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Traveling front solutions to directed diffusion-limited aggregation, digital search trees,
and the Lempel-Ziv data compression algorithm
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We use the traveling front approach to derive exact asymptotic results for the statistics of the number of
particles in a class of directed diffusion-limited aggregation models on a Cayley tree. We point out that some
aspects of these models are closely connected to two different problems in computer science, namely, the
digital search tree problem in data structures and the Lempel-Ziv algorithm for data compression. The statistics
of the number of particles studied here is related to the statistics of height in digital search trees which, in turn,
is related to the statistics of the length of the longest word formed by the Lempel-Ziv algorithm. Implications
of our results to these computer science problems are pointed out.
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I. INTRODUCTION reaches one of the bottom leaves and can descend no more. It
then occupies that leaf site.

The simple model of diffusion-limited aggregation  Then a second particle is introduced from the top site and
(DLA), ever since its introduction by Witten and Sander init also performs a directed random walk. This second particle
1981[1], has continued to play a central role in understandWill stop if it happens to reach a site such that at least one of
ing the fractal growth phenomena. Besides raising a numbdhe daughter nodes of that site is already occupied. It cannot
of conceptual issues regarding pattern formation, this modefescend any more and it rests at that site for all subsequent
has also found numerous applications in physical processdénes. Note that in this model, each site can contain at most
ranging from dielectric breakdowf2] and Hele-Shaw fluid ©N€ particle. Then a third particle is released from the top

flow [3] to electrodepositiof4] and dendritic growtfi5]. In  and so on. Basically, after reaching any site, sayi thesite,
the simplest version of this model, one considers, for ex? particle attempts to hop down to one of the two daughter

ample, a square lattice where the origin is a seed. Particl odes ofi and it actually_moves o the target site provided
: ._both the daughter nodes ioAre empty. If at least one of them
are released sequentially from the boundary. Each particle

) ; ' IS occupied, the particle cannot descend any further and it
performs a random walk in space and when it comes in con

. ; .~ Trests at site forever. Then the next particle is added and the
tact with the growing cluster around the central seed, it St'Ck?)rocess continues until no more particles can be put in, i.e

to the cluster and thus the cluster grows. This growing DLAhen the top site gets occupied. The tree is then said to be
cluster has a fractal structure with many branches that argyrated. One such history of the process till its saturation is
separated by deep “fjords.” Despite various advances, charspown in Fig. 1. A typical snapshot of the saturated tsee
acterizing this fractal pattern quantitatively has remained gg. 1) shows that the cluster has voids of various sizes. A
major theoretical challenge for the past two decd@@sOne  yseful quantity to characterize the pattern of the cluster is the
clear picture that has emerged out of various studies is thagtal number of particles, in the saturated tree. Cleanty is
the key effect responsible for this complex pattern is thea random variable, varying from one history of the process to
dynamical “screening”: a newly arriving particle has more another. The quantities of central importance in this problem
probability to attach to the “tip” sites compared to other are the average densipy=(n,)/[2'—1] and the fluctuations
boundary sites that are deep inside a fjord. As a result, thef n, around its average value. How do these two quantities
faster growing parts of the cluster boundary shield or screepehave asymptotically for a large tree, i.e., whenx?
other boundary sites from further growth. While it was easy to write down the basic recursion rela-
To understand this dynamical screening effect more quantions (see later in Sec. )ifor certain probabilities associated
titatively, it is desirable to construct a simpler model thatwith the DDLA process on a tree, they turned out to be
incorporates the screening effect and yet is analytically trac-
table. Bradley and StrensKi7] introduced such a model
where particles undergo a directed diffusion-limited aggrega-
tion (DDLA) on a Cayley tree. Physically, this corresponds
to the situation when there is a strong external field, such as
the gravity or an electric field, which forces the particles to
choose an overall direction of motion. In this DDLA model,
one starts with a Cayley tree of heighsee Fig. 1where all
the 21 sites of the lattice are initially empty. Then a par-  FIG. 1. Atypical history of the DDLA process till saturation on
ticle is introduced at the top site and it performs a directech Cayley tree with height=4. The occupied nodes contain a black
(downward$ random walk(from any site it chooses one of filled circle inside them and the number next to an occupied site
the two daughter sites at random and moves jhéleit denotes the particle number.
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nonlinear[7] and hence, it was difficult to determine even concentration of measure, i.e., the distributiomptends to
the asymptotic behavior qf for largel. Bradley and Stren- a & function. In particular, we show that the width of the
ski studied the recursion relations numerically and founddistribution decays slowly as a power law(l)~1~*? asl
somewhat unexpectedly, thatdecays slower than exponen- —o. Furthermore, we point out the close connection be-
tially with | for largel but the precise nature of this decay tween the DDLA problem and the DST problem widely stud-
was not evident from their numeri¢3]. Later Aldous and ied by computer scientis{9,10,8. The later problem is also
Shields[8] studied via rigorous probabilistic methods a com-related to the well known Lempel-Ziv algorithm used in data
pletely different model, namely, a continuous time version ofcompressiorj25]. Some of the results derived in this paper
the so called digital search tréBST) problem relevant in  have implications in these computer science problems.
computer sciencg9,10,8,11-1% As we will see later in Sec. The rest of the paper is organized as follows. In the fol-
VI, these two models, namely, the DDLA and the DST shardowing section, we introduce a generalizedDLA model
the same recursion relation, though for very different quan{whereb is a positive integgr The original DDLA model of
tities. The rigorous results of Aldous and Shie|@$, when  Bradley and Strenski is a special case of tHisDLA model
translated back in the DDLA language, would indicate awith b=1. We then derive the asymptotic statistics of the
stretched exponential decay for the average dengjty number of particles in thb-DDLA model using the traveling
~27'7 for large|. Recently, a more refined result on the front technique, suitably adapted for this model. In Sec. il
DST was derived by Knessl and Szpankows§Rk¥]. Un-  we generalize these results to the case when the Cayley tree
aware of the DDLA or the DST model, Hastings and Halseyhasm>2 branches. Section IV considers the DDLA model
also studied independently a related model recdihy and  with a bias when a particle has more probability to go to the
used extremal arguments to conclude the same stretched dgft branch compared to the right one. In Sec. V, we point out
ponential decay for the average density. the detailed connections between the DDLA model, the DST
The methods used by the mathematicians, though rigoroblem in computer science, and the Lempel-Ziv parsing
ous, lack physical transparency. On the other hand, the exalgorithm and discuss the implications of our results for the
tremal arguments used by Hastings and Halsey, thougpeneralized-DDLA model in the context of computer sci-
physically intuitive, are heuristic. Moreover, it is not easy toence. Finally, a brief summary and a conclusion are offered
derive quantitative results regarding fluctuations of the numin Sec. VI.
ber of particlem, via these methods. For example, how does

. h — 2 X
the width w(l)=(nj)—(n)® behave as a function df? e | hp) A MODEL AND ITS TRAVELING FRONT
Besides, none of these methods are easily adaptable to ex- SOLUTION

tract the leading asymptotic behaviors in more general mod-
els such as the ones that we will consider in this paper. Our Here, we introduce a generaliz&DDLA model where
approach in this paper would be to use the powerful techthe “hard” screening of the usual DDLA model is “soft-
nigues(suitably adapted for our problerof traveling fronts, ened” in the following sense. As in the usual DDLA model,
originally developed in the context of nonlinear reaction-one starts with an empty Cayley tree of heighand the
diffusion systems and population dynamigs7—19. The particles are introduced sequentially at the top site and they
techniques of traveling fronts have found a host of very usego down the tree one at a time by performing a random walk.
ful applications[20]. Recently, we have pointed out that in However, now each site can contain at mbsiparticles
many extreme value problems in both physics and computerhereb is a positive integer. During its journey downward,
science, one can successfully use the traveling front tectwhen a new particle arrives at an empty site, sayi thesite,
nigues to derive exact asymptotic results for the statistics oit tries to move to one of the daughter nodes chosen at
the extremum of a set of correlated random variapfs-  random. It actually moves to the target site provided both the
24]. The present paper points out yet another useful applicadaughter sites contain less thlaparticles. If either of them
tion of the traveling front techniques, namely, in a general-containsb particles, i.e., completely full, then the incoming
ized DDLA problem with relevance to a class of search treegarticle cannot move down any further and it then stays at
problems in computer science. site i forever. Thus, in this model, a site can incorporate
The traveling front method, though technically not rigor- “screening” if and only if it has full capacity, i.e., when it
ous in the strict mathematical sense, has the following adhasb particles. Otherwise it fails to screen. This model thus
vantages over the other methods used in the DDLA problemmimics the physical situation when one single particle is
(i) this method is not model specific, is more general, and isncapable of stopping an incoming particle to go down, but
easily adaptable to more general models such as the ones tliaé screening comes into play only as a collective effect
will be studied in this papeliji) it is easy to implement and when there aré particles in the site. This is like a tunneling
is physically transparent, andi) it provides a very cheap effect, where a particle can go through a barrier provided the
way to extract the leading asymptotic behavior exactly with-barrier is not too high. However, the rate of tunneling goes to
out using too much mathematics. Besides rederiving theero when the barrier height crosses a threshold. In our
known results in the standard DDLA problem, this methodmodel, the parametdracts like the threshold value. Clearly,
also allows us to derive many new results in more generalfor b=1 this model reduces to the original DDLA model
ized models. For example, we show that in the DDLA model,studied by Bradley and Strengki].
the random variable, approaches to its average valueg, As in theb=1 case, the tree is going to be saturated after
—(n) in thel —<° limit. This is the example of the extreme a finite number of particles have been added to it. This hap-
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pens when the top site contaibsarticles. No further par-
ticles can then be put in. The number of partiakesequired

to saturate the tree of heighis clearly a random variable,
fluctuating from one history of the process to another. The
main question we address is, what is the statistica, dbr

largel? In particular, we would compute the average density G increasing n
at saturatiorp,=(n,)/[2'— 1] and the width of the distribu- o ') -
tion w(l)=\(n?)—(n)2 for largel.
Following Bradley and Strenskv] for theb=1 case, we
defineG,(n) to be the probability that the tree of heighis
not saturated after the addition ofparticles, i.e., the top site 1
is not yet filled byb particles aftern particles have been
added to the tree. It is easy to see tt(n) satisfies the  FIG. 2. Schematic behavior of the probabilky(n) as a func-
following recursion relation: tion of | for different fixed values of. The three curves correspond
to different values oh increasing from left to right. Thg axis is
n dimensionless while the axis has arbitrary units.

1 n
Gria(n+b)=55 > (n )Gmnl)G'(n—nl), (1) _ o
n=0 \"1 for 0Os=n=<(b—1) for allI=1. It is useful to think by fixing

) . the timen while varying the spacé Clearly, F|(n)—0 as
for all =1 andn=0. It is useful to think ofl as “space” |_,c since almost surely a tree of infinite height will not be
and n as “time.” Equation (1) is supplemented with the gayrated before the addition of a fixed, finite numbenf
“boundary” condition Gy(n)=1 for all O=n=<(b—1) and  pariicles. On the other side, for fixed F(n)—1 asl—0.
G41(n)=0 for all n=b and the “initial” condition G|(n)  For a given fixedn, as one increasdsfrom 0 to =, the
=1 for O=n=(b—1) forall|=1. The recursion relation in  fynctionF,(n) starts off at the value 1 4t=0 and then drops
Eqg. (1) is easy to understand. Suppose, we have added (off to 0 beyond some characteristic length sddi¢n), as
+b) particles to a tree of height ¢ 1) [the left-hand side of = ghown schematically in Fig. 2. Asincreases, this character-
Eq. (1)]. The condition that the top site is not yet filled by istic length scalé* (n) also increaseésee Fig. 2 thus giv-
particles indicates that before the addition of the ag@r- g rise to a traveling front structure with the front located at

ticle_,-s, the two daughter_nqdes of the fcop. site must have r§+(n). In fact, we will see later that in the limit of large
mained unsaturated. This is because if either one or both Qf/vhen one can tredtas a continuous variabland largen

them had been saturated after the addition pérticles, then o widthw(n) of the front goes to 0, indicating that asymp-
any further added particle would not be able to go down andyyica|ly the functionF(n) becomes a Heavisidé function
would rest at the top site, and hence, the top site would theﬂ,(n)—w(l*(n)—l).

get saturated after the addition af{ b) particles. The two Note that Eq.(2) is nonlinear and hence is difficult to
daughter nodes are the roots of two uncorrelated subtreegg|ye exactly. However, the exact asymptotic information re-
each of he|ghﬂ. _Hence, the_ probability that both remain arding the position* (n) of the front and its width can be
unsaturated is given by their product. Also, the number 0geduced by adapting the traveling front techniques that were
particlesn, that enter, for example, to the left subt@eit of  jginally devised to deal with nonlinear partial differential
a total number oh particles that enter both subtrgeaust gy ations in reaction-diffusion systerfis7] and population
have a binomial distribution, thus explaining the right handdynamics[lS 19. The basic idea behind this approach is
side of Eq.(1). _ . very simple. If there is a front* (n), then ahead of the front
Note that for fixedn>0, the probabilityG,(n)—0 asl I>1*(n), F,(n) is very small and hence, one can neglect the

—1 andG(n)—1 asl —o. For later analysis, it tums outto honjinear term(the second terinon the right-hand side of
be convenient to define the complementary probablllty,Eq. (2), and one simply gets a linear recursion
F,(n)=1-G,(n), that has the opposite behavior as a func- ’

tion of I, namely,F|(n)—1 asl—1 and F;(n)—0 asl 1 n n
—oo for any fixedn>0. The quantityF;(n) denotes the F|+1(n+b)~F 2 n >F|(n1). (©)]
probability that the tree of heightgets saturated befone ng=0 171

+1 particles are added. From E(.), one finds that(n)

LB ) Suppose, one could solve this linear equation exactly satis-
satisfies the recursion

fying the required initial condition. Now one expects that the
solution of the linear equatiof8) and the “real” solution of

1 n n . . . o L .
Fi i(n+b)= ST 2 (n )F|(n1) the nonllngar equaﬂojﬁ) will coincide in the regime beyond
n=0\' the front, i.e., forl>1*(n). On the other hand, the two so-
L0 lutions will start differing from each other as one decredses

- n _ below I*(n), where the solution of the nonlinear equation
2" nlz‘o (n )F|(n1)F|(n ), (2) will tend to 1 where as the solution of the linear equation
(3) will grow beyond 1 with decreasing (as there is no
with the boundary conditior-;(n)=0 for O<n<(b—1) nonlinear term to control the solutionThus, as one de-
and F,(n)=1 for n=b and the initial conditionF;(n)=0  creased from infinity, the front positionl* (n) is approxi-
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mately the value ofl at which the solution of the linear The structure of these expressions suggests a natural scaling
equation becomes O(1). Thus, according to this approach, limit, s—0, | - but keeping the produa=s2' fixed but
one first solves the linear equati¢8) to obtainF (n)|;near  arbitrary. We also tredtas a continuous variable in this limit.
and then reads off the front positid#i(n) from the condi- Furthermore, we focus only near the tail of the scaling re-
tion, Fyx(n)(N)]inea=O(1). By O(1), onemeans that at  gime, i.e., where>1. In this regime, it is sufficient to keep
=1*(n), the solutionF;(n) should not diverge or decay ex- only the first term in the second line of E(/) for the ex-
ponentially with increasingh. Note that this is a slightly pression ofY(z). Besides, one can also check that the re-
generalized version of the usual traveling front methodsidual term is subleading in this regime. Keeping only the
[20,21] where one usually has a linear operator with constanteading terms, we get
coefficients which admits an exponentially decaying solution
of the form exp—A(x—uvt)] with constant width. The present
approach is more general and works even when the linear
operator does not admit an exponentially decaying solution ] ) ) o
with a constant width. We still need to invert the generating function in E4) to
Under this traveling front approach , our task thus reduce§Ptain the asymptotic behavior &f(n). The scaling limit
to solving the linear equatiofB) which, however, is still corresponds to taking— o, | —o but keeping the ratio'2n

nontrivial. To proceed, we define a somewhat unusual gerfixed but arbitrary. Using Eq8) and inverting Eq(4) (using
erating function the Bromwich inversion formula and then using the standard

steepest descent methpdve find the following leading
asymptotic behavior,

- 1 b
F|(s)%gexp{ln2(l—E[I+Iog2(s)]2> . )

Fi(s)= i F ! 4
|(S)—n:0 |(H)W- 4 b
Fi(n)~expgIn2 I—E[I—Iogz(n)]2 , 9)
Using Eq.(3), one can then show th&j(s) satisfies a rather o _
simple recursion i, valid in the taill>log,(n).
Having obtained the asymptotic soluti¢®) of the linear
- 4 equation(3), the location of the front* (n) can be read off
Fii(s)= uTs)BF'(ZS)’ () from the equatiorFx ()| inear~ O(1). Using this criterion in
Eq. (9), we find that the front positioh* (n) is given by the
for all I=1. The steps leading to E¢p), starting from Egs. guadratic equation
(3) and (4), are not completely straightforward. Hence, we b
present this derivation in the Appendix. The recursion in Eq. |* — E[|* —log,(n)]?=0. (10)
(5) starts with the initial valud,(s) that needs to be calcu-

lated separately. Noting thdt,(n)=0 for 0=n<(b—1) A5 we decreasefrom =, we will encounter the larger root
andFy(n)=1 for n=b, we find from the definition in Eq. first, which will correctly locate the front position. From Eq.
(4), F1(s)=1/s(1+s)?]. Iterating Eq.(5) and using the ex- (10), we get, for largen, the asymptotic front position

pression fol =1, we get
2
ol-1 [*(n)~log,(n)+ \/Blogz(n). (11

P Jdrear2s). a2 9P . _

Furthermore, substituting=1*(n)+y in Eq. (9) and ex-

21 -1 ‘ panding for smally, we find to leading orderF,(n)

= & —bgo In(1+2%)|, ) ~exp(—2bIn@)IN(M)[I-I*(n)]), indicating that the width

of the distribution, characterizing the fluctuationlaround

forall =1 its average valué* (n), decreases extremely slowly with

We then write the sum inside the exponential in Egj.in as

two parts using the Euler-Maclaurin summation formula w(n)=1/2bIn(2)in(n), (12)

S(I,s):EL;%In(lJers):I(I,s)+R(I,s), where I(l1,s)

= [oin(1+2*9)dx and R(l,s) =S(1,s)—(1,s) is the residual asn—co. The fact that the width vanishes in thesco limit

term. The integral (I,s) can be done and one getf,s) shows that the probabilitif;(n)— 6(1* (n) —1), thus indicat-

=[Y(2's)—Y(s)]/In 2 where the functiorY(z) is given by ing an extreme concentration of measure, i.e., the random
variablel —1*(n).

* 1o In the above analysis, we keptfixed and studied the
21 (=" 72" "n for z<1 behavior ofF,(n) as a function ol. Alternately, as is more
Y(z)= " suited for the DDLA problem, one can keefixed and vary

n. It follows from Eq.(9) that in the scaling limit mentioned
above, the random variable lgg) approaches to its mean
(7)  value{logy(n))=I—+2I/b. Due to the extreme concentration

Elnzz—ln(1+ 1/z)+In2+ 7?12 for z>1.
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of measure, it follows then that—(n)~2'""?® in the = The asymptotic analysis is exactly similar to the preceding
scaling limit. This means that the average density section, except that the proper scaling limit nowsis 0, |
=(n)/(2'—1) decays as a stretched exponential for ldige — but keeping the productnt fixed but arbitrary. We do
‘ not repeat the steps here but present only the final results. We
p(l)~2*“‘7'75. (13 find that as in them=2 case, there is a front whose
asymptotic locatior* (n) is given by
Besides, substituting logn)=(log,(n))—y; in Eq.(9) and ex-

panding for smally,, we find F,(n)~exd —In(2)y2bl y,]. . 2
This indicates that as a function lpfthe width of the random I* (n)=logn(n) + \/;l0gm(n), (18)
variable log(n) around its average valuglog,(n))=I
—/2l/b decreases algebraically for larye and in the limitn— o, the widthw(n) of the front vanishes
1 slowly as
N~ ——. 14
O~ e 19 w(n)~ 12 In(myin(n). (19

Similarly, we find that for fixed but largk the average den-

Note that the leading order behaviors of the widths in Egs:
sity varies as a stretched exponential

(12) and(14) are compatible with each other with the iden-
tification n~2'. The Eqs.(11)—(14) constitute the main re-

= 2TTb
sults of this section. p(l)~m : (20)

and the widthw(l) of the random variable lggn) around its

average value(logm(n»zl—\/m decreases algebraically
In this section, we generalize our results for thBDLA  for largel,

in the preceding sectiolfobtained for a tree withm=2

IIl. GENERALIZATION TO A TREE WITH  m BRANCHES

branchepto a tree withm=2 branches. In this case, during 1
its downward journey from the top, a particle from a given w(l)~ ' (21)
: V2b In?(m)l

site attempts to hop to any of thea daughter nodes with
equal probability Ith and can actually hop to the target site Note that,
provided none of then daughter nodes is full with par-
ticles. If it fails to hop, the particle stays at its current site for
all subsequent time. The probabilitg,;(n) that a tree of
heightl is yet to be saturated after the additionnoparticles IV. b-DDLA MODEL WITH BIASED HOPPING
satisfies the generalized recursion relation

interestingly, the asymptotic average value
(log(n))=1—+/2I/b is actually independent of.

In this section, we consider theDDLA model on am
=2 tree where the particles perform biased random walk on
G.i(n+b)=— E H I(” , (15) thejr way down_ the tree. More precisely, When_ a particle
i= arrives at any given siteon its way down after being intro-
duced at the top site, it attempts to hop to the left daughter of
where the variables;’s satisfy the constrainE{" ;n;=m. the nodei with probability p and to the right daughter with
Thus, the binomial coeff|C|ent in Ed1) of the preceding probabilityqg=1—p. As before, it actually moves to the tar-
section gets replaced by a multinominal. The rest of theget site provided both the daughter nodes have less lthan
analysis is straightforward and similar to the preceding secparticles. If at least one of them is full with particles, then
tion. We define as usual, the complementary probabilitythe particle rests at sitefor all subsequent times. Then a
Fi(n)=1-G,(n), which satisfies the recursion new particle is added and the process continues till the top
site gets filled withb particles. Once again, we are interested
m in the statistics of the number of particleswhen the tree of
Fiia(ntb)=— Z Fi(ny) +nonlinear terms,  height| gets saturated. We define, as bef@gn) to be the
=0 Tyt (16) probability that the tree of heightremains unsaturated, i.e.,
the top site remains unfilled up to the additionngparticles.
where we have used the symmetry that all branches are sinfrollowing the same logic as in Sec. Il, one easily finds the
lar to each other. recursion relation
As before, we solve Eq(16) retaining only the linear
terms and neglecting the nonlinear terms. We define the gen- n _
erating function as in Eq4). Following the derivation pre- G|+1(n+b)=nE:O (nl)pnlqn MG(n1)Gi(n—ny),
sented in the Appendix and using the initial condition, we get ! (22)
the solution

n

for all I=1 andn=0.
17) The complementary probabilit{?,(n)=1—G,(n), then
satisfies the recursion

ml—l

s[(1+s)(1+m9)---(1+m'1s)]P"

Fi(s)=
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Fiia(n+b)= > (n p"g' M[F|(ny) +F(n—ny)]

ni=0 \ N1
+nonlinear terms, (23 @ @
with the boundary conditior-;(n)=0 for O<n<(b—1)
andF;(n)=1 for n=b. As before, we solve the E¢23)
keeping only the linear terms and neglecting the nonlinear
terms. This is done via defining the generating function @ ‘ @

F\(s) as in Eq.(4). Following the same line of derivation

presented in the Appendix, we obtain the following recursion FIG. 3. A typical digital search tree constructed from a data
relation: string {X1,X»,X3,X4,Xs5} Of five elements.

~ 1o ’ 1 o y 5 gives, to leading ordet* (n)~log,(n). Note the difference
Fiia(s)= p(1+s)5F'(S p)+q(1+s)5F|(s @, (249 \ith the unbiased case. Unlike the unbiased case in Sec. Ii
where the width vanishes for large here the width of the
which starts from the initial functiorF,(s)=1[s(1+s)].  distribution remains of the order dd(1) in the largen
One can, in principle, iterate E(R4) starting withl=1 and ~ — limit, w(l)—1/yIn ¢. This result also molllcates that the
obtain the expressions f&r(s) for all I. Fortunately, in the ~2verage density of particles varies @g)~o" for largel.
scaling regimes—0, one does not need the full expressionThus' unlike the unbiased case where the average density
for F Note that in th biased —1/2 th decays as a stretched exponential for lakgéhe average
or ,(s). ote that in the unbiased cage=g=1/c, he density in the biased case decays exponentially for Igrge
appropriate scaling regime was-0, | — but keeping the

productz=s2' fixed but arbitrary. In the biased case, as one N~ (o/2) 28
. ; p()~(ol2), (28)
iterates Eq.(24) starting froml=1, one generates several

terms. The argument of the functié) inkal_txpical term on  where c=min(1/p,1/q). Besides, it follows from Eq(27)
the right-hand side scales as/(p“q ") where k  that the fluctuations of the variable Igg) around its aver-

=0,1,...]. Since we are interested in the asymptotic limit age valud are characterized by a Gaussian tail with width of
s—0, the most dominant of these terms is the one correthe order ofO(1).

sponding to eithek=0 (if g>p) or k=1 (if p>q). In the
former case, the argument &f(s) in the most dominant , ~5NNECTION TO DIGITAL SEARCH TREES AND THE

term iss/q' and in the latter case, it &/p'. It is then clear LEMPEL-ZIV PARSING ALGORITHM
that the appropriate scaling regime will be set by taking
—0, |- but keeping the produa=sd' fixed, wheres In this section, we point out the connection between our
=min(1/p,1/q). Thus, in this scaling limit, one can approxi- generalizedo-DDLA model to the so called digital search
mate Eq.(24) by tree problem in computer scien¢®,10,8,11-13,2pbwhich,
in turn, is also relatefl14] to the Lempel-Ziv data compres-
~ o sion algorithm [25]. Suppose, we have a data string
Fiva(s)~ (1+s)5F'(‘TS)' (25 {X1,Xs5, ... Xy} that needs to be stored on a binary tree.

According to the DST algorithm, one proceeds as follows.
The terms neglected in going to E®@5) from Eq.(24) only Initially all the nodes of the tree are empty. The first arriving
contribute to subleading order. Iterating the reduced(Ef).  elementx; is put at the root of the tree. Each node can

starting withF,(s)=1/[s(1+s)], one obtains contain at most one element. The second elemegrd put at
one of the daughter nodes of the root chosen at random. Then
~ 1 for the next elemenks, one again starts at the root and
Fi(s)~ [(1+s)(1+0s)(1+0%s) - (1+ o L) chooses one of the daughter nodes at random. If the chosen

(26) node is emptyx; goes there. But if the chosen node, say
happens to be the one that contarasthen one chooses one
We then invert the transform in EG26) using the same of the two daughter nodes ofat random and puts; there.
asymptotic method as in Sec. Il, the details of which we doThen one stores the fourth elemeqt following the same
not repeat. The final asymptotic form of the distribution algorithm and so on. Essentially each elemernperforms a
Fi(n) is given by directed random walk down the tree till it finds an empty site
which it then occupies. The process stops when allrthe
Fo(m)~ _In(o) —| 2 5 elements have been stored and the resulting tree is called a
(n)~ex 2 [1=log,(m]7, 27) DST (see Fig. 3 Note that according to this DST algorithm,
the actual value of a data element sqyis not important.
valid in the scaling regimen—oo, | —o but with the ratio  This is contrast to other search trees, such as the random
y=2'/n fixed at a large valug>1. The front position can binary search tred®,10] where the actual value of is used
be read off from the conditiorF +(N)|inear~ O(1) which  in constructing the tree.
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The statistics of various quantities, such as the distribu- 2
tion of the number of occupied nodes at a given depth [*(n)~logy(n)+ Blogz(n). (30
(known as the profile of the DSThave been studied in great
detail in the computer science literatur&4]. Flajolet and
Richmond[12] introduced a generalized version of the DST For b=1, this result coincides with that of Aldous and
where each node can contain at mbselements. In this  Shields[8] obtained by probabilistic methods. Note that for
b-DST, an incoming element; performs, as in thdo=1  b=1 case, a more refined result including additional sub-
case, a directed random walk downwards. However, when leading terms to E(30) was recently obtained in Reff15]
reaches a new site, syit will stay forever akk provided the  using rigorous methods. However, for gendsaive are not
number of already existing elementskas less tharb. If the  aware of any rigorous results in the computer science litera-
site k already contain® elements, then one chooses one ofture and our Eq(30) seems to be the first result for the
the daughter nodes &fand the element; hops there. This average height of 8-DST. Furthermore, Eq.12) in Sec. Il
generalizedb-DST problem has many applications in com- predicts that the standard deviation of the height around its
puter science, notably in the maintenance of paged hashirgverage value decays extremely slowly with largen(n)
tables[12]. Flajolet and Richmond studied, for example, the ~1/,/2b In(2)In(n). This result on the variance of the height
average number of nonempty nodes ip-BST as a function  in the b-DST also seems not to have been obtained by other
of the data sizen and the parametéds. methods before.

One important characteristic ofteaDST is its height. The We now turn to the Lempel-Ziv algorithm for data com-
height| of a tree withn elements is defined as the depth, pressior{25]. The connection between this algorithm and the
counted from the root, of the farthest element in the treeDST problem was known befof®,14]. The Lempel-Ziv al-
Clearly, | is a random variable, fluctuating from one realiza- gorithm is central to many universal data compression
tion of the tree to another and also it is an extreme variablgchemes and have many applications, such as in the efficient
(denoting the maximum depthA natural question is, what is transfer of datd14]. This basic scheme of this algorithm is
the probability distribution of the height? Let us def@gn) very simple: it takes a given data string, say a sequence of
to be the probability that the height of tree witlelements is  binary digits such as 11000110111011110, and partitions it
<I. ltis easy to see tha®,(n) satisfies the following recur- into “words.” Words are subsequences of variable sizes
sion relation which are never repeated and are constructed by employing

N the rule that a new word is the shortest subsequence not seen
2 ( n Qi(n)QI(n—ny), (29 in the past as a word. This is best understood by an example.
<o \ny) < s Consider the binary sequence 11000110111011110 and

construct words starting from the left end using the Lempel-

for all I=1 andn=0, with the additional condition that Ziv algorithm. Starting from the left end, the first digit en-
Qq(n)=1 for all O<n=<b and Q.(n)=0. For the casdd  countered is 1. Since 1 has not occurred before as a word,
=1, this recursion relation was recently studied by Knessbne can form the first word1). Now wemove to the next

and Szpankowsky15] using rigorous methods. The recur- element that also happens to be 1. But, now since (1)
rence in Eq.(29) is a generalized version of tHe=1 case is already a word, the shortest segment we can use to
and can be understood as follows. Consider a tree with form a word is (10). Similarly, the next word would be (0)
total number of (i +b) elements. The firdt elements will be  since (0) has not occurred before as a word. One keeps
stored in the root and the rest of tmeelements will be repeating the procedure and at the end, the original sequence
distributed to the left and right daughter subtrees. The probis partitioned into the following sequence of words:
ability that one of the subtrees, say the left one, gets (1)(10)(0)(01)@01)(11)(011)(110). The original data is
elements out of a totah elements is simply given by the thus compressed into these words. Even though the words
binomial distribution. Also, since the condition that the are relatively short in the beginning, it turns out that they
height of the full tree is<I+1 [the left-hand side of Eq. become bigger quite rapidly. One of the interesting questions
(29)] indicates that the height of both of the daughter sub-of practical importance in this scheme is the statistics of the
trees must bes|. Since the two daughter subtrees are comHongest word when the original data string is random. For
pletely independent, this probability is given by their prod-concreteness, let us consider a random binary sequence of
uct. initial data and focus on the firstwords. Letl be the length

Note that the recursion relation in E@Q9) for the height of the longest word amongst thesewords. Clearly,l is a
distribution Q(n) in the b-DST is identical to the recursion random variable since the underlying binary sequence is ran-
in Eqg. (1) in Sec. Il for the probabilitiesG,(n) in the  dom. We are interested in the statisticd ab a function oh.
b-DDLA problem, except for the slight difference in the ini-  There is a natural representation of this parsing algorithm
tial valuesQ,(n) andG,(n). This slight difference does not in terms of a DST14]. Consider a binary tree whose nodes
affect the asymptotic behaviors. So, one can apply all tha@re initially empty. In fact, the root of this tree is always
results obtained via the traveling front approach in Sec. Il forgoing to be emptysee Fig. 4 Now we take the first of the
the b-DDLA model directly to theb-DST problem. In par- Lempel-Ziv parsed words and examine its first digit. If the
ticular, the result in Eq(11) indicates that the average height first digit of this word is 1, we put this word in the right
of theb-DST has the asymptotic following behavior for large daughter node of the root. On the other hand, if the first digit
n: is 0, we put this word at the left daughter node. This newly

1
Qi+ n+b)__n
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data compression. Our results for the number of particles in
the generalizedb-DDLA model have direct relevance to the
statistics of height in the digital search tree problem and to
the statistics of the longest word in the Lempel-Ziv algo-
rithm.

The traveling front approach has recently been used suc-
cessfully [22,23 to derive exact asymptotic results for
heights in a number of growing search tree problems in com-
puter science. This paper shows that the scope of this ap-
proach can be extended to include yet another different class
of search trees, namely, the digital search tree. The main
advantage of this method is that it provides an easy way to
derive the leading asymptotic behavior exactly in a variety of
extreme value problem£1].

FIG. 4. The figure shows how the partitioning of a
sequence 11000110111011110 into “words” ACKNOWLEDGMENTS
(1)(10)(0)(01)@01)(11)(011)(110) using the Lempel-Ziv pars- )
ing algorithm can be represented as a digital search tree. The length | thank A. J. Bray, D. S. Dean, D. Dhar, and P. L. Krapiv-
of a word is equal to its depth in the tree measured from the emptgKy for discussions. | thank P. L. Krapivsky also for pointing
root at the top. out Ref.[7]. The hospitality of the Tata Institute, Bombay,
where part of this work was done during a visit, is gratefully

occupied node is now full and cannot accommodate anfcknowledged.
other word. Then, we consider the second word and look at
its first digit. If the first digit is 1(0), we go to theright APPENDIX: DERIVATION OF THE GENERATING
(left) daughter node. Let us call this noddf this nodei is FUNCTION
empty, we put the word there. ilfis already occupied by the . . L
first word, then we need to examine the second digit of our In tb's ap_pendl_x, w_e present the derlyatlon_of_li’ﬁ)
second word and depending on its value (1 or 0), Wé/_vhereF|(s)_|s deflned_ln Eq.(_4). Our starting point is th_e
go, respectively, to the right or to the left daughter node Oﬂmear equation(3). We first define the exponential generating
i and put our second word at this new site. This process is rdunction
peated until all the words are stored and the resulting "
tree is clearly a DST, since at each step the decision to Hi2)=S F
go to the left or to the right occurs randomlgue to (2) =0 ()
the random-ness of the underlying binary sequence where
each digit can be either 0 or 1 with equal probabjlity Multiplying both sides of Eq(3) by z"/n! and summing over
The construction of this DST from the parsed wordsn, it is easy to see thad,(z) satisfies théth order nonlocal
(1)(10)(0)(01)@01)(11)(011)(110) is shown in Fig. 4. differential equation

It is clear from the algorithm that the depth of a given

n

Z
o (A1)

word in the DST(measured from the empty roas precisely d°H,.1(2) "
equal to the length of the wor@ee Fig. 4 In particular, the a2 =2H,(2/2)e*, (A2)

longest word will also be the farthest from the root. Thus, the

length | of the longest word is precisely the height of the for all I=1. This recursion in EqA2) starts from the initial
corresponding DST. There is a generalized Lempel-Ziv algofynction H,(z) that needs to be computed separately. Using
rithm where during the partitioning into words, any particu- F,(n)=0 for 0<n<(b—1) andF,(n)=1 for n=b, we

lar word is allowed to be repeated at mbstmes[14]. Then  fing H,(z)=3P-17k1. The next step is to define a new
the corresponding DST is preciselybeDST. Thus, our re-  f,nction

sults regarding the average heigh{n) and its width apply

as well to the longest word in the generalized Lempel-Ziv o0 2
algorithm. Ui(2)=H,(2)e 2= >, Fi(n)—e™ (A3)
n=0 .
VI. CONCLUSIONS From Eq.(Al), it follows, after a few steps of algebra, that

In this paper, we have used a suitably adapted version olf|'(z) satisfies the differential equation

the traveling front approach to derive exact asymptotic re- b

sults for the statistics of the number of particles in a gener- 2
alized directed diffusion-limited aggregation problem. We k=0
have pointed out a close connection of this problem to two

separate problems in computer science, namely, the digitdébr all 1=1 starting with the initial functionU(z)
search tree problem and the Lempel-Ziv algorithm used for= e‘ZZEgézk/k!.

b) d“Uy14(2)
Kk —dzk——2U|(Z/2), (A4)
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We now define the Laplace transformU,(s) =0 for all I=1 andk=<(b—1). Using this condition and
=[ZU,(z)e sS4z Taking the Laplace transform in Eq. doing integration by parts, one finds
(A3), we get b b
o e
. . >, (k $0y.1(s)=40,(2s). (AB)
Ui(s)=2, Fi(N)=——=1=F((S), (AS5)
(8= 2 Fi(m et =Fil Summing the left-hand side of EGA6) and identifying

where we have used the identifife z"dz=n! and the U,(s)=F(s) as in Eq.(A5) then gives the desired recursion

- relation
definition of F|(s) in Eg. (5). Next we take the Laplace 4
transform on both sides of E¢A4). Using the initial condi- =~ _ ~
tions forn=0, one can easily show thalU,(z)/dZ|,—, Frea(s)= (1+5)5F'(25)' (A7)
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