PHYSICAL REVIEW E 68, 026105 (2003
Number fluctuation and the fundamental theorem of arithmetic
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We consideiN bosons occupying a discrete set of single-particle quantum states in an isolated trap. Usually,
for a given excitation energy, there are many combinations of exciting different number of particles from the
ground state, resulting in a fluctuation of the ground state population. As a counterexample, we take the
guantum spectrum to be logarithms of the prime number sequence, and using the fundamental theorem of
arithmetic, find that the ground state fluctuation vanishes exactlglfa@xcitations. The use of the canonical
or grand canonical ensembles, on the other hand, gives a substantial number fluctuation for the ground state.
This is an example of a system where canonical and grand canonical ensemble averagings are not valid because
of the peculiar nature of the quantum spectrum.
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After the experimental discovery of Bose-Einstein con-ergy, no matter how large, is locked in one microstaten-
densate in a trapped dilute gas at ultralow temperaturesequently, although it is possible to explicitly calculate the
much attention has been paid to the problem of number fluceanonical or grand canonical partition functions and there-
tuation in the ground state of the ideal systgin9], as well ~ fore the thermodynamic entropy for this example, it does not
as a weakly interacting Bose gbk0—17. There are also a approach or equal the information-theoretic entropy that can
few papers on ground state fluctuations in a trapped Fernfe exactly calculated using number thef2g]. So far as we
gas[18]. There are several reasons for this interest. In stanknow, this constitutes an important example of a quantum
dard statistical mechanics, number fluctuation is related t§Pectrum where the usual statistical concepts fail, no matter
density-density correlation, and to the compressibility of thehow large the number of particles.
system in the grand canonical ensenid@. The cross sec-  We consider bosons in a hypothetical trap with a single-
tion for light scattering off the medium, in principle, may be Particle spectruninotincluding the ground state, which is at
related to the ground state fluctuation in the sysf&@j. The ~ Zero energy,
so called grand canonical catastrophe in an ideal Bose gas,
where the fluctuation diverges at low temperatures, was al- ep=Inp, @
ready known[20]. Therefore, a more accurate treatment of .
the problem was needed for trapped gases. In the microc¥{Nerep runs over the prime numbers 2,3,5. . We do not
nonical treatment of number fluctuation from the groundknOW how to realize such a spectrum experimentally, and it
state in a harmonic trap, the problem is closely related to thé Merely @ means of performing a thought experiment. We
combinatorics of partitioning an integer, and thus there washall use, in what follows, both a truncated sequence of
an interesting link to number theofg]. It turned out that the Primes as well as the infinite sequence when we perform the
result for the ground state number fluctuation was very sencanonical calculations f(_)r fluctuation. First, howgver, we per-
sitive to the asymptotic approximations that were made. Anform the exact calculation for number fluctl_Jat|on from the
other aspect that drew much attention in the literature waground state. Suppose that there Hrbosons in the ground
the difference in the calculated results for fluctuation usingState at zero energy, and an excitation endfgys given to
the canonical and the microcanonical formulatirs]. the system. In how many ways can this energy be shared

In this paper, we give an example of a quantum spectrurﬁmonQSt the posons by this spectrum? Before giving the an-
that has no number fluctuation in the ground state for anyWer, we remind the reader of the fundamental theorem of
excitation energy in the microcanonical ensemble, as a dire@/thmetic, which states that every positive integezan be
corollary of the fundamental theorem of arithmetic. The ca-Written in only one way as a product of prime numbjs:
nonical ensemble, on the other hand, yields a dramatically non N
different ground state number fluctuation. This failure signals n=p,'p,% - -p, -, (2
the breakdown of the canonical ensemble itself due to the
peculiar nature of the single-particle spectrum in our ex-wherep,’s are distinct prime numbers, amg's are positive
ample. Generally, when a large excitation energy is supplieihtegers including zero, and need not be distinct. It immedi-
to a system, there is a very large number of distinct microately follows from Eq.(2) that if the excitation energ¥,
scopic configurations accessible to it. All these different mi-=Inn, where the integen=2, there is only one unique way
crostates describe the same macrostate of a given excitati@fi exciting the particles from the ground state Bf#Inn,
energy. The classic example is that of bosons in a harmonithe energy is not absorbed by the quantum system. Since the
trap, where the number of partitions of an integer numbernumber of bosons excited from the ground state, for a given
corresponding to the number of microstates, increases expé,, is unique for this systenthe number fluctuation in the
nentially. We use, on the other hand, another example fronground state is identically zerd/oreover, this conclusion is
number theory, to propose a system whine excitation en-  valid whether we take in Eq1) an upper cutoff in the prime
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number, or the infinite sequence of all the primes. The a)
. . . . . . 1
information-theoretic entropy at an excitation enekyyis

S(E)=-2>, P/InP;, 3) 0%

whereP; is the probability of excitation of the microstaite %0.6_

Since only one microstate contributes with unit probability,
and all others havé®;=0 (when E,=Inn), the entropyS 04
=0. It is also straightforward to calculate the ground state
populationNg as a function of the excitation energy,. For

this purpose, we truncate the spectrum given by @yto 02
the first 16 primes, with a cutoff denoted by*, and take
N=100. We shall display the numerical results after describ-
ing the canonical calculations.

Our next task is to calculate these quantities in the canoni-
cal ensemble, and see if the differences in the microcanonica )
and canonical results may be accounted(&sN— ) using :
the method of Naveet al.[7]. We first do the calculation for 008l —GCE
the truncated spectrum. The one-body canonical partition —CE
function is then given b;zl(,8)=1+2p:2"*exp(—ﬁln p).
The N-body bosonic canonical partition function is obtained  o0s-
by using the recursion relatidr24]

N
Z\(B)= 521 Zy(sB)Zy-«(B). (4)

Z| -

Once Zy, is found, the ground state occupatibly=(ng)y

and the ground state number fluctuation for the canonical
ensemble can be readily computgd8,25. We define o . | . |
(8°Ng)=((n3)n—(ng)3), where the right-hand sideRHS)
is calculated using Eq$24) and (25) of Ref.[18]. In Figs. T

1(a) and 1b), we display the results of the canonical calcu- g5 1. () Average occupancy in the ground stdig,/N, ver-
lations for the ground state occupancy fracthég/N and the g5 temperatur& for N=100 in the canonical and grand canonical

: / _
ground state f|UCtuat'9(152No>12/N for N=100 as a func-  ensembles(b) Plot of the relative ground state number fluctuation
tion of temperaturd with the truncated spectrum of the first in poth ensembles. Note the steep rise in the grand canonical fluc-

10° primes. For comparison, we also show the results of theuation.

corresponding grand canonical calculation. The grand ca- | ) )
nonical catastrophe for the number fluctuation is clearly evi€duivalence between the microcanonical and the other en-

dent. It is also easy to calculate the canonigajuilibrium) sembles. In Fig. 3, we display the behavior .of the canonical
eniropyS= () S wherethe aerage exciaionen- Y 35 8 Rrcton 0T 10 (5 The mercenoncs

ergy is given .by<E.X>=—(9.In Zn(B)/GB. The comparison tuatiol?\)zész )’ Thus, we find that the canonical results have
with the combinatorialor microcanonical results requires 0/ ’

. : o . . no resemblance with the exact microcanonical ones. All
that we identify 'ghg excitation (_anergyx with the canonical these calculations were performed for a truncated spectrum
average(E,). This is only true if(E,) is sharply peaked at

A X first 1 i f Inp, ifi lier, f
the equilibrium temperature, as a consequence of the comp((—‘i-IrSt @ primes of Inp, as specified earlier, and fou

tit_ion between the increasing numb_er of accessible states Was pointed out by Naveet al. [7] that for a trapped
with temperature, and the decrease in the corresponding Ofuse gas below the critical temperature, the microcanonical
cupancy due to the Boltzmann weighting. In the particularesyit for fluctuation could be obtained solely using the ca-
example under study, the canonical concept of averagingonically calculated quantities, which in turn may be ob-
breaks down. This is apparent in Fig. 2, where the canonicahined from the so called Maxwell-Demon ensemf4].
fractional occupancy of the bosons in the excited statesye now use this procedure to check if the microcanonical
(Ng)/N, for N=100, is compared with theexac) combina-  results may be obtained from a canonical calculatioNas
torial (or microcanonical calculation as a function of the —w. These authors constructed the Maxwell-Demon en-
excitation energye, . Although the canonical and the grand semble in which the ground staffier T<T.) was taken to be
canonicakNg)/N are nearly identical, the corresponding mi- the reservoir of bosons that could exchange particles with the
crocanonical quantity is radically different. This anomaly rest of the subsysterof the excited spectrupwithout ex-
persists even afN—«, showing the breakdown of the changing energy. Denoting the grand canonical partition
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FIG. 2. Plot of the average occupancy in the excited states, FIG. 3. Plot of the canonical entropy as a function of tempera-
N./N, for N=100, versus the excitation enerBy in the canonical  ture T on the left, and excitation energy,) on the right, forN
ensemblecontinuous bold curye compared with the exact micro- =100. The microcanonical entropy is zero.
canonical calculation. As emphasized in the text, for the canonical
calculation, the ensemble averagés]) is identified with the exci-

tation energyEX_. The_ microcanonical calculation is done fiy, The RHS of Eq(6) is nonzero, and therefore does not agree
=Inn, wheren is an integer, and the results are shown by darkyip the microcanonical result. The failure of the above for-
points. These are joined by dotted lines to emphasize their zigzag ~lism of Navezet al [7] is not a shortcoming of their

character. For example, the sixth pofimtcluding 0) corresponds to . . .
E.=In6, and givesN,=2, corresponding to the prime factor de- method, but is due to the failure of the canonical ensemble

composition 2 3. averaging itself when applied to the single-particle spectrum
(1). This is further elaborated below.
function of the excited subsystem W .(a,B), with a Consider constructing th&l-particle canonical partition

=Bu, it was shown that the canonical occupancy of thefunction Zy(B) from spectrum(1), as we have done. A
excited states{Ng), and the number fluctuatiods’N,) ~ —=, a little thought will show thatZy— {(B), where
could be obtained from the first and the second derivative of (3) ==,1/n? is the Riemann zeta function. This is because
H With respect tow, and then puttingr=0. It was further we are allowed to span over & in calculating Zy(3).
noted that the microcanonical number fluctuation for the exSimilarly, the grand partition functio® .(«, 8) with =0 is
cited particles was related to the canonical quantities by th@one other than the Euler product representation of the Rie-
relation mann zeta functioh23]. This has a density of states growing
. exponentially withE, and has been studied in connection
[(SNeSE)cn] (5  With the limiting hadronic temperatul6]. In contrast, the
(52E>§N ' number of accessible states for an excitation enérgythe
microcanonical setup does not increase at all. Since the en-
where the superscript denotesN—co. This worked effi-  ergy remains locked in one microstate, the system cannot be
ciently for harmonic traps in various dimensions. These caldescribed through the usual concepts of statistical mechan-
culations, for our system, are also easily donedorl. We ics. Although the thought experiment investigated in this pa-
now consider spectrurtl) to be the infinite sequence of the per is too idealized to be realizable in the real world, it does
primes, and evaluate the RHS of H). We readily obtain  serve as a warning that the canoni¢gland canonicalen-
the convergent expressigfor S>1) semble averaging may yield nonsensical results if there is not
a large number of microstates corresponding to a macrostate.
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