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Traveling front solutions to directed diffusion-limited aggregation, digital search trees,
and the Lempel-Ziv data compression algorithm

Satya N. Majumdar
Laboratoire de Physique The´orique (FER 2603 du CNRS), Universite´ Paul Sabatier, 31062 Toulouse Cedex, France

~Received 16 April 2003; published 5 August 2003!

We use the traveling front approach to derive exact asymptotic results for the statistics of the number of
particles in a class of directed diffusion-limited aggregation models on a Cayley tree. We point out that some
aspects of these models are closely connected to two different problems in computer science, namely, the
digital search tree problem in data structures and the Lempel-Ziv algorithm for data compression. The statistics
of the number of particles studied here is related to the statistics of height in digital search trees which, in turn,
is related to the statistics of the length of the longest word formed by the Lempel-Ziv algorithm. Implications
of our results to these computer science problems are pointed out.
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I. INTRODUCTION

The simple model of diffusion-limited aggregatio
~DLA !, ever since its introduction by Witten and Sander
1981@1#, has continued to play a central role in understa
ing the fractal growth phenomena. Besides raising a num
of conceptual issues regarding pattern formation, this mo
has also found numerous applications in physical proce
ranging from dielectric breakdown@2# and Hele-Shaw fluid
flow @3# to electrodeposition@4# and dendritic growth@5#. In
the simplest version of this model, one considers, for
ample, a square lattice where the origin is a seed. Part
are released sequentially from the boundary. Each par
performs a random walk in space and when it comes in c
tact with the growing cluster around the central seed, it sti
to the cluster and thus the cluster grows. This growing D
cluster has a fractal structure with many branches that
separated by deep ‘‘fjords.’’ Despite various advances, ch
acterizing this fractal pattern quantitatively has remaine
major theoretical challenge for the past two decades@6#. One
clear picture that has emerged out of various studies is
the key effect responsible for this complex pattern is
dynamical ‘‘screening’’: a newly arriving particle has mo
probability to attach to the ‘‘tip’’ sites compared to oth
boundary sites that are deep inside a fjord. As a result,
faster growing parts of the cluster boundary shield or scr
other boundary sites from further growth.

To understand this dynamical screening effect more qu
titatively, it is desirable to construct a simpler model th
incorporates the screening effect and yet is analytically tr
table. Bradley and Strenski@7# introduced such a mode
where particles undergo a directed diffusion-limited aggre
tion ~DDLA ! on a Cayley tree. Physically, this correspon
to the situation when there is a strong external field, such
the gravity or an electric field, which forces the particles
choose an overall direction of motion. In this DDLA mode
one starts with a Cayley tree of heightl ~see Fig. 1! where all
the 2l21 sites of the lattice are initially empty. Then a pa
ticle is introduced at the top site and it performs a direc
~downwards! random walk~from any site it chooses one o
the two daughter sites at random and moves there! till it
1063-651X/2003/68~2!/026103~9!/$20.00 68 0261
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reaches one of the bottom leaves and can descend no mo
then occupies that leaf site.

Then a second particle is introduced from the top site a
it also performs a directed random walk. This second part
will stop if it happens to reach a site such that at least one
the daughter nodes of that site is already occupied. It can
descend any more and it rests at that site for all subseq
times. Note that in this model, each site can contain at m
one particle. Then a third particle is released from the
and so on. Basically, after reaching any site, say thei th site,
a particle attempts to hop down to one of the two daugh
nodes ofi and it actually moves to the target site provid
both the daughter nodes ofi are empty. If at least one of them
is occupied, the particle cannot descend any further an
rests at sitei forever. Then the next particle is added and t
process continues until no more particles can be put in,
when the top site gets occupied. The tree is then said to
saturated. One such history of the process till its saturatio
shown in Fig. 1. A typical snapshot of the saturated tree~see
Fig. 1! shows that the cluster has voids of various sizes
useful quantity to characterize the pattern of the cluster is
total number of particlesnl in the saturated tree. Clearlynl is
a random variable, varying from one history of the process
another. The quantities of central importance in this probl
are the average densityr l5^nl&/@2l21# and the fluctuations
of nl around its average value. How do these two quanti
behave asymptotically for a large tree, i.e., whenl→`?

While it was easy to write down the basic recursion re
tions ~see later in Sec. II! for certain probabilities associate
with the DDLA process on a tree, they turned out to

FIG. 1. A typical history of the DDLA process till saturation o
a Cayley tree with heightl 54. The occupied nodes contain a blac
filled circle inside them and the number next to an occupied
denotes the particle number.
©2003 The American Physical Society03-1
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nonlinear@7# and hence, it was difficult to determine eve
the asymptotic behavior ofr l for large l. Bradley and Stren-
ski studied the recursion relations numerically and fou
somewhat unexpectedly, thatr l decays slower than exponen
tially with l for large l but the precise nature of this deca
was not evident from their numerics@7#. Later Aldous and
Shields@8# studied via rigorous probabilistic methods a co
pletely different model, namely, a continuous time version
the so called digital search tree~DST! problem relevant in
computer science@9,10,8,11–14#. As we will see later in Sec
VI, these two models, namely, the DDLA and the DST sh
the same recursion relation, though for very different qu
tities. The rigorous results of Aldous and Shields@8#, when
translated back in the DDLA language, would indicate
stretched exponential decay for the average densityr l

;22A2l for large l. Recently, a more refined result on th
DST was derived by Knessl and Szpankowsky@15#. Un-
aware of the DDLA or the DST model, Hastings and Hals
also studied independently a related model recently@16# and
used extremal arguments to conclude the same stretche
ponential decay for the average density.

The methods used by the mathematicians, though ri
ous, lack physical transparency. On the other hand, the
tremal arguments used by Hastings and Halsey, tho
physically intuitive, are heuristic. Moreover, it is not easy
derive quantitative results regarding fluctuations of the nu
ber of particlesnl via these methods. For example, how do
the width w( l )5A^nl

2&2^nl&
2 behave as a function ofl?

Besides, none of these methods are easily adaptable to
tract the leading asymptotic behaviors in more general m
els such as the ones that we will consider in this paper.
approach in this paper would be to use the powerful te
niques~suitably adapted for our problem! of traveling fronts,
originally developed in the context of nonlinear reactio
diffusion systems and population dynamics@17–19#. The
techniques of traveling fronts have found a host of very u
ful applications@20#. Recently, we have pointed out that
many extreme value problems in both physics and comp
science, one can successfully use the traveling front te
niques to derive exact asymptotic results for the statistic
the extremum of a set of correlated random variables@21–
24#. The present paper points out yet another useful appl
tion of the traveling front techniques, namely, in a gener
ized DDLA problem with relevance to a class of search t
problems in computer science.

The traveling front method, though technically not rigo
ous in the strict mathematical sense, has the following
vantages over the other methods used in the DDLA probl
~i! this method is not model specific, is more general, an
easily adaptable to more general models such as the one
will be studied in this paper,~ii ! it is easy to implement and
is physically transparent, and~iii ! it provides a very cheap
way to extract the leading asymptotic behavior exactly wi
out using too much mathematics. Besides rederiving
known results in the standard DDLA problem, this meth
also allows us to derive many new results in more gene
ized models. For example, we show that in the DDLA mod
the random variablenl approaches to its average value,nl
→^nl& in the l→` limit. This is the example of the extrem
02610
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concentration of measure, i.e., the distribution ofnl tends to
a d function. In particular, we show that the width of th
distribution decays slowly as a power law,w( l ); l 21/2 as l
→`. Furthermore, we point out the close connection b
tween the DDLA problem and the DST problem widely stu
ied by computer scientists@9,10,8#. The later problem is also
related to the well known Lempel-Ziv algorithm used in da
compression@25#. Some of the results derived in this pap
have implications in these computer science problems.

The rest of the paper is organized as follows. In the f
lowing section, we introduce a generalizedb-DDLA model
~whereb is a positive integer!. The original DDLA model of
Bradley and Strenski is a special case of thisb-DDLA model
with b51. We then derive the asymptotic statistics of t
number of particles in theb-DDLA model using the traveling
front technique, suitably adapted for this model. In Sec.
we generalize these results to the case when the Cayley
hasm.2 branches. Section IV considers the DDLA mod
with a bias when a particle has more probability to go to
left branch compared to the right one. In Sec. V, we point
the detailed connections between the DDLA model, the D
problem in computer science, and the Lempel-Ziv pars
algorithm and discuss the implications of our results for
generalizedb-DDLA model in the context of computer sci
ence. Finally, a brief summary and a conclusion are offe
in Sec. VI.

II. THE b-DDLA MODEL AND ITS TRAVELING FRONT
SOLUTION

Here, we introduce a generalizedb-DDLA model where
the ‘‘hard’’ screening of the usual DDLA model is ‘‘soft
ened’’ in the following sense. As in the usual DDLA mode
one starts with an empty Cayley tree of heightl and the
particles are introduced sequentially at the top site and t
go down the tree one at a time by performing a random wa
However, now each site can contain at mostb particles
whereb is a positive integer. During its journey downwar
when a new particle arrives at an empty site, say thei th site,
it tries to move to one of the daughter nodes ofi chosen at
random. It actually moves to the target site provided both
daughter sites contain less thanb particles. If either of them
containsb particles, i.e., completely full, then the incomin
particle cannot move down any further and it then stays
site i forever. Thus, in this model, a site can incorpora
‘‘screening’’ if and only if it has full capacity, i.e., when i
hasb particles. Otherwise it fails to screen. This model th
mimics the physical situation when one single particle
incapable of stopping an incoming particle to go down, b
the screening comes into play only as a collective eff
when there areb particles in the site. This is like a tunnelin
effect, where a particle can go through a barrier provided
barrier is not too high. However, the rate of tunneling goes
zero when the barrier height crosses a threshold. In
model, the parameterb acts like the threshold value. Clearl
for b51 this model reduces to the original DDLA mod
studied by Bradley and Strenski@7#.

As in theb51 case, the tree is going to be saturated a
a finite number of particles have been added to it. This h
3-2
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pens when the top site containsb particles. No further par-
ticles can then be put in. The number of particlesnl required
to saturate the tree of heightl is clearly a random variable
fluctuating from one history of the process to another. T
main question we address is, what is the statistics ofnl for
largel? In particular, we would compute the average dens
at saturationr l5^nl&/@2l21# and the width of the distribu-
tion w( l )5A^nl

2&2^nl&
2 for large l.

Following Bradley and Strenski@7# for theb51 case, we
defineGl(n) to be the probability that the tree of heightl is
not saturated after the addition ofn particles, i.e., the top site
is not yet filled byb particles aftern particles have been
added to the tree. It is easy to see thatGl(n) satisfies the
following recursion relation:

Gl 11~n1b!5
1

2n (
n150

n S n
n1

DGl~n1!Gl~n2n1!, ~1!

for all l>1 andn>0. It is useful to think ofl as ‘‘space’’
and n as ‘‘time.’’ Equation ~1! is supplemented with the
‘‘boundary’’ condition G1(n)51 for all 0<n<(b21) and
G1(n)50 for all n>b and the ‘‘initial’’ condition Gl(n)
51 for 0<n<(b21) for all l>1. The recursion relation in
Eq. ~1! is easy to understand. Suppose, we have adden
1b) particles to a tree of height (l 11) @the left-hand side of
Eq. ~1!#. The condition that the top site is not yet filled byb
particles indicates that before the addition of the lastb par-
ticles, the two daughter nodes of the top site must have
mained unsaturated. This is because if either one or bot
them had been saturated after the addition ofn particles, then
any further added particle would not be able to go down a
would rest at the top site, and hence, the top site would t
get saturated after the addition of (n1b) particles. The two
daughter nodes are the roots of two uncorrelated subtr
each of heightl. Hence, the probability that both rema
unsaturated is given by their product. Also, the number
particlesn1 that enter, for example, to the left subtree~out of
a total number ofn particles that enter both subtrees! must
have a binomial distribution, thus explaining the right ha
side of Eq.~1!.

Note that for fixedn.0, the probabilityGl(n)→0 as l
→1 andGl(n)→1 asl→`. For later analysis, it turns out t
be convenient to define the complementary probabi
Fl(n)512Gl(n), that has the opposite behavior as a fun
tion of l, namely, Fl(n)→1 as l→1 and Fl(n)→0 as l
→` for any fixed n.0. The quantityFl(n) denotes the
probability that the tree of heightl gets saturated beforen
11 particles are added. From Eq.~1!, one finds thatFl(n)
satisfies the recursion

Fl 11~n1b!5
1

2n21 (
n150

n S n
n1

DFl~n1!

2
1

2n (
n150

n S n
n1

DFl~n1!Fl~n2n1!, ~2!

with the boundary conditionF1(n)50 for 0<n<(b21)
and F1(n)51 for n>b and the initial conditionFl(n)50
02610
e

y

(

e-
of

d
n

es,

f

,
-

for 0<n<(b21) for all l>1. It is useful to think by fixing
the timen while varying the spacel. Clearly, Fl(n)→0 as
l→`, since almost surely a tree of infinite height will not b
saturated before the addition of a fixed, finite numbern of
particles. On the other side, for fixedn, Fl(n)→1 as l→0.
For a given fixedn, as one increasesl from 0 to `, the
functionFl(n) starts off at the value 1 atl 50 and then drops
off to 0 beyond some characteristic length scalel * (n), as
shown schematically in Fig. 2. Asn increases, this characte
istic length scalel * (n) also increases~see Fig. 2!, thus giv-
ing rise to a traveling front structure with the front located
l * (n). In fact, we will see later that in the limit of largel
~when one can treatl as a continuous variable! and largen,
the widthw(n) of the front goes to 0, indicating that asymp
totically the functionFl(n) becomes a Heavisideu function
Fl(n)→u„l * (n)2 l ….

Note that Eq.~2! is nonlinear and hence is difficult to
solve exactly. However, the exact asymptotic information
garding the positionl * (n) of the front and its width can be
deduced by adapting the traveling front techniques that w
originally devised to deal with nonlinear partial differenti
equations in reaction-diffusion systems@17# and population
dynamics@18,19#. The basic idea behind this approach
very simple. If there is a frontl * (n), then ahead of the fron
l . l * (n), Fl(n) is very small and hence, one can neglect t
nonlinear term~the second term! on the right-hand side o
Eq. ~2!, and one simply gets a linear recursion

Fl 11~n1b!'
1

2n21 (
n150

n S n
n1

DFl~n1!. ~3!

Suppose, one could solve this linear equation exactly sa
fying the required initial condition. Now one expects that t
solution of the linear equation~3! and the ‘‘real’’ solution of
the nonlinear equation~2! will coincide in the regime beyond
the front, i.e., forl . l * (n). On the other hand, the two so
lutions will start differing from each other as one decreasel
below l * (n), where the solution of the nonlinear equatio
~2! will tend to 1 where as the solution of the linear equati
~3! will grow beyond 1 with decreasingl ~as there is no
nonlinear term to control the solution!. Thus, as one de
creasesl from infinity, the front positionl * (n) is approxi-

FIG. 2. Schematic behavior of the probabilityFl(n) as a func-
tion of l for different fixed values ofn. The three curves correspon
to different values ofn increasing from left to right. They axis is
dimensionless while thex axis has arbitrary units.
3-3
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mately the value ofl at which the solution of the linea
equation becomes;O(1). Thus, according to this approac
one first solves the linear equation~3! to obtainFl(n)u linear
and then reads off the front positionl * (n) from the condi-
tion, Fl* (n)(n)u linear'O(1). By O(1), onemeans that atl
5 l * (n), the solutionFl(n) should not diverge or decay ex
ponentially with increasingn. Note that this is a slightly
generalized version of the usual traveling front meth
@20,21# where one usually has a linear operator with const
coefficients which admits an exponentially decaying solut
of the form exp@2l(x2vt)# with constant width. The presen
approach is more general and works even when the lin
operator does not admit an exponentially decaying solu
with a constant width.

Under this traveling front approach , our task thus redu
to solving the linear equation~3! which, however, is still
nontrivial. To proceed, we define a somewhat unusual g
erating function

F̃ l~s!5 (
n50

`

Fl~n!
1

~11s!n11 . ~4!

Using Eq.~3!, one can then show thatF̃ l(s) satisfies a rathe
simple recursion inl,

F̃ l 11~s!5
4

~11s!bF̃ l~2s!, ~5!

for all l>1. The steps leading to Eq.~5!, starting from Eqs.
~3! and ~4!, are not completely straightforward. Hence, w
present this derivation in the Appendix. The recursion in E
~5! starts with the initial valueF̃1(s) that needs to be calcu
lated separately. Noting thatF1(n)50 for 0<n<(b21)
and F1(n)51 for n>b, we find from the definition in Eq.
~4!, F̃1(s)51/@s(11s)b#. Iterating Eq.~5! and using the ex-
pression forl 51, we get

F̃ l~s!5
2l 21

s@~11s!~112s!•••~112l 21s!#b

5
2l 21

s
expF2b(

k50

l 21

ln~112ks!G , ~6!

for all l>1.
We then write the sum inside the exponential in Eq.~6! in

two parts using the Euler-Maclaurin summation formu
S( l ,s)5(k50

l 21 ln(112ks)5I(l,s)1R(l,s), where I ( l ,s)
5*0

l ln(112xs)dx and R( l ,s)5S( l ,s)2I ( l ,s) is the residual
term. The integralI ( l ,s) can be done and one getsI ( l ,s)
5@Y(2ls)2Y(s)#/ ln 2 where the functionY(z) is given by

Y~z!55 (
n51

`

~21!n21zn21n22 for z<1

1

2
ln2 z2 ln~111/z!1 ln 21p2/12 for z.1.

~7!
02610
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The structure of these expressions suggests a natural sc
limit, s→0, l→` but keeping the productz5s2l fixed but
arbitrary. We also treatl as a continuous variable in this limit
Furthermore, we focus only near the tail of the scaling
gime, i.e., whenz@1. In this regime, it is sufficient to keep
only the first term in the second line of Eq.~7! for the ex-
pression ofY(z). Besides, one can also check that the
sidual term is subleading in this regime. Keeping only t
leading terms, we get

F̃ l~s!'
1

s
expF ln 2S l 2

b

2
@ l 1 log2~s!#2D G . ~8!

We still need to invert the generating function in Eq.~4! to
obtain the asymptotic behavior ofFl(n). The scaling limit
corresponds to takingn→`, l→` but keeping the ratio 2l /n
fixed but arbitrary. Using Eq.~8! and inverting Eq.~4! ~using
the Bromwich inversion formula and then using the stand
steepest descent method!, we find the following leading
asymptotic behavior,

Fl~n!'expF ln 2S l 2
b

2
@ l 2 log2~n!#2D G , ~9!

valid in the tail l @ log2(n).
Having obtained the asymptotic solution~9! of the linear

equation~3!, the location of the frontl * (n) can be read off
from the equationFl* (n)u linear;O(1). Using this criterion in
Eq. ~9!, we find that the front positionl * (n) is given by the
quadratic equation

l * 2
b

2
@ l * 2 log2~n!#250. ~10!

As we decreasel from `, we will encounter the larger roo
first, which will correctly locate the front position. From Eq
~10!, we get, for largen, the asymptotic front position

l * ~n!' log2~n!1A2

b
log2~n!. ~11!

Furthermore, substitutingl 5 l * (n)1y in Eq. ~9! and ex-
panding for small y, we find to leading orderFl(n)
;exp„2A2b ln(2)ln(n)@l2l* (n)#…, indicating that the width
of the distribution, characterizing the fluctuation ofl around
its average valuel * (n), decreases extremely slowly withn
as

w~n!'1/A2b ln~2!ln~n!, ~12!

asn→`. The fact that the width vanishes in then→` limit
shows that the probabilityFl(n)→u„l * (n)2 l …, thus indicat-
ing an extreme concentration of measure, i.e., the rand
variablel→ l * (n).

In the above analysis, we keptn fixed and studied the
behavior ofFl(n) as a function ofl. Alternately, as is more
suited for the DDLA problem, one can keepl fixed and vary
n. It follows from Eq.~9! that in the scaling limit mentioned
above, the random variable log2(n) approaches to its mea
value^ log2(n)&5l2A2l /b. Due to the extreme concentratio
3-4
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of measure, it follows then thatn→^nl&'2l 2A2l /b in the
scaling limit. This means that the average densityr l
5^n&/(2l21) decays as a stretched exponential for largel,

r~ l !'22A2l /b. ~13!

Besides, substituting log2(n)5^log2(n)&2y1 in Eq. ~9! and ex-
panding for smally1, we find Fl(n)'exp@2ln(2)A2bl y1#.
This indicates that as a function ofl, the width of the random
variable log2(n) around its average valuê log2(n)&5l
2A2l /b decreases algebraically for largel

w~ l !'
1

A2b ln2~2!l
. ~14!

Note that the leading order behaviors of the widths in E
~12! and ~14! are compatible with each other with the ide
tification n'2l . The Eqs.~11!–~14! constitute the main re
sults of this section.

III. GENERALIZATION TO A TREE WITH m BRANCHES

In this section, we generalize our results for theb-DDLA
in the preceding section~obtained for a tree withm52
branches! to a tree withm>2 branches. In this case, durin
its downward journey from the top, a particle from a giv
site attempts to hop to any of them daughter nodes with
equal probability 1/m and can actually hop to the target si
provided none of them daughter nodes is full withb par-
ticles. If it fails to hop, the particle stays at its current site
all subsequent time. The probabilityGl(n) that a tree of
height l is yet to be saturated after the addition ofn particles
satisfies the generalized recursion relation

Gl 11~n1b!5
n!

mn (
ni50

m

)
i 51

m
Gl~ni !

ni !
, ~15!

where the variablesni ’s satisfy the constraint( i 51
m ni5m.

Thus, the binomial coefficient in Eq.~1! of the preceding
section gets replaced by a multinominal. The rest of
analysis is straightforward and similar to the preceding s
tion. We define as usual, the complementary probab
Fl(n)512Gl(n), which satisfies the recursion

Fl 11~n1b!5
1

mn21 (
ni50

m
n!

) i 51
m ni !

Fl~n1!1nonlinear terms,

~16!

where we have used the symmetry that all branches are s
lar to each other.

As before, we solve Eq.~16! retaining only the linear
terms and neglecting the nonlinear terms. We define the g
erating function as in Eq.~4!. Following the derivation pre-
sented in the Appendix and using the initial condition, we
the solution

F̃ l~s!5
ml 21

s@~11s!~11ms!•••~11ml 21s!#b . ~17!
02610
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The asymptotic analysis is exactly similar to the preced
section, except that the proper scaling limit now iss→0, l
→` but keeping the productsml fixed but arbitrary. We do
not repeat the steps here but present only the final results
find that as in them52 case, there is a front whos
asymptotic locationl * (n) is given by

l * ~n!' logm~n!1A2

b
logm~n!, ~18!

and in the limitn→`, the widthw(n) of the front vanishes
slowly as

w~n!'1/A2b ln~m!ln~n!. ~19!

Similarly, we find that for fixed but largel, the average den
sity varies as a stretched exponential

r~ l !'m2A2l /b, ~20!

and the widthw( l ) of the random variable logm(n) around its
average valuê logm(n)&5l2A2l /b decreases algebraicall
for large l,

w~ l !'
1

A2b ln2~m!l
. ~21!

Note that, interestingly, the asymptotic average va
^ logm(n)&5l2A2l /b is actually independent ofm.

IV. b-DDLA MODEL WITH BIASED HOPPING

In this section, we consider theb-DDLA model on am
52 tree where the particles perform biased random walk
their way down the tree. More precisely, when a parti
arrives at any given sitei on its way down after being intro
duced at the top site, it attempts to hop to the left daughte
the nodei with probability p and to the right daughter with
probabilityq512p. As before, it actually moves to the ta
get site provided both the daughter nodes have less thb
particles. If at least one of them is full withb particles, then
the particle rests at sitei for all subsequent times. Then
new particle is added and the process continues till the
site gets filled withb particles. Once again, we are interest
in the statistics of the number of particlesnl when the tree of
height l gets saturated. We define, as before,Gl(n) to be the
probability that the tree of heightl remains unsaturated, i.e
the top site remains unfilled up to the addition ofn particles.
Following the same logic as in Sec. II, one easily finds
recursion relation

Gl 11~n1b!5 (
n150

n S n
n1

D pn1qn2n1Gl~n1!Gl~n2n1!,

~22!

for all l>1 andn>0.
The complementary probabilityFl(n)512Gl(n), then

satisfies the recursion
3-5
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Fl 11~n1b!5 (
n150

n S n
n1

D pn1q12n1@Fl~n1!1Fl~n2n1!#

1nonlinear terms, ~23!

with the boundary conditionF1(n)50 for 0<n<(b21)
and F1(n)51 for n>b. As before, we solve the Eq.~23!
keeping only the linear terms and neglecting the nonlin
terms. This is done via defining the generating funct
F̃ l(s) as in Eq.~4!. Following the same line of derivation
presented in the Appendix, we obtain the following recurs
relation:

F̃ l 11~s!5
1

p~11s!bF̃ l~s/p!1
1

q~11s!bF̃ l~s/q!, ~24!

which starts from the initial functionF̃1(s)51/@s(11s)#.
One can, in principle, iterate Eq.~24! starting withl 51 and
obtain the expressions forF̃ l(s) for all l. Fortunately, in the
scaling regimes→0, one does not need the full expressi
for F̃ l(s). Note that in the unbiased casep5q51/2, the
appropriate scaling regime wass→0, l→` but keeping the
productz5s2l fixed but arbitrary. In the biased case, as o
iterates Eq.~24! starting from l 51, one generates sever
terms. The argument of the functionFl in a typical term on
the right-hand side scales ass/(pkql 2k) where k
50,1, . . . ,l . Since we are interested in the asymptotic lim
s→0, the most dominant of these terms is the one co
sponding to eitherk50 ~if q.p) or k5 l ~if p.q). In the
former case, the argument ofFl(s) in the most dominant
term iss/ql and in the latter case, it iss/pl . It is then clear
that the appropriate scaling regime will be set by takings
→0, l→` but keeping the productz5ss l fixed, wheres
5min(1/p,1/q). Thus, in this scaling limit, one can approx
mate Eq.~24! by

F̃ l 11~s!'
s

~11s!bF̃ l~ss!. ~25!

The terms neglected in going to Eq.~25! from Eq. ~24! only
contribute to subleading order. Iterating the reduced Eq.~25!

starting withF̃1(s)51/@s(11s)#, one obtains

F̃ l~s!'
1

s@~11s!~11ss!~11s2s!•••~11s l 21s!#b .

~26!

We then invert the transform in Eq.~26! using the same
asymptotic method as in Sec. II, the details of which we
not repeat. The final asymptotic form of the distributio
Fl(n) is given by

Fl~n!'expF2
ln~s!

2
@ l 2 logs~n!#2G , ~27!

valid in the scaling regime,n→`, l→` but with the ratio
y52l /n fixed at a large valuey@1. The front position can
be read off from the conditionFl* (n)u linear;O(1) which
02610
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gives, to leading order,l * (n)' logs(n). Note the difference
with the unbiased case. Unlike the unbiased case in Se
where the width vanishes for largen, here the width of the
distribution remains of the order ofO(1) in the largen
→` limit, w( l )→1/Aln s. This result also indicates that th
average density of particles varies as^nl&'s l for large l.
Thus, unlike the unbiased case where the average de
decays as a stretched exponential for largel, the average
density in the biased case decays exponentially for largel,

r~ l !'~s/2! l , ~28!

where s5min(1/p,1/q). Besides, it follows from Eq.~27!
that the fluctuations of the variable logs(n) around its aver-
age valuel are characterized by a Gaussian tail with width
the order ofO(1).

V. CONNECTION TO DIGITAL SEARCH TREES AND THE
LEMPEL-ZIV PARSING ALGORITHM

In this section, we point out the connection between o
generalizedb-DDLA model to the so called digital searc
tree problem in computer science@9,10,8,11–13,26# which,
in turn, is also related@14# to the Lempel-Ziv data compres
sion algorithm @25#. Suppose, we have a data strin
$x1 ,x2 , . . . ,xn% that needs to be stored on a binary tre
According to the DST algorithm, one proceeds as follow
Initially all the nodes of the tree are empty. The first arrivin
elementx1 is put at the root of the tree. Each node c
contain at most one element. The second elementx2 is put at
one of the daughter nodes of the root chosen at random. T
for the next elementx3, one again starts at the root an
chooses one of the daughter nodes at random. If the ch
node is empty,x3 goes there. But if the chosen node, sayi,
happens to be the one that containsx2, then one chooses on
of the two daughter nodes ofi at random and putsx3 there.
Then one stores the fourth elementx4 following the same
algorithm and so on. Essentially each elementxi performs a
directed random walk down the tree till it finds an empty s
which it then occupies. The process stops when all thn
elements have been stored and the resulting tree is call
DST ~see Fig. 3!. Note that according to this DST algorithm
the actual value of a data element sayxi is not important.
This is contrast to other search trees, such as the ran
binary search trees@9,10# where the actual value ofxi is used
in constructing the tree.

FIG. 3. A typical digital search tree constructed from a da
string $x1 ,x2 ,x3 ,x4 ,x5% of five elements.
3-6
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The statistics of various quantities, such as the distri
tion of the number of occupied nodes at a given de
~known as the profile of the DST!, have been studied in grea
detail in the computer science literature@14#. Flajolet and
Richmond@12# introduced a generalized version of the DS
where each node can contain at mostb elements. In this
b-DST, an incoming elementxi performs, as in theb51
case, a directed random walk downwards. However, whexi
reaches a new site, sayk, it will stay forever atk provided the
number of already existing elements atk is less thanb. If the
site k already containsb elements, then one chooses one
the daughter nodes ofk and the elementxi hops there. This
generalizedb-DST problem has many applications in com
puter science, notably in the maintenance of paged has
tables@12#. Flajolet and Richmond studied, for example, t
average number of nonempty nodes in ab-DST as a function
of the data sizen and the parameterb.

One important characteristic of ab-DST is its height. The
height l of a tree withn elements is defined as the dept
counted from the root, of the farthest element in the tr
Clearly, l is a random variable, fluctuating from one realiz
tion of the tree to another and also it is an extreme varia
~denoting the maximum depth!. A natural question is, what is
the probability distribution of the height? Let us defineQl(n)
to be the probability that the height of tree withn elements is
< l . It is easy to see thatQl(n) satisfies the following recur
sion relation

Ql 11~n1b!5
1

2n (
n150

n S n
n1

DQl~n1!Ql~n2n1!, ~29!

for all l>1 and n>0, with the additional condition tha
Q1(n)51 for all 0<n<b and Q1(n)50. For the caseb
51, this recursion relation was recently studied by Kne
and Szpankowsky@15# using rigorous methods. The recu
rence in Eq.~29! is a generalized version of theb51 case
and can be understood as follows. Consider a tree wit
total number of (n1b) elements. The firstb elements will be
stored in the root and the rest of then elements will be
distributed to the left and right daughter subtrees. The pr
ability that one of the subtrees, say the left one, getsn1
elements out of a totaln elements is simply given by th
binomial distribution. Also, since the condition that th
height of the full tree is< l 11 @the left-hand side of Eq
~29!# indicates that the height of both of the daughter s
trees must be< l . Since the two daughter subtrees are co
pletely independent, this probability is given by their pro
uct.

Note that the recursion relation in Eq.~29! for the height
distributionQl(n) in the b-DST is identical to the recursion
in Eq. ~1! in Sec. II for the probabilitiesGl(n) in the
b-DDLA problem, except for the slight difference in the in
tial valuesQ1(n) andG1(n). This slight difference does no
affect the asymptotic behaviors. So, one can apply all
results obtained via the traveling front approach in Sec. II
the b-DDLA model directly to theb-DST problem. In par-
ticular, the result in Eq.~11! indicates that the average heig
of theb-DST has the asymptotic following behavior for larg
n:
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l * ~n!' log2~n!1A2

b
log2~n!. ~30!

For b51, this result coincides with that of Aldous an
Shields@8# obtained by probabilistic methods. Note that f
b51 case, a more refined result including additional su
leading terms to Eq.~30! was recently obtained in Ref.@15#
using rigorous methods. However, for generalb, we are not
aware of any rigorous results in the computer science lite
ture and our Eq.~30! seems to be the first result for th
average height of ab-DST. Furthermore, Eq.~12! in Sec. II
predicts that the standard deviation of the height around
average value decays extremely slowly with largen, w(n)
'1/A2b ln(2)ln(n). This result on the variance of the heig
in the b-DST also seems not to have been obtained by o
methods before.

We now turn to the Lempel-Ziv algorithm for data com
pression@25#. The connection between this algorithm and t
DST problem was known before@8,14#. The Lempel-Ziv al-
gorithm is central to many universal data compress
schemes and have many applications, such as in the effic
transfer of data@14#. This basic scheme of this algorithm
very simple: it takes a given data string, say a sequenc
binary digits such as 11000110111011110, and partition
into ‘‘words.’’ Words are subsequences of variable siz
which are never repeated and are constructed by emplo
the rule that a new word is the shortest subsequence not
in the past as a word. This is best understood by an exam

Consider the binary sequence 11000110111011110
construct words starting from the left end using the Lemp
Ziv algorithm. Starting from the left end, the first digit en
countered is 1. Since 1 has not occurred before as a w
one can form the first word(1). Now wemove to the next
element that also happens to be 1. But, now since
is already a word, the shortest segment we can use
form a word is (10). Similarly, the next word would be (0
since (0) has not occurred before as a word. One ke
repeating the procedure and at the end, the original sequ
is partitioned into the following sequence of word
(1)(10)(0)(01)(101)(11)(011)(110). The original data i
thus compressed into these words. Even though the w
are relatively short in the beginning, it turns out that th
become bigger quite rapidly. One of the interesting questi
of practical importance in this scheme is the statistics of
longest word when the original data string is random. F
concreteness, let us consider a random binary sequenc
initial data and focus on the firstn words. Letl be the length
of the longest word amongst thesen words. Clearly,l is a
random variable since the underlying binary sequence is
dom. We are interested in the statistics ofl as a function ofn.

There is a natural representation of this parsing algorit
in terms of a DST@14#. Consider a binary tree whose nod
are initially empty. In fact, the root of this tree is alway
going to be empty~see Fig. 4!. Now we take the first of the
Lempel-Ziv parsed words and examine its first digit. If th
first digit of this word is 1, we put this word in the righ
daughter node of the root. On the other hand, if the first d
is 0, we put this word at the left daughter node. This new
3-7
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occupied node is now full and cannot accommodate
other word. Then, we consider the second word and loo
its first digit. If the first digit is 1 (0), we go to theright
~left! daughter node. Let us call this nodei. If this nodei is
empty, we put the word there. Ifi is already occupied by the
first word, then we need to examine the second digit of
second word and depending on its value (1 or 0),
go, respectively, to the right or to the left daughter node
i and put our second word at this new site. This process is
peated until all the words are stored and the result
tree is clearly a DST, since at each step the decision
go to the left or to the right occurs randomly~due to
the random-ness of the underlying binary sequence wh
each digit can be either 0 or 1 with equal probability!.
The construction of this DST from the parsed wor
(1)(10)(0)(01)(101)(11)(011)(110) is shown in Fig. 4.

It is clear from the algorithm that the depth of a give
word in the DST~measured from the empty root! is precisely
equal to the length of the word~see Fig. 4!. In particular, the
longest word will also be the farthest from the root. Thus,
length l of the longest word is precisely the height of th
corresponding DST. There is a generalized Lempel-Ziv al
rithm where during the partitioning into words, any partic
lar word is allowed to be repeated at mostb times@14#. Then
the corresponding DST is precisely ab-DST. Thus, our re-
sults regarding the average heightl * (n) and its width apply
as well to the longest word in the generalized Lempel-Z
algorithm.

VI. CONCLUSIONS

In this paper, we have used a suitably adapted versio
the traveling front approach to derive exact asymptotic
sults for the statistics of the number of particles in a gen
alized directed diffusion-limited aggregation problem. W
have pointed out a close connection of this problem to t
separate problems in computer science, namely, the di
search tree problem and the Lempel-Ziv algorithm used

FIG. 4. The figure shows how the partitioning of
sequence 11000110111011110 into ‘‘word
(1)(10)(0)(01)(101)(11)(011)(110) using the Lempel-Ziv par
ing algorithm can be represented as a digital search tree. The le
of a word is equal to its depth in the tree measured from the em
root at the top.
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data compression. Our results for the number of particle
the generalizedb-DDLA model have direct relevance to th
statistics of height in the digital search tree problem and
the statistics of the longest word in the Lempel-Ziv alg
rithm.

The traveling front approach has recently been used s
cessfully @22,23# to derive exact asymptotic results fo
heights in a number of growing search tree problems in co
puter science. This paper shows that the scope of this
proach can be extended to include yet another different c
of search trees, namely, the digital search tree. The m
advantage of this method is that it provides an easy way
derive the leading asymptotic behavior exactly in a variety
extreme value problems@21#.
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APPENDIX: DERIVATION OF THE GENERATING
FUNCTION

In this appendix, we present the derivation of Eq.~5!

where F̃ l(s) is defined in Eq.~4!. Our starting point is the
linear equation~3!. We first define the exponential generatin
function

Hl~z!5 (
n50

`

Fl~n!
zn

n!
. ~A1!

Multiplying both sides of Eq.~3! by zn/n! and summing over
n, it is easy to see thatHl(z) satisfies thebth order nonlocal
differential equation

dbHl 11~z!

dzb 52Hl~z/2!ez/2, ~A2!

for all l>1. This recursion in Eq.~A2! starts from the initial
function H1(z) that needs to be computed separately. Us
F1(n)50 for 0<n<(b21) and F1(n)51 for n>b, we
find H1(z)5(k50

b21zk/k!. The next step is to define a new
function

Ul~z!5Hl~z!e2z5 (
n50

`

Fl~n!
zn

n!
e2z. ~A3!

From Eq.~A1!, it follows, after a few steps of algebra, tha
Ul(z) satisfies the differential equation

(
k50

b S b
kD dkUl 11~z!

dzk 52Ul~z/2!, ~A4!

for all l>1 starting with the initial function U1(z)
5e2z(k50

b21zk/k!.

gth
ty
3-8
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We now define the Laplace transformŨ l(s)
5*0

`Ul(z)e2szdz. Taking the Laplace transform in Eq
~A3!, we get

Ũ l~s!5 (
n50

`

Fl~n!
1

~11s!n11 5F̃ l~s!, ~A5!

where we have used the identity*0
`e2zzndz5n! and the

definition of F̃ l(s) in Eq. ~5!. Next we take the Laplace
transform on both sides of Eq.~A4!. Using the initial condi-
tions for n50, one can easily show thatdkUl(z)/dzkuz50
et
y,

. A
A

ys

Ha

,

J

ry

02610
50 for all l>1 and k<(b21). Using this condition and
doing integration by parts, one finds

(
k50

b S b
kD skŨl 11~s!54Ũ l~2s!. ~A6!

Summing the left-hand side of Eq.~A6! and identifying
Ũ l(s)5F̃ l(s) as in Eq.~A5! then gives the desired recursio
relation

F̃ l 11~s!5
4

~11s!bF̃ l~2s!. ~A7!
iv.
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