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Dynamical model of a cooperative driving system for freeway traffic
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We propose an extended optimal velocity model applicable to cooperative driving control system, which will
be realized in the near future. In the model, a vehicle is controlled by the system using the information of
arbitrary number of vehicles that precede or follow. We investigate the stability of uniform flow and the
response to a disturbance in the linear approximation.
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I. INTRODUCTION vehicle[17]. The same model was also discussed by Sawada
[18]. Lenz, Wagner, and Sollacher discussed a model that a
On highways, one can find that free traffic flow changesdriver looks at many vehicles ahead of hjf®].
to congested flow as the vehicle density increases. To explain Automatic driving control systems are utilized as a part of
this phenomenon, a lot of studies have been done from thgo-called intelligent transport systeifTS). The suppression
physical viewpoint{1-5]. There have been many attempts qf traff'ic' congestion is one of the targets of ITS. A coopera-
constructing models for traffic flow: cellular automaton mod-tive driving control is one of such systems, where each ve-
els[6-8], fluid dynamical model§9], coupled map models hicle receives information of many other vehicles and de-
[10], and a probabilistic model using the master equatiorfides the optimal behavior. This system is expected to
[11]. We proposed a dynamical model of traffic flow, an Op_suppress the appearance of traffic congestion efficiently. In

timal velocity (OV) model[12], which is one of car follow- this paper we propose an extended OV model, in which a

ing models. These models have successfully described thveehlcle is controlled by the system using the information of

dynamical formation of traffic congestion. The transition arbitrary number of vehicles that precede or follow. We also

f free flow t ted flow i derstood Kind iscuss how this extension improves the stability of traffic
rom free Tlow 10 congested Tlow 1S underslood as a Kind Olg,,, The extended model includes the above mofibis—
phase transition. The OV model first reveals the transmonlg] as special cases

mechanism very simply among car following models. More- " gec || we present the extended OV model. We analyze
over, the model well reproduces the observed flow-densityhg |inear stability of uniform flow for the extended model in
relation, so-called the fundamental diagréh]. We recog-  gec. |11. Section IV is devoted to the investigation for linear
nize the OV model as a basic model for studying the pheresponse of vehicles to a disturbance. Using results in this

nomena of traffic flow. section, we present a dynamical model to control the real

In the OV model a driver is supposed to look at the pre-raffic. We summarize and discuss the whole results in
ceding vehicle only. The reaction to the preceding vehiclegec. v,

plays an essential role to organize traffic congestion, and to

explain the behavior of traffic flow. In more realistic situa-

tion, a driver looks at more vehicles around him, and the

effect modifies the model. In the viewpoint of control theory = The OV model is formulated by the following equation of

for traffic flow, such a effect is important to suppress themotion:

formation of congestion. In this context, there have been

several works to extend the OV model. In our previous pa- %X _

pers [14,15, we discussed the improvement of stability W_a

when a driver looks at the vehicle that follows. Hayakawa

and Nakanishi proposed another model for traffic and granuwherex,, and Ax,=X,+1— X, are the position and the head-

lar flow, which incorporates the effect of the particle thatway of nth vehicle, respectively. Vehicles are numbered such

follows [16]. Nagatani proposed a model that a driver looksthat the @+ 1)th vehicle precedes theh vehicle. We have

at the next to the preceding vehicle as well as the precedinimtroduced the OV functioW(Ax), which represents an op-
timal velocity of the vehicle with headwayx. A driver
controls the acceleration to decrease the difference between

Il. EXTENDED MODEL

dx,
V(AXn) — E

: @

*Email address: hasebe@vega.aichi-u.ac.jp the optimal velocity and the real velocity. Parametewhich
"Email address: g44153g@cc.nagoya-u.ac.jp has the dimension of inverse of time, is called sensitivity.
*Email address: genbey@eken.phys.nagoya-u.ac.jp We extend OV mode{l) to
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C|2Xn an
a2 @ V(AXpik,s - o BXnr1, Ay AXpgy oo AXg ) — it (2

The OV function is extended to a function &f +k_+1  velocity if each headway of the vehicles that follow becomes

variables, where\x, ,_, ..., Ax, are headways of the ve- small. Condition(5) with Eg. (7) becomes the condition for
hicles ahead of thath vehicle, andAx,_1, ... AX,_x are fyas

headways of the vehicles that follow. These variables are Kk,

defined byAX, =Xnike1— Xnsk fOor k=k, k,—1,..., ,

—k_ . The model withk . =k_=0 is the original OV model. k:zkf fi=V'(b). ®)

OV model(1) has a uniform flow solution

By changing the scale for and a, we can choosé/’(b)
=1 without loss of generality.

We investigate the stability of mode solution,(t)
=exdinf—iw(H)t] of Eq. (6). In the same way as Rdf12],
we obtain the stability condition as

X,=bn+V(b)t+const, €]

where all the vehicles have the same headwagnd the
same velocity/(b). Extended mode(2) has also a solution
of uniform flow:

2

Xn=bn+V(b,b, Ce ,b)t+C0nSt. (4) ; fk{Sln(ka)—Sll'{(k"r 1) 0]}
We compare the properties of the extended model under the a= . (©)
condition that the model has the same uniform flow solution Ek f {cogkd)—cog (k+1)6]}

as that of the original OV model. This condition imposes

V(b, ... b)=V(b) (5 The similar condition for an extended OV model is obtained
in Ref.[19], which is a special case of our formula.

on the OV function for any extended models discussed in The criterion of stability is graphically understood in Fig.
this paper. Under conditiotb) we investigate the linear sta- 1. We definea(#6,f,) by the right-hand side of Eq9) as a
bility of the uniform flow and the linear response to a distur-function of ¢ for a given set of parameterd | —k_<k
bance on the uniform flow of extended model for varigus <k, }. The solid curve in Fig. 1 shows the plot af#é,f,)
andk_ . for a given{f,}, in the polar coordinatea#). The points
corresponding to the mode solutions labeledblsre distrib-
uted on this curve. For a given sensitiviywe can draw the
circle of radius a. In Fig. 1, we set{f,,f;,fo}

In this section we discuss the linear stability of the uni-={0.25,0.25,0.5 and a=0.5, for example. If the curve
form flow. Lety, be a small fluctuation imposed on the a(#,f,) crosses the circle, the corresponding modes on the
uniform flow. We assume the periodic boundary conditionpart of the curve outside the circle make the uniform flow
Xn+1=X1, WhereN is the total number of vehicles. From Eg. unstable. Thus, the uniform flow is stable for the case that
(2), y,(t) satisfies the linearized equation

Ill. LINEAR ANALYSIS OF EXTENDED MODEL

) K=k, . 08 (@,9) ]
yn=a :Zk fkAYn+k=Yn ! (6) 06 1 ]
N 04}
whereAy,  x=VYnik+1— Ynik andf is defined by 02
0
fk:aAyn+kV(b+Ay“+k+’ ...b+HAy,, ... b 02}
+Ayn7k7)|Ay=Oa —k_<ksk,. (7 04T
-0.6 |
We should choose the OV function such thiat=0 for k o8|

=0 andf,<0 for k<<0. This choice is natural because of the
following reasons. The positive value &f(k=0) has the
effect of decreasing the VE|0City ath vehicle if each head- FIG. 1. The solid curve showa(#é,f,) in a polar coordinate
way of the vehicles that precede becomes small. On the othegs,¢) for a set of parametersf,,f;,fo}={0.25,0.25,05 The
hand, the negativg, (k<0) has the effect of increasing the dashed curve shows a circle of radais 0.5.

-08-06-04-02 0 0.2 04 06 038
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the curvea(#,f,) is completely inside the circle with radius 0.8 ———
a, i.e.,, a>a(6,f,) for all 6. In other words, the stability 06 b '
condition can be expressed as )
0.4 | 1
a>maxa(6,f,). (10
0 02} ]
Here we consider a problem to find the minimum value of ofr 7
right-hand side of inequalit{10) for a various choice of a set 02| |
of parametergf,}, that is, to find the extended OV function
V(...,Ax, ...), which makes the uniform flow “most 0.4t T
stable.” Then we consider a minimax problem 06} i
=min{maxa(0,f)}, (11) ogl— - . ..
f 0 0.8 06 0402 0 02 04 06 08

FIG. 2. Two examples o&(#6,f,) are shown. The solid curve
shows a(#6,f,) for the set of the most stable parameters
{f,,f1,fo}={1/3,1/3,1/3, in a polar coordinated, §). The dashed
curve shows anothea(4,f,) for {0.3,0.3,0.4. The dotted curve
shows a circle of radiua.=2/3.

under condition8). We calla, a critical sensitivity, and call
the solution{f,} of Eq. (11) for givenk_ andk, a set of
“the most stable parameters.”

First we consider an extended model with=0 and
k,>1, which we call “forward looking” optimal velocity
(FL OV) models. In the models, a driver looks at vehicles i iny
the direction of the vehicle. We perform a numerical searchb
for a solution of the minimax problem for FL-OV models. In
the result, we obtained

by k, =0 andk_=1. In the model, a driver looks at just one
receding vehicle and the vehicles that follow. We choose
the simplest cas&, =0 andk_=1, for example. By sub-
stituting the conditiorfy+ f _;=1 into the right-hand side of
Eq. (9), a(6,f,) is written as

fi = K1 k=0,1,2... k,, (12 .
a(a,fo,f,1)=2f—(1+cosa). (15
as a solution of Eq(11) and the critical sensitivity as o—1
2 Note thatf, can take any large positive value becaftis¢ is

ac= (13 negative. Then the minimax problefhl) has trivial solution
a,=0 at fy=c. The situation is not changed for general
BL-OV models. We emphasize that the stability in the

BL-OV model presents the different aspect from that in the

k,+1°

The smallness of, compared to the valua.,=2 in the
original OV modet shows the improvement of the stability

in FL-OV models. FL-OV model.
Let us illustrate the stability of a set of the most stable
parameters. Solutiofl2) means IV. LINEAR RESPONSE
1+cog(k, +1)6] In the preceding section, we analyzed the stability condi-
a(o,f= i (14)  tion of the uniform flow solution in extended models. Here,

ki+1 we discuss the linear response to the disturbance imposed on

the uniform flow. For the purpose of measuring the dynami-
cal behavior for the stability of the uniform flow, we intro-
duce two test functions

The maximum value of Eq14) is given by 6=2m7m/(k.
+1), m=0,1,2... k,, which is (k,+1)-fold degener-
ated. Figure 2 showa(a f\) for solution(14) in the case of
k, =2 together with another set df,, for the comparison. 1
The curv_ea(e,fk) for {fz,fl.,f0}={1/3,1/3,.1/3 looks like A(t)= = > VA, (16)
symmetric three leaves, which touch the cirale=2/3. The € n
change of parameters frofil/3,1/3,1/3 to {0.3,0.3,0.4
causes two leaves to shrink and one leaf to spread, and then 1 )
the corresponding critical sensitivity. is larger than 2/3. B(t)= - Z yﬁ(t), a7
The behavior indicates the reason wf/3,1/3,1/3 gives e n
the set of the most stable parameters.

Next, we consider another type of model, “backward- Wherey,(t) andy,(t) are the fluctuations of the position and

looking” optimal velocity (BL-OV) model, which is defined the velocity of thenth vehicle. The uniform flow is disturbed
att=0 such that only one vehicle changes its positioto

X+ € without changing velocity,

Before changing the time scale, such thatb)=1, the critical )
sensitivity isa,=2V’(b) [12]. Yn(0)=€6,9, Yn(0)=0. (18
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test function A(t)
test function B(t)

0 g e
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time (t) time (t)
FIG. 3. The behavior of the test functiok(t) with a=3: the FIG. 4. The behavior of the test functid(t) with a=3: the

dashed curve, the solid curve, and the dotted curve repré€nt  jaghed curve, the solid curve, and the dotted curve repregent
for the BL-OV model, the original OV model, and the FL-OV {6/ the BL-OV model, the original OV model and the FL-OV

model, respectively. model, respectively.

The solution of Eq(6) in this initial condition is written as most stable parametef&2). This result is expected from the

result of the preceding section.
Ya(h)= = > — ©—q(6) exinf—iw,(O)t] Next we discuss more complicated models. One is the
N 55 o_o(0)—w,(0) 7 ’ BL-OV model ofk_=2, in which a driver looks at the pre-
(190  ceding vehicle and two successive vehicles that follow. An-
other is the FL-OV model ok, =2, in which a driver looks
wheres= + is an index for two mode solutions of E¢f).  at the preceding vehicle and the next two successive vehicles

Now we discuss the linear responses for three models: th¢€ the preceding vehicle. The other is a modelkaf=1,
original OV model, the BL-OV model wittk_=1, and the k+=1, which we call a hybrid O(HB-OV) model. In this
FL-OV model withk, =1. We set the sensitivity parameter Model, a driver looks at the preceding vehicles, the next to
a=3, in which value the uniform flow is stable for the above the preceding vehicle and the vehicle that follows. The set of
three models. The parametefisare set agfo,f_;}={1.5, Pparametersf,j for each model is listed in Table I.

—0.5 for the BL-OV model, fo=1 for the original Ov  Figure 7 represents the damping behavior of the test func-
model and{f,,fo}={0.5,0.5 for the FL-OV model, which tion A(t) for the above three models. The sensitivity param-
is the set of the most stable parameters. In Fig. 3, the beha@ierais set to 3. In the HB-OV model, the behaviorft)

iors of A(t), which measures the fluctuation of position, areiS 8lmost the same as the BL-OV model. This indicates that
presented for the three models. In the BL-OV model, thefhe property of fluctuation of position in the BL-OV model is
disturbance damps faster than the other models, which is
emphasized in our previous papgt5]. The disturbance
slowly damps in the FL-OV model. However, this result does
not necessarily mean the inferiority of the FL-OV model. In

fact, the FL-OV model shows a small amount of fluctuation _os

for the test functiorB(t), which measures the fluctuation of ;("*

velocity (see Fig. 4. In contrast, the BL-OV model shows a g 06

large amount of the fluctuation of velocity. This is just the 5

opposite result for the behavior of the test functibdft). § 04l
In Fig. 5, we show the damping behavior of test function 7

A(t) in the BL-OV model for various parameters compared 2

o
(M

with the original OV model. The sets of parametéfg} are
as follows:{f,,f_;}={1.1-0.1}, {1.3-0.3}, {1.5~0.5.
The disturbance damps faster as the paranfgtdrecomes 00 0'5 1 1'5 2 2'5 3
larger under the conditiorig+f_;=1. This result is ex- ' timé M '
pected from the stability condition derived by EG5).

In Fig. 6, we show the amplitude of velocity-fluctuation  fig. 5. The solid curve represents the behavior of the test func-
B(t) in the FL-OV models for variou$f,} compared with  ton A(t) for the original OV model. The dashed, dotted, and dash-
the original OV model. The sets of parameters are as followsdotted curves represea(t) for the BL-OV models, which have the
{f1,f0}=1{0.1,0.9, {0.3,0.%, {0.5,0.5. The amplitude be- parameter¢f,,f_;}={1.1-0.1}, {1.3-0.3, {1.5~ 0.5, respec-
comes smaller as the set of parameters approaches that of tiely.
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FIG. 6. The solid curve represents the behavior of the test func- FIG. 7. The sol_id_curve represents the behavior of the test func-
tion B(t) for the original OV model. The dashed, dotted, and dash-tion A(t) for the original OV model. The dashed, dotted, and dash-
dotted curves represeB(t) for the FL-OV models, which have the dotted curves represed(t) for the BL-OV model, the FL-OV
parametert{fl,fo}:{O.l,O.S}, {03’0}, {05'03’ respectively. model, and the HB-OV model listed in Table I.

the BL-OV model, and moreover the fluctuation of position
not changed so strongly by introducing “forward-looking” damps as fast as the BL-OV model. We insist that the

effect. By comparing Figs. 3 and 7, we find th&t) in the  HB-OV model is a good candidate to control real traffic flow
BL-OV model ofk_=2 damps faster than that in the model on a highway.

of k_=1. In the FL-OV model ofk, =2, A(t) damps

slower than that in the model &, =1. This behavior of V. SUMMARY AND DISCUSSION
FL-OV models will be explained in detail in the followin . .
section. P g In this paper we discussed an extended OV model for the

Figure 8 represents the damping behavior of the test fundUrPose of constructing of a driving system for freeway traf-
tion B(t). In the FL-OV model ofk, =2, the amplitude of fic. I_n the deeI, a ve_h|cle is controlled by_ the system using
fluctuation of velocityB(t) becomes smaller than that in the the information of arblltrary number of vehicles that precede
FL-OV model ofk, = 1 (see Fig. 4 In the BL-OV model of  ©" foIIow._ The properties of the mode! are compared.under
k_=2, the amplitude oB(t) becomes larger than that in the the condition that it has the same uniform flow solution as
BL-OV model ofk_=1. This means that vehicles respond f[hat Of. the original OV model for any value of hegqlway. We
sensitively to the initial disturbance in the BL-OV model. In investigated the dynamical properties for the stability by cal-
the HB-OV model, the behavior d(t) is almost the same culating the response to the dlsturbanc_e imposed on the uni-
as the original OV model. The HB-OV model is a kind of form flow. In the FL-OV model we obtained the set of most
BL-OV model including the “forward-looking” effect. We stab_le parameters, which gives the.hlghest stability, whereas
can understand that the property of fluctuation of velocity inthe idea of such kind of parameter is useless for the BL-OV
the BL-OV model is improved by introducing “forward- model. The FL-OV model and the BL-OV model are
looking” effect. 3

In the FL-OV model, the fluctuation of velocity is small
and the fluctuation of position damps slowly. In other words,
the FL-OV model controls the motion of vehicle “mildly.”
The BL-OV model has property just opposite to the FL-OV
model. The fluctuation of velocity is large and the fluctuation
of position damps fast. The BL-OV model controls a vehicle
“severely.” The above two models are complementary in the
property of the response to the disturbance. In the HB-OV
model, the fluctuation of velocity is suppressed compared to

N
)

N

test function B(t)
- 4]

TABLE I. The sets of parametefd,} for the BL-OV, HB-OV,

and FL-OV models. 0 i

0 0.5 1 1.5 2 25 3
Model k. k_ fs fi fo f o, f_, time (1)
BL-OV 0 2 20 -05 -05 FIG. 8. The solid curve represents the behavior of the test func-
HB-OV 1 1 0.5 1.0 -05 tion B(t) for the original OV model. The dashed, dotted, and dash-
FL-OV 2 0 1/3 1/3 1/3 dotted curves represeig(t) for the BL-OV model, the FL-OV

model, and the HB-OV model listed in Table I.
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complementary in the property of response. In the FL-OVin this paper could be common to other types of models, and
model, the fluctuation of velocity is small and the fluctuationour results offer the important information for constructing a
of position damps slowly. On the other hand, in the BL-OV control theory for traffic flow.

model the fluctuation of velocity is large and the fluctuation

of position damps fast. On the basis of these analysis, we

have shown that the HB-OV model inherits the superior ACKNOWLEDGMENT

properties from both models. The HB-OV model is a candi-

date as a dynamical model of cooperative driving system that This work was partly supported by a Grant-in-Aid for
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