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Peculiarities of first-order phase transitions in the presence of an electric field

Yu. Dolinsky* and T. Elperif
The Pearlstone Center for Aeronautical Engineering Studies, Department of Mechanical Engineering,
Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
(Received 23 January 2003; published 1 August 2003

In this study, we developed a variational approach for thermodynamic systems with nondistributed param-
eters in the presence of the external electrostatic field. Using the obtained general relations, we analyzed some
characteristic features of the first-order phase transitions in the presence of electric field. We determined the
range of the thermodynamic parameters where both phases are(bkiadtéresiy and the range of the param-
eters whereby both phases are metastable. In the range where both phases are metastable, we considered
kinetics of formation of a new phase and determined the dependencies of the concentrations of phases in the
region of their metastability on the amplitude of the external electric field. The obtained results imply the
feasibility to control phase composition in the system by varying the amplitude of the external electrostatic
field.
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[. INTRODUCTION phase in this range of temperatures and pressures, and deter-
mined the dependencies of concentrations of phases in the
Effect of the external electric field upon the dynamics ofregion of their simultaneous metastability on the amplitude
phase transitions and chemical reactions is of interest bot@f the applied electric field.
from a purely theoretical point of view and in view of vari-
ous technological applicatior(see, e.g., Ref.1], and refer- [l. CONDITIONS FOR PHASE EQUILIBRIUM
ences therein In contrast to a field theorf2], the electro- IN THE PRESENCE OF EXTERNAL FIELD
dynamics of continuous media is a system of ) - .
phenomenological approachEs-5]. In spite of the variety ConS|d.er a system consisting ldfcomponents which are
of approaches suggested in the literature, the approach basgdgracterized by a set of parametghg v; ,s;}, whereN; is
upon the variational principal is one of the most consistent® NUMber of particlesy; is a specific volume, ané; is a
In Ref.[6], we employed this approach for the analysis of the_specmc entropy per one Opartlcle. The equgt|on of state of the
first-order phase transitions in the presence of electric field,(n component reads=e¢(v; ,S;), where; is the energy of
which are accompanied by formation of the nuclei with de-& component per one particle. Energy associated with an
creasing sizes. In this study, we generalized this approach @xternal loading per unit volume is denoted &y. In the
account for the dependence of the system response to th@mework of a thermodynamic approach, energy of the sys-
external electric field upon the entropy of the system. tem in the presence of the external loading can be written as
Another problem, which is considered in this investiga-follows:
tion, is kinetics of phase formation in the domain where both
phases are metastable. Although the existence of this domain
was established befofeee Refs[7,8]), variation of concen-
trations of phases with time was not addressed before. Solu-
tion of the latter problem allowed us to determine the depenwhere{\} is a set of parameters that characterize the external
dence of the equilibrium concentration of phases upon théoading.
amplitude of the external electric field. Thus, we demon- [et us assume that the energy of the system is minimum
strated the feasibility to change concentrations of phases iat a given magnitude of the total entropy
the system by varying the amplitude of the external electric ‘
field.
This paper is organized as follows. In Sec. Il, we de- S=2 siN;.
scribed a variational approach for the description of thermo- =1

Sgaarﬁfesyzzeer?arv:é?aggzg'ztl;'tg?rt]?j ?naglgetﬁ rsv;/elznaiglc 'Zgéhe latter requirement is equivalent to the minimization of a
g g L YZ€inction F=E—TS. The multiplier T is determined from a

some. characteristic features O.f the first-order phase tr.ans"iven total entropy and it is equal to the temperature of the
tions in the presence of electric field. Here, we determine

the range of temperatures and pressures whereby both phas Sstem. A condition for extremum

are metastable, considered the kinetics of formation of a new =

K
E:igl NileP(vi,s)+vieL uit{sih D], ()

=0 2
JS;
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*Electronic address: yuli@menix.bgu.ac.il

"Electronic address: elperin@menix.bgu.ac.il yields a system oK equations

1063-651X/2003/6€)/0261016)/$20.00 68 026101-1 ©2003 The American Physical Society



YU. DOLINSKY AND T. ELPERIN PHYSICAL REVIEW E68, 026101 (2003

38? de, In the framework of thermodynamic accuracy, this ex-
N; (—-I—vi— -T|=0,i=1,... K. (3)  pression can be rewritten as
JS; dS;
K
Since N; in Eqg. (3) is arbitrary, the expression in square F=> N[fouv, , T-TH+f4]. @
brackets must vanish. Thus, one arriveatquations that = R

determine the values of entropissas functions of param-

eters{v;},T,{\}. Here,fio(vi ,T) is a free energy of an unloaded system per
Because of the principle of additivity, i.e., assumption thatone particle:

energy associated with the external loading appears as an

additional term in the expression for the total eneEgygsee, fv;, N =e2s,(v; . T),T)-Ts(v;,T), T=T-TF,

e.g., Ref[3]), the exact solution of Eq3) exceeds the ther- 8

modynamic accuracy. Indeed, Bt s;(v,T,e) be the exact

solution of Eq.(3). Sinces; depends ore, nonlinearly, a @n

function F({v;},T,e) is also a nonlinear function with re-

spect to the external loading. In order to preserve an additiv-

ity principle in all thermodynamic representations, it is nec-

\ ! Elquation(7) describes the effect of renormalization of tem-
essary to neglect n(_)nlmear terms W't.h respect to the eXtem%era‘ture in the presence of electric field. The effective tem-
loading. However, in order to simplify notations, hereafter '

we use a general expression while the nonlinear terms wit erature of a subsystetasomponen) differs from the tem-
9 P - . . perature of the thermostat. This effect is similar to the effect
respect to the external loading are neglected only in the fin

escribed in Ref.3] whereby a thermodynamic pressure in a
formulas_. . . . . subsystem in the presence of the external loading., elec-
Equation(3) is solved by iterations with respect to the '

" | loading. . Let<%(u T) b i f state f tric field) is different from the external pressure.
external loading . Lets (v.T) be an eql(J)a lon of state for Let us require now that the total energy of the system is
the entropy of theth component, ang,=s; (v;,T) is a so-

minimum for a given volume of the systemZZiKzluiNi.

Iutiorg) of Eq. (3) for &, =0. After substituting this value of rpa |atter requirement can be written using a functibn
si=s; (v;,T) into the term associated with the external Ioad-:F+pV, wherep is a Lagrange multiplier. A condition

ing, Eq. (3) yields a®/9V=0 yields a system oK equations
T(s,0)+Tr=T, ) at0 ot
o sl

i dv;

fr(v;, T)=vie .~ Trs (v;,T). 9

=0. (10)

where Tr=v; de /dsi|s -, 1) and T(s;,v;) is a state
1

function, T(s; ,Ui)=t98io(i,vi)/f93i . Thus, ifSi=S?_(vi ,T)is  Equation(10) can be considered as a condition for mechani-
a solution of Eq.(3) for e =0, then a new solution of Egs. cal equilibrium between the subsystems, while B)j.is a

(3) and(4) can be written as follows: condition for thermal equilibrium. Using Eq&l) and(8), we
10 . find that
si=s (v, T=Ty). 5
of° O oTH
Only the first term in the expansion of formul®) in power o p(v; T-TH)+ 5T 0. (13)
series of parametéf- has a physical meaning in the frame- ! P
work of thermodynamic accuracy: f?fiL B g, asio oaTiL
=T v Th 0 (12)
1 0 Ci L ﬂvi ﬁvi al)i &vi
Si:Si(Ui’T)_TTi y (6)

wherep(v;,T) is an equation of state of thiéh component.
wherec; /T=ds’/dT. Note that Eq.(4) describes the elec- Now we employ the same procedure as was useéj for transi-
trocalorific effect(see, e.g., Ref3]), Chap. 2, Sec. 2Sub-  tion from energyE to functionF. Assume thav;=v;(p,T)

stituting the valuess® given by Eq.(5) into expression for is @ solution of Eq.(10) for & =0, and solve Eq(10) by
the functionF = E— TS yields iterations, i.e., substitute?(p,T) into all terms containing

e, and its derivative$see Eqs(11) and(12)].

K 0 0 L o 0 Then, if vi=vi°(p,T) is a solution of Eq.(10) for &
FZZl Ni[ei (i,si(vi, T=T7))+vie i,si (vi, T),{\}) =0, the new solution of Eq10) v can be written as
~Ts (v, T-TH1. vi=vi(p—pr, T-Tp), (13)

Since in the final formulas we retain only the first iteration wherep; = — (dfo/dTi T/ dvi+dfidv )]y =y (o1 -

with respect to the external loading, in the second term of the Substituting the equilibrium valué€l3) into function @
Iattgr expression we substituted as an argument and keeping only terms with the thermodynamic accuracy
=s/(v;i,T). yield
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K o 1 L e Lo o . whereE,,D, andE,D are the strengths of the electric field
CDZiZl Ni[f7 (vi, T=T) +vie =Ty (v, T) + poi]. and induction before and after formation of the nucleus, re-
- spectively. In the case of a spherical nucleus, we arrive at the
Introducing the chemical potential following formula for W, (see, e.g., Ref.3], Chap. 2, Sec.
12 and Ref[9)):
wi(p, ) =12(i(p,T), T+ pvi(p,T), (14 .
We=g1Ny,
we can rewrite formula fofb as follows:
where
K
®=2, N[g(p=pf T-TH+pil, (19 _ _Po=P1 3Bofs 8
8w Bit2Bo

whereul=f-+pFod(p,T).
Finally, a condition for chemical equilibrium is deter-
mined from the requirement for the minimum of a function

Here, By and B, are dielectric permittivities of the external
(hosy and internal(nucleus phases, respectively, which re-

late electric induction with the strength of electric fiel,

S =BE. The values, in Eq. (1) can be written ag, =&; .

A=‘D—#i§1 N; Let us neglect the dependence of the dielectric permittivi-
ties By and B, upon the entropies and specific volumes of
with respect to parametebs : the external and internal phases. According to (-ij.T:'
=0, and according to Eq9) f-=ve;. Using Eqs(12) and
,uio(p— pf‘ ,T—T:‘)+,u=‘=,u|(2(p— p.'; ,T—T{;)+,u|';. (13), we find thatp}‘= —&:68, , whered,,, is a Kronecker’s

(16)  delta. Thus,

Expanding Eq(16) in power series of the parameters of the pb=f-+ptv,=0. (19)
external loading, we find that

0 0 L Lol L L L In order to determine the size of a critical nucleus, we must
(P T) = (P T =vipr —oiPt = #i =SiITr+ STk, ke into account the surface tension. The equation for deter-
mining the radius of a critical nucleus, can be derived
(17) using Egs.(17) and (19) and taking into account that the
radius of a critical nucleus is an additional variational param-

wherev;(p,T) ands;(p,T) are specific volume and entropy eter in the problenf12];

per one particle, respectively.

ll. PHASE TRANSITION IN THE PRESENCE P, T) = ud(p,T)=—v,
OF THE EXTERNAL ELECTRIC FIELD

: (20

_ 2«
8f+r—
1

Using the approach outlined in the preceding section, conwhere« is a coefficient of surface tension.
sider a first-order phase transition in the presence of the ex- Formulas(19) and (20) were often used in the literature
ternal electric field. Although this problem was a subject of(see, e.g., Ref§7-10]) for the analysis of the phase transi-
many experimental and theoretical studisse, e.g., Refs. tions. Equationg18) and(19) show that the main effect of
[1,9,10), some aspects of the problem were not analyzedhe electric field on phase transitions is related to that
before in spite of their significance for elucidating the prob-changes sign depending on the magnitude of the dielectric
lem. The principal effect of the electric field upon the first- permittivity of the internal phase. The similar situation oc-
order phase transition is the splitting of the phase equilibriunturs in the case of phase transitions in current-carrying con-
curve whereby the equilibrium curves for the direct and forductors. In Refs[10,11] using equations of the same type as
the inverse phase transitions do not coincide. The latter effedtgs. (18)—(20), we demonstrated the existence of the ther-
occurs because a work of formation of a nucleus of a newnodynamic domain where both phases are metastable. In
phase depends upon the electrodynamic parameters of thigis domain for a given value of pressure, there exists a tem-
nucleus and of the host medium. In the following, we denoteperature intervalAT(p) where the sizes of the critical
parameters of a nucleus by the subscript 0 and parameters ificleus for the direct and inverse phase transitions assume
the host medium by the subscript 1. Energy of the systenpositive values simultaneously. A case of electrostatic field is
comprised an embedded nucleus and a host medium in thressociated with some differences. The latter is the reason that
external electric field can be written in the form given by Eq.in this study, we performed a complete analysis of the prob-
(1). To this end, we determine the change of the energy ofem. Apart from the temperature rangel (p) where for a
the electric field(see Ref[3], Chap. 2, Sec. 11 given pressure both phases are metastable, we also consid-
ered the rang@ p(T) of pressures where for a given tem-
W :J (E-B—E, By)dr perature both phases are metastable. If the difference be-
e 07 =0/=0 tween the specific volumes of both phases is small, the latter
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range can be quite largep(T)>¢;. In conclusion, we con-

sidered also kinetics of phase transition in the domain of

coexistence of both phases.

Further analysis is performed using EGQ) in order to
determine the size of the critical nucleus for a phase
transition + —— and r, for a phase transition-— +.
Hereafter, the subscripts and — denote a high temperature
and a low temperature phase, respectively. Using(#g).in
the vicinity of temperaturd =Ty(p) for a given pressurp,
we find that for a phase transition — — (phase— is con-
sidered to be the internal phase

0

2av

\ ATJr 0o—
— tv_e
T, f

r(m)=-— AT=T-Ty, (21
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Po P P+
Phases "-"
S[able" " and "+" are Stable
phase "~ stable phase "+"
(hysteresis)
T, T T,
P, P P
Stable Phas'fas""—" Stable
phase "-" and "+" are phase "+"
metastable
T T T

0 +

FIG. 1. Locations of domains of stability and metastability of

wherev? is a specific volume of a low temperature phase afhases for different values of paramete(«>1).

the phase equilibrium curv@=Ty(p), No=To(s—5°)
>0,s% ands® are specific entropies of the high temperature
and low temperature phases, respectively, and

_B-
B

Consider now a phase transition —+, assuming that
phase+ is the internal phase. In this case,

_ 1-« 3 _,
P g k2o

ey K (22

2avg
AT ’
O_
KOT—O—UJrSer

ro(T)= (23

Wherevﬂ)r is a specific volume of the high temperature phase

and

sign. As follows from Eqs(21)—(24), whenx>1 the curves
T_(p) and T, (p) are shifted towards higher temperatures,
and whenk<1 these curves are shifted towards lower tem-
peratures. IfT_(p)<T.(p), then in the temperature range

T_(P)<T<T.(p), (28

the nuclei of the new phase are not formed. The latter con-

clusion is a direct consequence of the definitionTaf(p)

and T, (p). In the temperatures range determined by Eg.

(289), both phases are stable, i.e., it is a range of a hysteresis.
Different situation occurs wheift . (p)<T_(p). In this

case, in the temperature range

T (P)<T<T_(p), (29

both phases are metastable, so th4{T) andr _(T) assume

. k=1 3k _, finite positive values. The latter conclusion can be verified as
ef =B+ g 172, Eo- (24 follows. Eliminating AT/T, in formulas (21) and (23), we
find that
Formula(21) allows us to determine a temperatdre such
that at temperature>T_ , the nuclei of the low tempera- 2av, 2av- _ o er v—1 . E (y=1). (30)
ture phasd—) are not formed, My r- o o '

T,_TO U_?F
To  Xo

’

(29

while formula(23) allows us to determine a temperatdre
such that at temperatur&s<T . , nuclei of the high tempera-
ture phasd+) are not formed,

—F
T+_T0_ UV4i€&g

To No 29

Define a parameter

In the domain where both phases are metastahléT)
andr _(T) assume positive and finite values. Equat{B0)
implies that such a situation can occur only when its right-
hand side is positive. Since far>1,e; <0 ande; >0, Eq.
(30) yields a condition for the metastability of both phases in

the rangex>1, y>1.

Similarly, it can be showed that in the range<1, the
condition for the metastability of both phasesjisi1 with

the only difference that - <Ty andT, <T,. In Figs. 1 and

2, we showed locations of different domains of stability of
phases foik>1 andx<1 on the temperature axis. In Fig. 3,

we showed locations of the domains of metastability of both

T_—To 1+2x v-

YT T, (ki ko,

(27)

phases ow /v, ,B_/B, plane.
Above we considered different thermodynamic regions at

the temperature axis for a given magnitude of pressure. Us-

Equation(27) implies that the curve$ _(p) andT . (p) are
shifted in the same direction with respect to the cufyép)
since the difference§ _—T, and T, —T, have the same

ing a similar approach, we can analyze different thermody-
namic regions at the pressure axis for a given magnitude of

temperature. Thus, we obtained formulas for presspres
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¢

X, (t)= %qu— yt)(x+<0>— s

L
’ ® p71

X_(0)—

1
x,(t):m+exq—yt) m
In the linear region where both phases are far from depletion,
the probability of phase formation is determined by the criti-
cal radius (see Ref. [13], Chap. 12, Sec. 99 p-
«exp(—4mar’/3kT), and

47Ta(ri—r2,)
p=expg — T .

(31)

Here,r, andr_ are the critical sizes of the nuclei in the

phases for different values of parametefx<1).

above. Substituting these values into form(84) yields the
dependencies of phase concentratignsand x_ upon the

andp. , such that forp>p_ a low pressure phase is not ampjitude of the external electric field. Direct substitution of
formed and fop<p.. a high pressure phase is not formed: gqs. (21)—(24) into Eq. (31) yields an expression which is

€ Ef

pf_Po:_I7 p+_po:E,

where e; is determined by Eq(22), A_=v_-v,/v_,
A,=v_—v,lv,, & is determined by Eq(24), v_ and
v, are specific volumes of low pressure and high pressure

too cumbersome for the direct analysis. In order to derive
simple formulas for the dependencies of phase concentra-
tions on the amplitude of the electric field, let us define the
parameter

AT X

E2
To V()

(32

phases, respectively. Then, using considerations similar to

those employed in the analysis of the temperatures range, Wehere Y/(K) =v_v,l(vi+v_) (k—1)/87B.3(k*+ 4k
arrive at the thermodynamic domains of stability of phasest 1)/(x+2)/(1+2«).

shown in Figs. 1 and 2.

When the external electric fielHy=E,, at a givenAT,

In conclusion, we consider kinetics of formation of two r _(T)=r_(T), i.e., ¢=1. Thus, formula(32) determines

phases. Denote by, andx_ the concentrations of a high the magnitude of the external electric fiefd that renders
temperature and a low temperature phase, respectively. Weyncentrations of both phases equal. Note that(B2). im-

neglect fluctuations of concentrations and consider a line
domain where concentrations of both phases are far fro
depletion. Letp, andp_ be the probabilities of formation of

phases(see Ref.[13], Chap. 12, Sec. 99 Since x, +x_
=1 using the local approximation, we find that

Xe=p(1=X0)=p-Xy,

V. | Phases*-"and"+"are
* | metastable

v_ (K+2)K
1+2K

1 B
B

FIG. 3. Domains of metastability of both phaseswn/v, ,
B_ 1B, plane.

lies that whem T<0, V(k)<0 andx<1. Thus, a domain
here concentrations of both phases are equal is located in
the regionAT<0 when <1, and in the regiomAT>0
when «>1. Consider a case with<1l andAT<O0. Hereaf-
ter, the amplitude of the external field is normalizedeyyso
that E2=x?E2. Using the latter relation and E¢32) rather
than Egs(21) and(23), we arrive at the following formulas:

Mo o
r—(T)—m, +(T) A 1), (33
S [
s

where ro=—2av_To/(\oAT) is a radius of the critical
nucleus of the low temperature phase without the external
electric field and

1+2«k

B _T(1+S)
C k(k+2)’ B

T+ G4

s=v_lv,, T

The magnitudes of parametekss, and r are determined
by the parameters of phases. Thus, E§8) and(33) deter-
mine the range of the external electric fidlg where both
phases are metastable. This range of the external electric
field can be found from the conditions that the sizes of the
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critical nuclei of both phases are positive, ire.(T)>0 and
r+(T)>0. The latter conditions yield

1A>EZEZ> 7s/A. (35

The existence of the range of the external electric {8k
requires the validity of the conditioy=7s<1, which was
found before.

PHYSICAL REVIEW E68, 026101 (2003

IV. DISCUSSION

In this study, we considered kinetics of phase formation in
the domain of simultaneous metastability of both phases in
the presence of the external electrostatic field. Although the
existence of the domain of simultaneous metastability of
both phases was demonstrated in the case of phase transi-
tions in current-carrying conductofsee Refs[7,8,11]), the

In the caseAT>0, the sizes of the critical nuclei are kinetics of phase formation in this domain was not analyzed
normalized by the size of the critical nucleus without thepefore.

external electric fieldry, ro=2av,To/(NoAT) [compare

The main result that was obtained in this study is that we

with rq in Eq. (33)]. Then, using the same arguments allowsgemonstrated the feasibility to control concentrations of
us to determine a condition for the metastability of bOthphases in the system by varying the amplitude of the external

phasesc>1, y=7rs>1, which was determined above.

electrostatic field.

Now we determine the dependence of the ratio of the  c,hcerning the experimental observation of the kinetics

concentrations of phases=x, ()/x_() in the vicinity of

¢=1 upon the magnitude of the external electric field. For-
mulas for the sizes of the nuclei can be rewritten as follows;

= [ = [
r( )_W' ri( )_1(x2——1)A’
1-A T TAsr
(36)
wherer , is a critical radius of the nuclei fop=1:
ro roT
TICAT Ags 37

Note that a conditiorr, >0, or 7s<A<1, is a particular
case of the Eq(35) at E=E,.

Using Eq.(33), we arrive at the following formula for the
ratio of concentrations of two phases:

_dmarg [2¢7+ E(1-1)](1+7)
O BT -0 DAL AR

(38)

whereé=(E3— E2)/E2A/(1— A). Equation(38) determines

of phase formation in the external electrostatic field, it must
be noted that the main obstacle for observation of the above
discussed phenomena is the relatively small magnitude of
electric field causing a breakdown. It is feasible to observe
these effects when either a latent heat of phase transition is
small or a difference of the specific volumes of two phases is
small. One very essential factor which is not accounted for in
this study is the mechanical instability of the nuclei with
respect to their elongation into a spheroid shape and rupture
into smaller fragment§14]. The latter instability occurs in
the case of formation of droplets in a gaseous medium. On
the other hand, in this study, we suggested a general ap-
proach with the end to determine the minimum requirements
to the system where there exists a domain of simultaneous
metastability of both phases. The existence of such a domain
is of interest since in this domain, it is possible to change
concentrations of phases by varying the amplitude of the
external electric field.

These minimum requirements to the system imply that the
response of the system to the external loading depends upon
the phase state of the material and the work of nucleus for-
mation depends upon the magnitude of the external loading.

the dependence of the ratio of concentrations of both phasdshe similar situation occurs during phase transitions in
on the magnitude of the applied electric field and parametersurrent-carrying conductors, e.g., during surface melting
of the problem. [15].
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