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A time-dependent model for the generation of joint waveguides by counterpropagating light beams in
photorefractive crystals is introduced. Depending on initial conditions and parameter values, the beams form
stable structures or display periodic and irregular dynamics. Steady-state solutions nonuniform in the direction
of propagation are found, representing a general class of self-trapped waveguides that include counterpropa-
gating spatial vector solitons as a particular case.
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During the last decade spatial screening solifdjshave tion depth. Here the parameter measures the degree of
been considered almost exclusively in copropagation geontemporalcoherence of the beams related to the crystal relax-
etry. Recent progress in generating optical solitons consistingtion time: fore=0, i.e., when the relative phase of the
of counterpropagatingCP) fields by Cohenet al. [2] has  beams varies much faster thag the beams are effectively
renewed interest in CP wave mixing, extensively studied irincoherent. In the opposite case-1, the intensity distribu-
the pas{3-5]. However, such geometries in photorefractivetion contains an interference term that is periodically modu-
(PR media are prone to instabilitig$—8] and are often lated in the direction of propagatian chosen to be perpen-
employed for transverse optical pattern formafi®h In par-  dicular to thec axis of the crystal, which is also theaxis of
ticular, temporal instabilities were shown to result in self- the coordinate system. Beams are polarized inxiurec-
oscillation, chaos, and bistabilifi,4]. It is therefore of im-  tion, and the external electric fielH,, necessary for the
portance to investigate the temporal behavior of CP selfformation of self-trapped beams, also points in théirec-
trapped beams in PR crystals with finite response timetion. The electric field in the crystal couples to the electro-
Furthermore, one may easily envision interest in a stabl@ptic tensor, giving rise to a change in the index of refraction
self-adjustable connection of two arrays of beams across a
PR crystal.

In this Rapid Communication we derive equations for the
propagation of beams, similar to the bimodal CP solitons in
Kerr media[5], and collisions of screening PR solitons
propagating in opposite directiof&]. We formulate a time- —
relaxation procedure for the determination of space charge
field and refractive index modulation in PR crystals. Dy-
namical effects are found important for understanding the
behavior of CP beams. We display numerically the temporal
formation of bright spatial screening vector solitons formed
by CP beams, and discuss their interactions i# () spatial
dimensions. Beyond soliton solutions, we introduce a more
general class of steady-state induced waveguides. Addition-
ally, a situation where the interacting beams do not converge
to a stationary structure, but alternate between different
states, is reported.

We consider two CP light beams in a PR crystal, in the
paraxial approximation, under conditions suitable for the for-
mation of screening solitons. The optical field is given as the
sum of CP wave§ exp(kz+iwt)+Bexp(—ikz+iwt), k being
the wave vector in the mediurf, and B are slowly varying
envelopes of the beams. The light intenditis measured in
units of the background light intensity, also necessary for the
generation of solitons. After averaging in time on the scale of
response time of the PR crystal, the total intensity is given

by
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) FIG. 1. Counterpropagating dipole-mode vector solit@,
1+1=(1+1g){1+e[mexp2ikz) +c.c]/2}, (1) made out of a fundamental beam propagating to the fighand a
coherent dipole beam propagating to the (ejt Coupling strength
wherely=|F|?+|B|? andm=2FB*/(1+1,) is the modula- T'=3.3.
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FIG. 3. Incohereni{a)—(c) and coherentd)—(f) interaction of
two pairs of CP beams. The initial offset ix#for in-phase beams
propagating to the right ifb) and(e), and Z for the out-of-phase

FIG. 2. Bidirectional waveguidea) Total intensity distribution;
(b) right-propagating andc) left-propagating beams. Layout as in
Fig. 1, parameters=1, andl'=5. Initial peak intensitiesz=15

-1 beams propagating to the left (o) and (f). Parameters and layout
as in Fig. 1.
of the formAn= —ngreffEIZ, wheren, is the unperturbed |
index, rq¢¢ is the effective component of the electro-optic 70,Eg+Eq= — 0 (43
tensor, anck is thex component of the total electric field. It 1+1g
consists of the external field and the space charge Egld
enerated in the crystadf=E .+ Eq.. em
J ystelh = et Bsc TOE;+Ey = (4b)

The intensity modulates the space charge field, which we
represent in the normalized form

TS

where the relaxation time of the crystalis inversely pro-

1 _ portional to the total intensity=74/(1+1), i.e., iluminated
Esc/Ee=Eot+ 5 [Erexp2ikz) +c.cl, (2)  regions in the crystal react faster. The assumed dynamics is
that the space charge field builds up towards the steady state,
which depends on the light distribution, which in turn is
slaved to the slow change of the space charge field. As will
be seen later, this does not preclude a more complicated dy-
namical behavior.

whereE, is the homogeneous part of tReomponent of the
space charge field, art#,(x,z) is theslowly varyingpart of
the space charge field, proportionaletolt is Eg that screens

the external field, andE, is the result of the interference Selecting synchronous terms in the nonlinear paraxial

pattern a!ong th_ez direction. . wave equation, we obtain the propagation equations
In the isotropic approach, one assumes a local approxima-

tion to the space charge field, and looks for a solution with i 9.E+2F=T[E-F +E.B/2 5
saturable nonlinearitfe=E./(1+1). Substituting Eqs(1) z X [Eo 1B/2], 53
and (2) in this expression, neglecting higher harmonics and

i 2p *
terms quadratic iim, we obtain as a steady-state solution 10,B+0,B=T[EB+E{F/2], (50)

where the parametdt= (kngX,)r¢E. represents the cou-
_ lo __.&m 3) pling strength, and the rescalizg—x/xq, z—2z/Lp, (F,B)

R R P A R P —(F,B)exp(—iT'7) is used. Here, is the typical beam waist

and Lp=2kxZ is the diffraction length[10]. Propagation
Temporal evolution of the space charge field is introducedcequations are solved numerically, concurrently with the tem-
by assuming relaxation-type dynamidsl] poral equations. The numerical procedure consists in solving
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Egs. (4) for the components of the space charge field, with
the light fields obtained at every step@sded modesf the
induced common waveguide. It is described in RE8s12].

The procedure starts with the given initial light fields at
the left and right crystal faces, and the space charge field set
to zero. Within each temporal step an iterative relaxation
procedure, based on a split-step beam propagation method, is
applied to the propagation equations with the given space
charge field. In each iterative step the beams are propagated
simultaneously from their input faces, using the value from
the previous iteration for the other beam. The propagation
equations are treated until spatial convergence is achieved,
and the converged intensities are used in the next temporal
step, to update the space charge field and the crystal relax-
ation time. Both loops are iterated until convergence, which,
however, is not necessarily reached in the temporal loop. In
that case alynamicalstate is obtained.

Head-on collision of the beams with initial soliton pro-
files, after temporal relaxation to a steady state, results in the
formation of a CP soliton(not shown, similar to the one
found in Ref.[2]. One can easily generalize this approach,
introducing higher-order CP solitons, similar to the multi-
hump vector solitons in copropagating geomefsge, e.g.,
Ref.[13]). In Fig. 1 we present a particular case of a dipole-
mode CP soliton. Dipole beam is launched from the right,
and a power-matched single beam from the left. Such a bi-
modal CP soliton has been studied in R&f). The size of
data windows in all figures is 10 beam diameters transversel&
by 2 diffraction lengths longitudinally.

Shooting initial beams with arbitrary parameters generall
leads toz dependent or nonstationary character of the beam
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FIG. 4. Unstable self-organized beam structure afterrd 1&m-
oral steps, at the moment of symmetry breaking. Three in-phase
eams propagate to the rigl, two out-of-phase beams to the left
(c). The components have equal powers and the couglird.0.
Yother parameters as in Fig. 1.

propagation. In some domain of the initial parameters, fobetween the other two. However, in the coherent case
example, with the relative angle of beam scattedirdjose to  ¢=1, shown in Figs. &)-3(f), beams focus and overlap

m and small initial transverse offset, our time-relaxation pro-less, and the beams to the rigie) are expelled from the

cedure converges tstationary in timestructures, which we region between the other beams. Also, the time scale of
denote as steady-staelf-trapped waveguidd44]. The for- buildup dynamics is shorter for the coherent interaction of
mation of a single bidirectional waveguide is shown in Fig.Peams. _ _ _
2. Two coherent Gaussian beams are launched at different VW& would like to note here that for propagation distances

lateral positions perpendicular to the crystal edgés, .
Both beams diffract initially, until the space charge field is
developed in time to form the waveguide induced by the
total light intensity, Fig. 2a), and this induced waveguide
traps both beams, Figs(l2 and Zc). When the initial sepa- i
ration is four or more beam diameters, the beams hardly fejfr
the presence of each other, and focus into individual solitons.

exceeding some threshold value, i.e., for larger crystal
lengths, and for increasing coupling strengths we observe
modulational instabilities developing in time, even for the
initial beams corresponding to the exact steady state solitons.
In that caselynamicalstates follow. Modulational instability

a topic of ongoing research and beyond the frame of
esent paper.

Of special interest are those self-trapped structures that

For the separation of two beam diameters, the interaction iéynamically do not converge to a steady state. Such struc-
strong enough for the beams to form a joint waveguidingres represent time-dependent, as well zaglependent,
structure, as is shown in Fig. 2. waveguides that cannot be described by the usual steady-
We next examine the difference between the coherent anstate theory of spatial solitons. Whereas thdependence
incoherent interaction of beams. Two steady-state solutionsan be ascribed to the general definition of longitudinal
with the same boundary conditions but for different degreesvaveguide modes, the time dependence is an important fea-
of mutual coherence are shown in Fig. 3. Counterpropa- ture, caused by the slow response of PR crystals. An example
gating beam components made of two pairs of beams arig depicted in Fig. 4, where a collision of three against two
launched with a lateral offset. The beams to the right are ipower-matched coherent beams is presented. The initial con-
phase, and aim at the center of the opposite crystal face. THgyuration is such that the three beams propagating to the
beams to the left are out of phase, and launched in paralletight interfere constructivelyb), to overlap with the two CP
Figures 3a)—3(c) depict the incoherent interactios,=0. out-of-phase beam&). During the time evolution of this
The beams attract, focus and overlap tightly, but the ones tdynamical state we have observed several alternations of
the right(b) are still capable of building the intense spot in transversely symmetrical structures, similar to the one shown
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FIG. 5. Temporal evolution of the output intensity distribution of the two-lobe left-propagating beam at the left face of the crystal.
Dashed line at=116r, shows the slice corresponding to Figcy where the modulational instability breaks the transverse symmetry.
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in Fig. 4, and identified such behavior as a quasiperiodi coherence of interacting beams influences the mutual cou-
e e (f:)llng due to the formation of a refractive index grating. In
self-oscillation[3], clearly seen in Fig. 5 fot<116r,. At aqdition to the generation of steady-state induced
that point the development dfansversesymmetry-breaking  waveguides, the dynamic alternation of states followed by a
instability is observed, which results in irregular dynamics,transverse modulational instability, as well as the onset of
shown in Fig. 5 fort>116r. longitudinal modulational instabilities were observed.
In conclusion, we have developed a theory of self-trapped
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