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Partition functions and Metropolis-type evolution rules for surface growth models with constraints

Yup Kim, H. B. Heo, and S. Y. Yoon
Department of Physics and Research Institute of Basic Sciences, Kyung Hee University, Seoul 130-701, Korea
(Received 12 January 2003; published 12 August 2003

We study dynamical scaling properties of the surface growth model with the Metropolis-type evolution rule
from a partition functiorz = E{h(F)}HEE?Xmin%(lJF z™), wherezis a fugacity-like quantity andy, is the number
of sites with height in a surface configuratiofh(?)}. The partition function describes a 2-particle correlated
growth model wherz=—1 and a self-flattening growth model wher-0. For one-dimensional equilibrium
surfaces, the scaling properties for — 1 exceptz=1 are all one phase with roughness exponentl/3 and
growth exponenpB=0.22. For the growingeroding surfaces, there exists a phase transition=a® from the
grooved phased=1) for —1<z<0 to the ordinary Kardar-Parisi-Zhang phage=(1/2) for z>0.
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In equilibrium statistical mechanics, the partition function the Q-particle (QP) correlated mode[4] was subsequently
plays the decisive role in finding the macroscopic propertiesuggested, which is believed to have the true one-to-one cor-
of thermodynamic systems. In contrast, successful theoriespondence t@-visited RWs. Another kind of model with
based on a patrtition function for nonthermodynamic systemshe global constraints is the self-flattenin@F surface
such as surface growtfi], are scarce except for Edwards- growth[5], in which the growth(erosion rate at the globally
Wilkinson-type thermal roughenini®,3]. In this paper, we highest(lowes) site is reduced or suppressed. The 1D equi-
show that some of the recently developed growth model$ibrium SF model also hag=1/3. The 1D equilibrium SF
with global constraint$4—6] can be unified through a parti- model can be mapped onto a self-attracting wa&kand to
tion function. By using a Metropolis-type evolution rule es- the survival of random walks with static trap9], even
tablished directly from the partition function, scaling proper-though the higher-dimensional SF models cannot be mapped
ties for equilibrium surfaces of the models are shown todirectly to walk model$5]. In this paper, we show that these
belong to the same universality class and a sharp phase tragrowth models with global constraints can be unified through
sition is shown to exist for the growingeroding surfaces. the unique form of a partition functiotor generating func-
Our study is important because several different growttion) Z.
models can be explained from one partition function. We think about the surface configurations described in

Dynamical scaling theories for fluctuating surfaces undekerms of integer height variabléf(r)} on aD-dimensional
thermal white noise have been studied extensively becausgpercubic lattice. They are subject to the restricted solid-on-
of the theoretical and experimental importance of the IongSolid (RSOS constraint,h(f+&)—h(F)=0,~1 with & a
time, large scale surface morphology]. The dynamical primitive lattice vector }n theitlh directioniqzl, ce ,IZI)).

scaling hypothesis used in these studies is ThenZ which unifies the growth mode[$, 6] is

W= Lef(t/L2w), (1) i
max
whereW is a root-mean-square fluctuation of surface heights. ZZ{%)} hl;[ 5 (1+2™M), 2
r ~'min

a andzy, are the roughness and dynamic exponents, respec-

tively. In the hypothesisW(t;L) increases a#® initially (t Lo . .
<L) and saturates t0.“ for t>L%w, where 8= alzy. where the summation is over all possible surface height con

Most of these theories have used the Langevin-type equa('—gu_rat'qns V_V'th th? RSOS con'stralp L angi'ls the number
tions and the discrete growth moddtk], which originate  Of sitesr which satisfy the relation(r,t) =h in the configu-
from the evolution rules considering only local surface mor-ration{h(r)}. Of coursezin Eq. (2) is an analog ofugacity
phology. or chemical potentialin equilibrium statistical mechanics.
Recently, several surface growth models in which globaln z—0 limit, each term inside the product ifi is equal
or nonlocal constraints are taken into consideration havéo 1/2 if n,#0 or to 1 otherwise. ThenZ(z=0)
been suggested and studied. Among them, the first suggested,;),exp(=BS) with S=hya—hyip+1 and g=In2.
model was the&Q-mer-type surface growth modgs], where  Z(z=0) is exactly the same as the partition functioge: of
particles can deposit and evaporate only in @ener form  the SF growth moddl5]. Whenz= —1, Z becomes nonzero
of equal heights. The surface widilv of one-dimensional only when alln,, are evenZ with z= —1 is exactly equal to
(1D) equilibrium Q-mer models with the system sizedi- Z of the 2-particle(2P) correlated growth modé¢#] because
verges asW~L“ with a=1/3 instead of the conventional only the height configurations obeying the global evenness
random-walk valuex=1/2. TheQ-mer model is related to conservation law have nonzero contributionztoOf course,
Q-visited random walk§RWs) and the localization models the ordinary RSOS-type behavift0] recovers wherz=1.
for the Lifschitz tail [6]. To resolve the sectofor initial- The dynamical scaling properties for the @PP) growth
morphology dependenproblemd6,7] in the Q-mer models, models ¢=—1) [4] and SF growth modelz=0) [5] are as
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follows. For the equilibrium surfaces when the deposition 05
attempt probabilityp is the same as the evaporation probabil- o
ity g (p=q=1/2), a=1/3 for the both 1D QP and SF mod- L T
els. The growth exponen® has been found to bg=0.22 S03rs g
(or 2/9 for the SF model ang=0.2 for the 2P model. For 02l °°

z=1, the scaling behavior should be the ordinary RSOS be-
havior with «=1/2 andB= 1/4[3] for equilibrium surfaces.
The scaling property of the growingp&1l—q>1/2) or

1L
eroding Q=1—p>1/2) surface in the QP model is quite %i % § %
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different from the equilibrium surfacegt]. The growing
(eroding surface for the QP modelzE —1) shows the 0.3
grooved structure witte=1 [4]. In contrast, the SF model . . .
still shows the ordinary RSO§L0] behavior with o= 1/2 0.00 0.01 0.02 0.03
and 8=1/3. 1/L

So the natural interesting questions concerning the equi-
librium surfaces are the scaling properties of the models with FIG. 1. Effective exponenta,; versus 1L for the equilibrium
—1<z<0, 0<z<1, andz>1. From the properties of the surfaces of the model witz=—-1,—0.5,0,0.5,1.5. Used system
QP (2P) model z=—1) and SF model=0), we easily sizes areL=2°2°, ... 2" All data for various values of con-
expect that all the models with- 1<z=<0 have the same verge to 1/3 rather nicely in the—c limit. The inset shows the
phase witha=1/3. However, the scaling property fox(r same plot foz=0.9 and 1.1. The data in the inset are shown for the
<1 andz>1 cannot be predicted easily from the known System size& =27,2°, ... 2%
results of the SF and 2P models. It is also very interesting to ) ) _
know at what value ofz the transition from the grooved By using the Metropolis-type evolution rule, we perform
phase to the norma' RSOS behavior occurs for the growin@Umerical Simulations, Starting from a flat surface on the 1D

1/3

(eroding surfaces. Substrate of linear sizk with the lateral periodic boundary
It is thus the purpose of our paper to study the dynamicafondition. To measure the surface quctuastlAhof Eq. ()
scaling properties of the model with=—1 by using the for a givenz, we run simulations fol.=2° ...,2"® and

Metropolis-type evolution rules based on the generalized@verage the data foW over at least 300 independent
partition function(2). From this study, we show that all of Samples. o
the phases of equilibriump= q=1/2) surfaces foz=—1 First, we show the results for the _equmbr_lum surfaces
are the same as those with= 1/3 andg=0.22(2/9), except (p=q). In order to extract the saturat|on—reg|m¢ property,
for z=1. An analytic explanation based on the partitionthe data forW for t>L*W are analyzed to obtaiiVy(L)
function(2) is given for the existence of the same phase with=W(t>L"). For the estimation of exponeat, we intro-
a=1/3. We also show that the growirigroding surfaces duce effective exponents
for —1=<2z<0 are the grooved phasea£1), whereas the
growing (eroding surfaces forz=0 show the ordinary @eri(L) =IN[Ws(mL)/Wy(L)]/Inm, 4)
RSOS scaling behavioi(=1/2). ) )

We now explain the Metropolis-type evolution rule basedWheremis an arbitrary constarthere, we sei=2). Effec-

on the partition function(2) in detail. First evaluate the tive exponents for=—1, —0.5,0, 0.5, and 1.5 are obtained
weight by using systems with sizes up to=2'% The results are

plotted in Fig. 1. For small system sizes uplte=2’, our
data show relatively large corrections to scaling as expected.
- However, the asymptotic estimates seem to be independent
— n
w({h(r)})—h:H. 5(1+2) 3 of z We estimatea=1/3 for all z in the systems with_
e =28 Since the model witlz=1 is exactly equal to the
. ordinary RSOS model witle=1/2, we also investigate the
in a given height configuratiofih(r)}. Next choose a col- models withz close to 1. For thisa¢ for z=0.9 andz
umn x randomly. Then decide the deposition atterhgk) = 1.1is evaluated by using systems up.te 2'°. The results

v ; o ; are displayed in the inset of Fig. 1. We also find large cor-
— +
h(x)+1 with prgbablllty por the evaporation attempt rections to the scaling up to=21° but find a=1/3 for L
h(x)—h(x)—1 with probability g. Then calculate 11 gjhce the model based on the partition functi@n

w({h’(r)}) for the new configuratiogh’(r)} from the de-  cannot be physically defined far — 1, the result in Fig. 1
cided depositiorievaporatioh process. Then the acceptance strongly supports the fact that all the equilibrium surfaces for
parameterP is defined byP=w({h’(r)})/w({h(r)}). If P z=-1, except forz=1, have the same phase wii
=1, then the new configuration is accepted unconditionally=1/3. In Fig. 2, we also display the early-time¢<{L*W)

If P<1, the new configuration is accepted only when dynamical behavior for the equilibrium surfaces for the same
=R, whereR is a generated random number with<®  z's in Fig. 1. The data in Fig. 2 are obtained from the simu-
<1. Any new configuration is rejected if it would result in lation in the system with. =212 The growth exponeng is

the violation of the RSOS constraint. obtained by a simple fitting of the relatiéhi=t” to the data.

hmax

026108-2



PARTITION FUNCTIONS AND METROPOLIS-TYE . .. PHYSICAL REVIEW E 68, 026108 (2003

1.0 2.0 —
. e z=0 A z=-1
= z=05 e z=-05
v o z=15 o z=-0.1
[ ]
a Hoseme @ 8
05} 1513
o
(o]
= = %$60 001 002 0.03
= s 1/L
= 0or TITE :
=3 =
ji=
ji=
ji=1
k=13
-0.5F s =
. . . . 0.5} \ . .
0 1 2 3 4 5 0.00 0.01 0.02 0.03
In 1 1/L

FIG. 2. Plots of InW against In for z=-0.5,0,0.5,0.9,1.1,1.5
for the equilibrium surfaces. The used system size4s2'2 The
straight line denoted b= 0.22 represents the relatiahi=1t%22

FIG. 3. aq¢s versus 1L for the growing surfacesp=1) of the
model withz=—1,—0.5,-0.1. The inset shows the same plot for
z=0,0.5,1.5. The data fa= —0.1 are taken from the system sizes

) ) up to L=2%? and other data are from the system sizes up.to
Our estimate i8=0.22(1)=2/9 regardless of the value = =210

The best estimation o8 for the 2P model £=—1) from
Ref.[4] was 8=0.20. The results in Fig. 2 also support the results and the analytic arguments in Ed6) and (7)
fact that all the models for>—1, exceptz=1, have the strongly support the following renormalization groURG)
same dynamical behavior @#=2/9, even though the esti- flows in the phase space af The z=1 fixed point for the
mated B value forz=—1 seemed to be somewhat smaller ordinary RSOS behavior is the unstable fixed point. For
than 2/9. The sectofor initial-morphology dependence is >1, the RG flow is directed to the= fixed point, which
checked for the models with>—1, but it is found that the represents the scaling behavior governed by the partition
results in Figs. 1 and 2 are not varied by changing the initiafunction (6), or coincidentally the SF behavior. Ffr] <1,
surface configuration. As mentioned in the introductory partthe RG flow is directed t@=0, which represents the SF
the QP modeld4] have no sectofor initial-morphology-  behavior itselfsee Eq(7)]. This analytic argument supports
dependent problem, whereas th€-mer models have the the phase diagram in which all of the phases Zer—1,
problem[6,7]. Since the models considered here are deeplgxcept the singular poirg=1, are the same phase with
related to the 2P models, the models show no sector deper=1/3 as the SF growth with=0. This theoretical argument
dence. based on the partition function explains the existence of a
The scaling behaviors in Fig. 1 can be analytically underphase witha=1/3 for z=—1. However, the evolution dy-
stood from the partition function because the equilibriumnamics, especially the result8=2/9 and z,~=3/2, can
surface has no external bias. The partition funct®rcan be  hardly be explained from the partition function itself, even
expanded as though the SF modé¢b] has numerically been shown to have
B=2/9 andzy=3/2. Further analytical study to explain the

hmax . . .
7= @291+ S Mmt...42t 5) com_mcl)nﬁdfyn?mlcal behaV|cr)]8—2/9 for models withz=
h(} h<hmin —1 is left for future research.

Next, we consider nonequilibrium growing/eroding sur-
where S=hpax—hpint1 andL=Zyn,. Then in the limit  faces p+#q). We run simulations fop=1 in the system

Z—, sizesL=25% ...,2'2 a. for z=—1,-0.5-0.1 is shown
in the main figure of Fig. 3 and that fa=0,0.5,1.5 is shown

7=7t 1/2)5=7'Z., 6 in th_e |n§et o_f Fig. 3. As can be seen from Fig.a3for z

{%)} (172 sF © o quite different from that foz=0. Forz=0, we esti-

mate thate=0.50(1), which are consistent with the results
whereZgg is simply the partition function for the SF surface for the ordinary RSOS mod¢lL0]. However,a=1 is esti-
growth. Equation(6) t'hus impligs that the models fa=>1 mated forz<0 as in the 2RQP) model with z=—1 [4].
have the same scaling behavior as the SF model.|Bor Even for small negative (or z= —0.1), a.¢s approaches 1

<1, Zin Eq. (5) can be written as in the limit L— o<, even though there exists a large correction
hima to the =1 scaling behavior in systems with small We
_ —BS nh also investigated the time-dependent behavio¥wjf). For
z {%)} € l+h=§h:mm z } ™ z>0 we getB=0.31), which is the ordinary RSOS be-

havior[10]. In contrast, the different time-dependent behav-
and the most dominargtelevanj term inZ is Zgg. We thus  ior of W is found as shown in Fig. 4. In Figs(a&—4(c), a
expect the SF scaling behavior ftr]<1. The simulation typical time evolution of the surface fa<0 in a simulation
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FIG. 4. (a)—(c) Typical time evolution of the surfaces far=
—0.5 in a simulation sample. The used system size=28. (a)
The morphology at the initial stage of growttln) that around the
time at which a valley bottom is formedg) that after the fully
developed grooved is formed]) the time dependence dY in the
early-time regime foz=—0.1.
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with z=—1. A sort of stochastic evenness constrdié}
seems to be effective fa<0, even though the constraint
becomes weaker as—0". This kind of the time-dependent
behavior can also be seen from the early-time behavia¥ of
as shown in Fig. @). Initially, W(t) follows the ordinary
power-law behavior withW(t)=t#. After the time in which
the valley bottom is formed, a sort of unstable growth with
quite large value of8 occurs beforeW(t,L) becomes the
saturated valu®Vy(L). The growing(eroding surfaces thus
have the phase transitiqgor the sudden crossoveat z=0.
The transition, of course, occurs from the grooved phase
(a=1) for —1=<2z<0 to the ordinary RSOS behaviow(
=1/2) forz=0.

The growing(eroding biases, except the effects from the
partition function, definitely have physical roles for the non-
equilibrium growing/eroding g+ q) surfaces. So it is hard
to understand the existence @f 1 phase forz<0 and the
ordinary RSOS phase fa=0 directly from the partition
function. An analytic understanding of these characteristics
of nonequilibrium surfaces is also left for future research.

In summary, we studied the scaling properties of the
growth model described by the Metropolis-type evolution
rule based on the partition functid@). For the equilibrium
surfaces, the scaling properties for — 1 are all one phase
with «=1/3 and 3=0.22. For the growingeroding sur-
faces, there exists a phase transitionzatO from the

Sample is shown. At the initial Stage of grOWth, the mOthOl-grooved phase C(: 1) to the Ordinary RSOS behavioﬁ,(

ogy of the surface is like that in Fig(@ as in the ordinary

—1/2).

RSOS model. But after some time, the valley bottom is

formed and localized as in Fig(l®). Then the grooved struc-
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