ansat210).

described—and, in particular the vanishing of the gap in the
| conclude by presenting some typical results of the spec

Similarly, the OP fluctuations scale according to
L

£

where nowf,(0)=const, f,(x)ec 1/x if x>1 [cf. above, fol-
lowing Eq. (7)].
As a consequence of Eq¥) and (8), the ratio

((8y)?) 2= sz( ®)

nst (9)

Ae (t)=L 2%fg (10

that a phase transition occurs within the framework of the
exact Tl thermodynamics.

limit of infinite system size—constitutes in effect a “proof”
tra of Eq.(5) at temperatures abovi,. Figure 6 shows the
values obtained foe,, n=1,2,3, forT=1.5 and variou.
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